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1. Introduction. Let (2, F, P) be a probability space, given a non-
decreasing right continuous family (F)y<;< .. Of sub o-fields of F' such
that F, contains all null sets. Let M be a local martingle adapted to
(F,) such that M, =0 and 4M,= M, — M,_ = —1 for every t=0.
Throughout the paper, Z denotes the process defined by the formula

Z, = exp (M, — {M°),/2) I;It (1 + 4M,) exp (—4M,)

where M° is the continuous part of M and (M) is the continuous in-
creasing process such that (M°)* — (M°) is a local martingale. Then the
process Z is a non-negative local martingale with Z, = 1 (see C. Doléans-
Dade [1]).

Our aim is to give a sufficient condition for Z to be a martingale.
Originally, this problem was raised by I. V. Girsanov in [4] to study
the transformation of the measure of a Brownian motion.

The reader is assumed to be familiar with the martingale theory as
given in [2].

2. On the L*-integrability of the exponential martingale. In a
previous paper [5] we dealt only with continuous local martingales M,
and proved that if exp (M,/2) is a submartingale, then the process Z is
a martingale. We start with such an example of a continuous local
martingale M that Z is a uniformly integrable martingale but exp (M,/2) ¢ Lt
for some ¢t. For that, let B = (B, F,) be a one dimensional Brownian
motion with B, = 0, and introduce an F',-stopping time:

t=1inf{t > 0;|B,| = (t + 1)"}}.
It is clear that 7 < « and |B.| = (z + 1)/ with probability 1. If ze L?,
then E[B?] = E[z], so that it is absurd to claim that 7z is integrable.
Thus exp(B./2) is not integrable. On the other hand, the process
{exp (B;n. — (t A 7)/2), F',} being a martingale, we get
1 = E[exp (Bn/\r - (n A T)/z)]
< Elexp (B. — 7/2)] + E[exp(B, — n/2); n < 7]
for every n = 1. As |B,| < (® + 1)"* on {n < 7}, the second term on
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the right hand side is dominated by exp ((# + 1)Y* — n/2), which con-
verges to 0 as n — . Therefore we find

(1) Elexp(B. —7/2)] =1.

Now let a:[0, 1] — [0, «[ be an increasing homeomorphic function, and set

at)ANT if 0Zt<1

0, =
’ T if t=>1.

Then each 6, is an F,-stopping time. Almost all sample functions of (6,)
are non-decreasing and continuous, so that the process M defined by
M, = B,, is a continuous local martingale. From (1) it follows that the
process Z = exp (M — {M»/2) is a uniformly integrable martingale over
(Fy,), but exp (M,/2) is not integrable because 6, = .

Now let M be any local martingale such that M, =0. As is well-
known, it can be split into the continuous part M°, and the purely dis-
continuous part M¢, orthogonal to all continuous local martingales. For
simplicity, we use the following notations:

Y, = exp (M; — (M),/2)
W, = exp (M%) II (1 + 4M,) exp (—4M,) .
st
Y is a continuous local martingale, and W is a purely discontinuous local
martingale. It is clear that Z = YW. By applying the differentiation

formulas, C. Doléans-Dade showed in [1] that the process Z must satisfy
the stochastic integral equation:

Z, =1+ StZ,,_dM, )
0

We now give a sufficient condition for Z to be a martingale.

THEOREM 1. Let ¢, 6 be two numbers >0, and set v = (1 + 1/(20))*(1 +
e){(L + 1/(20)*(X + ¢) — €}. Then we have

(2) | Z:|l; = llexp ((0 + 1/2)Mf)”fal(l+26)2”exl) (M) | 41/m2are -
Proor. Firstly, we show that the inequality
(8) Yy, < llexp (6 + 1/2)Mp)[jt7e+=2* , p, = (1 + 20)%/(1 + 48) > 1

is valid for every 6 > 0. For that, set p =1 + 46. Then the exponent
conjugate to p is ¢ = (1 + 40)/(46), and so by the Holder inequality we
get

E[YP] = Elexp (V'p,[pM: — p,{M?),/2) exp (0, — V' D,[0)M3)]
< {Blexp(V pp,M; — pp,{M*),/2)I}'*{E[exp (0, — V Do/ D)IM)N? .
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As the process {exp (V'pp,M; — pp,{(M°),/2), F,} is a non-negative local
martingale, the first term on the right hand side is bounded by 1.
Moreover, by a simple caleulation, (p, — V' p;/p)g =0 + 1/2 and qp; =
(1 + 26)*/(46). Thus the inequality (3) is proved.

Secondly, let 1 < p < . Noticing the inequality W, < exp (M?¢) and
applying the Holder inequality with the exponents p and q = p/(p — 1),
we have

E[Z]) = {EIYV]}Y/"{Elexp (qvMH]}* .
It is easy to see that p; > v > 1. Then, by setting » = p,/v, we find
1 Z.l; = 1Y, |lexp (M) |,
< |lexp (0 + 1/2)M)|[#/0+**||exp (M) |,
where ¢t = qv = (1 + 1/(20))*(1 + ¢). Thus the theorem is established.
For example, by setting e =1 and 6 = 1/2, we get
[ Zllsr = |lexp (M) [l ||exp (M) s -

COROLLARY. If there exist two mumbers €, 6 > 0 such that the pro-
cesses {exp ((0+1/2)M;)} and {exp (L +1/(20))*(1+¢e)MP)} are submartingales,
then Z is a martingale.

PrOOF. By (8) there exists a constant v > 1 such that sup {E[Z]];
0 < s=t} < - for each ¢, and so the family (Z,)<,<; is uniformly in-
tegrable. This completes the proof.

In particular, if M? is bounded from above, then for every ¢ and
0>0 exp(@+ 1/(20))*A + e)M?) is a submartingale. So we get:

THEOREM 2. Suppose that there exists a positive comstant K such
that sup {M#*0< s <t} < K.

If exp (M;/2) is a submartingale, then Z s a martingale. Here
the constant K may depend on t.

PrROOF. As 4M,= —1 for every t, Z is a non-negative super-
martingale, so that E[Z,] <1 for every t. Therefore, it is a martingale
if and only if E[Z,] =1 for every t. By the definition of a local
martingale there exists a non-decreasing sequence (7T,) of F,-stopping
times with lim, T, = c such that for every n the process (Z;.r,, F;) is
a uniformly integrable martingale. Namely, for each n, E[Z, ] =1. As
Z is non-negative, we have

1= E[ZtAT,,,] = E[Z] + E[Zt/\r,,; t>T.].
Therefore, to prove E[Z,] = 1, it suffices to show that the second term
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on the right hand side converges to 0 as n — . From the assumption
it follows that sup {W,; 0 < s <t} is dominated by some constant C which
may depend on t. On the other hand, it is proved in [5] that the process
Y is a martingale if exp (M;/2) is a submartingale. That is, E[Y,|F,\r 1=
Y;nr, for every n. As {t > T,} belongs to F,, , we get

E[Zt/\Tn; t>T,]= CE[Yt; t>T,.].

and the right hand side converges to 0 as # — . This completes the
proof.

Let now M be a locally square integrable martingale and (M) be
the predictable increasing process such that M* — (M) is a local mar-
tingale. It should be noted that if exp (M ),/2) e L', then exp (M:/2)c L.
Indeed, as {(M°) < (M), the Schwarz inequality implies that

Elexp (M:/2)] = Elexp (M:/2 — (M*),/4) exp ((M},/4)]
= {E[Y.J}*{E[exp KM)./2)]}'/*
= {Elexp KM)./2)]}* .
However, the converse is not true. For such an example, see [5].

3. Application. In this section, for simplicity, we deal only with
continuous local martingales. The extension to the general case is not
difficult. Let M be a continuous local martingale with M, = 0, and as-
sume that the process Z defined as before is a uniformly integrable
martingale. Then we can consider a change of the underlying probability
measure dP by the formula dP = Z.dP. As is proved in [6], for any
P-continuous local martingale X, X=X-— (X, M) is a P-continuous local
martingale such that (X = (X under either probability measure. Here
(X, M) =KX+ M) —<(X) — (M))]2. We now apply Theorem 1 to give
a sufficient condition for the process X to be a P-martingale.

THEOREM 3. Let M be a continuous local martingale, and assume
that the exponential local martingale Z is uniformly integrable. Let
0 be a number > 0. Then the inequality

(4)  E[X¥] = Cillexp (0 + 1/2)M) |1 || X, llpsyjaonz s 0S8 < o0

is wvalid for every comtinuous local martingale X. Here X} = sup{| X,|;
0< st} and C; is a positive constant depending only on 6.

PrOOF. By the Davis theorem (see [3]) we have
B(X¥ < 4V ZER).
From the definition of dP it follows that the expectation on the right
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hand side is E[Z<X){*]. Set now » = (1 + 26)*/(1 + 46). Then the ex-
ponent conjugate is ¢ = (1 + 1/(20))>. We apply the Holder inequality
with the exponents p and ¢ to this term:

(5) ELZ = 11 2., 1KX ],

According to Theorem 1, the first term on the right hand side of (5) is
smaller than |exp ((0 + 1/2)M,)||#'“+*»*, Furthermore, by a result of
D. L. Burkholder and R. F. Gundy (see [3]), the second term is also
smaller than C,|| X,||,, where C, is a positive constant depending only
on ¢. Thus the theorem is proved.

Consequently, if for some 6 > 0 the process exp ((6 + 1/2)M,) is a
submartingale, then for every L“*V®"’integrable continuous martingale
X relative to dP, X is a martingale relative to dP.

More generally, we can show that the inequality

E[(X#)*] = G, llexp (B + L/2)M)|[# )| X¥||f e, 0 < p < oo

is valid for every P-continuous local martingale X.

REFERENCES

[1] C. DoLEANS-DADE, Quelques applications de la formule de changement de variables pour
les semi-martingales, Z. Wahrscheinlichkeitstheorie und verw. Gebiete 16 (1970), 181-194.

[2] C. DoLEANS-DADE AND P. A. MEYER, Intégrales stochastiques par rapport aux martingales
locales, Séminaire de Probabilités IV, Université de Strasbourg, Lecture Notes in
Math. 124, Springer-Verlag, (1970), 77-107.

[3] R. K. GEToorR AND M. J. SHARPE, Conformal martingales, Inventiones Math. 16 (1972),
271-308.

[4] I. V. GirsaNOvV, On transforming a certain class of stochastic processes by absolutely
continuous substitution of measures, Teor. Veroyatnost i. Primen 5 (1960), 314-330.

[6] N. Kazamaki, On a problem of Girsanov, Téhoku Math. J. 29 (1977), 597-600.

[6] J. H. vAN ScHUPPEN AND E. WoNG, Transformation of local martingales under a change
of law, Ann. Prob. 2 (1974), 879-888.

DEPARTMENT OF MATHEMATICS
TovaMA UNIVERSITY
ToyAaMA, 930 JAPAN








