The study of functional and pasting properties of Taro “SEMIR” (Colocasia Esculenta L. Schott) starch modified by various thermal process

  • Endah Wulandari Department of Food Industrial Technology, Universitas Padjadjaran
  • Herlina Marta Department of Food Industrial Technology, Universitas Padjadjaran
  • Elazmanawati Lembong Department of Food Industrial Technology, Universitas Padjadjaran
  • Fransiska Ariela Department of Food Industrial Technology, Universitas Padjadjaran
Keywords: functional, modification, pasting properties, starch, taro semir

Abstract

Taro tubers locally known as Semir are potentially used as a source of starch. Taro Semir starch can be used as a substitute of rice flour in the raw material of rice vermicelli. However, native taro starch has not been optimally utilized due to poor functional and poor pasting properties. Thus, further treatment is needed to improve their properties. The ideal characteristics of starch as a raw material of vermicelli are low swelling volume, stable against heating and stirring, and fast-rising value of setback viscosity. The aim of this research was to determine a suitable physical modification to produce functional and pasting properties of taro Semir starch. The physical modifications were applied in preparing taro Semir starch includes Heat Moisture Treatment (HMT) at 110°C for 8 hours, Heat Pressure Treatment (HPT) at 120°C 1 hour, Microwave Heat/Moisture Treatment (MWT) with 100W 20 minutes, and Osmotic Pressure Treatment (OPT) at 120°C 30 minutes. Those modified taro Semir starch were compared with the native taro Semir starch. Taro Semir starch modified by HMT revealed with the best performance compared to others modification. The obtained characteristic of this starch were swelling volume of 6.57±0.80 mL/g, solubility of 5.80±0.29 %, water absorption capacity of 2.59±0.09 g/g, gel strength of 3,518±0.17 gF, syneresis percentage of 5.39±2.31 %, pasting temperature of 83.65±0.77°C, peak viscosity 4,349.17±192.61 cP, breakdown viscosity 494±33.81 cP, and setback viscosity of 2,413±165.85 cP. It was concluded that HMT at 110°C for 8 hours considered as the best method of modification for the Taro Semir starch.

References

Hamzah, Y.; R. Siti A. Effect of heat moisture treatment on molecular structure and thermal properties of taro starch (Colocasia esculenta sp.) in UMT 11th International Annual Symposium on Sustainability Science and Management, Terengganu, Malaysia. 2012; pp. 526-531, e- ISBN 978-967-5366-93-2.

Karmakar, R.; Ban, D.K.; Ghosh, U. Comparative study of native and modified starches isolated from conventional and nonconventional sources. Int. Food Res. J. 2014, 21, 597-602.

Collado, L.S.; Mabesa, L.B.; Oates, C.G.; Corke, H. Bihon‐type noodles from heat‐moisture‐treated sweet potato starch. J. Food Sci. 2001, 66, 604–609, doi: 10.1111/j.1365-2621.2001.tb04608.x.

Tan, H.-Z.; Li, Z.-G.; Tan, B. Starch noodles: History, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res. Int. 2009, 42, 551–576, doi:10.1016/j.foodres.2009.02.015.

Njintang, Y.N.; Scher, J.; Mbofung, C.M.F. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 2008, 86, 294–305, doi:10.1016/j.jfoodeng.2007.10.006.

Huang, C.-C.; Lai, P.; Chen, I.-H.; Liu, Y.-F.; Wang, C.-C. Effects of mucilage on the thermal and pasting properties of yam, taro, and sweet potato starches. LWT-Food Sci. Technol. 2010, 43, 849–855, doi: 10.1016/j.lwt.2009.11.009.

Pérez, E.; Schultz, F.S.; de Delahaye, E.P. Characterization of some properties of starches isolated from Xanthosoma sagittifolium (tannia) and Colocassia esculenta (taro). Carbohydr. Polym. 2005, 60, 139–145, doi:10.1016/j.carbpol.2004.11.033/.

Moorthy, S.N. Effect of steam pressure treatment on the physicochemical properties of Dioscorea starches. J. Agric. Food Chem. 1999, 47, 1695–1699, doi:10.1021/jf971082m.

Aprianita, A.; Vasiljevic, T.; Bannikova, A.; Kasapis, S. Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. J. Food Sci. Technol. 2014, 51, 3669–3679, doi:10.1007/s13197-012-0915-5.

Sit, N.; Misra, S.; Deka, S.C. Characterization of physicochemical, functional, textural and color properties of starches from two different varieties of taro and their comparison to potato and rice starches. Food Sci. Technol. Res. 2014, 20, 357–365, doi:10.3136/fstr.20.357.

Hormdok, R.; Noomhorm, A. Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT-Food Sci. Technol. 2007, 40, 1723–1731, doi:10.1016/j.lwt.2006.12.017.

Zhang, J.; Wang, Z.; Shi, X. Effect of microwave heat/moisture treatment on physicochemical properties of Canna edulis Ker starch. J. Sci. Food Agric. 2009, 89, 653–664, doi:10.1002/jsfa.3497.

Neelam, K.; Vijay, S.; Lalit, S. Various techniques for the modification of starch and the applications of its derivatives. Int. Res. J. Pharm. 2012, 3, 25–31.

Klein, B.; Pinto, V.Z.; Vanier, N.L.; da Rosa Zavareze, E.; Colussi, R.; do Evangelho, J.A.; Gutkoski, L.C.; Dias, A.R.G. Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydr. Polym. 2013, 98, 1578–1584, doi:j.carbpol.2013.07.036.

Pukkahuta, C.; Suwannawat, B.; Shobsngob, S.; Varavinit, S. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat–moisture treated corn starch. Carbohydr. Polym. 2008, 72, 527–536, doi:10.1016/j.carbpol.2007.09.024.

da Rosa Z.E.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–328, doi:10.1016/j.carbpol.2010.08.064.

Hoover, R.; Vasanthan, T. Effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohydr. Res. 1994, 252, 33–53, doi:10.1016/0008-6215(94)90004-3.

Vieira, F.C.; Sarmento, S.B.S. Heat‐moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch‐Stärke 2008, 60, 223–232, doi:10.1002/star.200700690.

Syamsir, E.; Hariyadi, P.; Fardiaz, D.; Andarwulan, N.; Kusnandar, F. Pengaruh proses heat-moisture treatment (hmt) terhadap karakteristik fisikokimia pati [Effect of Heat-Moisture Treatment (HMT) Process on Physicochemical Characteristics of Starch]. J. Teknol. dan Ind. Pangan 2012, 23, 100-106.

Luo, Z.; He, X.; Fu, X.; Luo, F.; Gao, Q. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch‐Stärke 2006, 58, 468–474, doi: 10.1002/star.200600498.

Deka, D.; Sit, N. Dual modification of taro starch by microwave and other heat moisture treatments. Int. J. Biol. Macromol. 2016, 92, 416–422, doi:10.1016/j.ijbiomac.2016.07.040.

Zondag, M.D. Effect of microwave heat-moisture and annealing treatments on buckwheat starch characteristics, Master of Science Degree, University of Wisconsin-Stout, United States, May, 2003.

Chen, Z.; Schols, H.A.; Voragen, A.G.J. Starch granule size strongly determines starch noodle processing and noodle quality. J. Food Sci. 2003, 68, 1584–1589, doi:10.1111/j.1365-2621.2003.tb12295.x.

Visakh, P.M.; Yu, L. Starch-based blends, composites and nanocomposites; Royal Society of Chemistry, 2015; ISBN 1782622799.

Pranoto, Y.; Rahmayuni; Haryadi; Rakshit, S.K. Physicochemical properties of heat moisture treated sweet potato starches of selected Indonesian varieties. Int. Food Res. J. 2014, 21.

Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr. Polym. 2007, 67, 596–604, doi:10.1016/j.carbpol.2006.07.006.

Wang, W.; Zhou, H.; Yang, H.; Zhao, S.; Liu, Y.; Liu, R. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch. Food Chem. 2017, 214, 319–327, doi:10.1016/j.foodchem.2016.07.040.

Varatharajan, V.; Hoover, R.; Liu, Q.; Seetharaman, K. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydr. Polym. 2010, 81, 466–475, doi:10.1016/j.carbpol.2010.03.002.

Published
2018-07-25