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1. ABSTRACT

Chromatin remodeling and protein acetylation
control gene expression and consequently regulate cellular
growth and differentiation. Here we review the role of
individual chromatin remodeling factors, acetyltransferases
and deacetylases in the establishment and maintenance of
different cell lineages and in the genesis of some human
diseases.

2. INTRODUCTION

The clarification of the mechanisms leading to
the establishment of highly specialized cell lineages
starting from a fertilized egg remains elusive and it
continues to be a fascinating area of investigation.

Asymmetric partitioning of maternal material to
daughter cells and extracellular signals mediated by either
soluble or membrane-anchored molecules contribute to
instruct a group of given cells to adopt a defined fate.

Recent findings indicate that while the fate may
be defined is not definitive. Some cells reserve the option
of changing their mind and, under circumstances that
remain to be investigated, can and will modify their
phenotype (65,89,110,212,127,71).

Mechanistically, generating most- if not all- cell
types relies on a common feature. That is, no matter what
the nature of the signals and the pathways chosen to
transduce them may be, the resulting information needs to
reach the nucleus of the cell to influence gene expression.
Of the many genes comprising the genome of a
multicellular organism, only a defined combination is
turned on in a given subset of cells. Therefore, cell
differentiation is largely a matter of transcriptional
regulation.

The DNA regions regulating gene expression are
not readily accessible to transcription factors because of a
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physical barrier represented by the chromatin (104,75,83,
283). An increased DNA accessibility to a variety of
enzymes and chemical probes denotes a redistribution of
the nucleosomal array (279)  - a phenomenon known as
chromatin remodeling - that precedes transcriptional
activation. This process is brought about by ATP-
dependent molecular machines comprised of several
protein subunits (130,68,70). Chromatin remodeling
facilitates the binding of transcription factors to
nucleosome particles, at least in an in vitro system (51).

Whilst DNA binding of transcription factors and
chromatin remodeling enzymes is a prerequisite for gene
activation, it is not sufficient to initiate transcription. As
elegantly illustrated in yeast, a chronologically ordered
series of events is required to activate transcription (50).
The yeast transcriptional activator Swi5 recruits the
chromatin remodeling SWI/SNF complex on the promoter
of the HO gene. The engagement of SWI/SNF is not
sufficient to stimulate HO transcription, which is allowed
to proceed only after the acetyltransferase Gcn5 joins the
Swi5-SWI/SNF complex and promotes acetylation of the
histones surrounding the HO gene. Surprisingly, once
SWI/SNF and Gcn5 have been recruited to the HO
promoter, the presence of the activator Swi5 becomes
dispensable. Recent experiments indicate that retention of
the SWI/SNF complex on promoter regions is
accomplished by histone acetylation and that once
acetylation has been achieved, the transcriptional activator
is no longer needed (96). Therefore, acetylation of histones-
and possibly of other proteins- seems to temporally follow
chromatin remodeling. At the same time, histone
acetylation is necessary to productively retain remodeling
machines on chromatin in a complex series of events
culminating in transcription (96). An increasing number of
proteins previously known to be transcriptional regulators
including p300/CBP (199) (12), P/CAF (287), GCN5 (33),
ACTR (43), Src-1 (249) and TAFII250 (167) have been
shown to have intrinsic histone acetyltransferase (HAT)
activity (for recent reviews on HAT enzymes see
(32,18,30,128,48). A link between histone acetylation,
methylation and eukaryotic gene expression has been
suggested since 1964 (1). Further studies have indicated
that active euchromatin is associated with hyperacetylated
histones (25,63) whereas the histones of inactive
heterochromatin are hypoacetylated (29, 114). An
additional evidence supporting the role of histone
acetylation and deacetylation in regulating transcription has
emerged from the isolation and characterization of several
mammalian histone deacetylases with the founding member
HD1 (260) being related to the yeast transcriptional
repressor Rpd3 (181,266). How histone acetylation
promotes transcription is not well understood. It is
generally believed that acetylation at the ε-amino groups
neutralizes the positive charge of specific lysines located at
the N-terminus of histones H3 and H4 therefore weakening
the electrostatic interaction of histones with DNA. The
resulting loosening of the nucleosome structure would
favor binding of transcription factors to their DNA targets
(32). On the contrary, removal of acetyl groups from the
ε−amino groups of lysines could reinforce the electrostatic
interaction between histones and DNA precluding

transcriptional activation. While this scenario may be
partially correct, the recent solution of the crystal structure
of the nucleosome core particles indicates that the histone
N-terminus (the tail) does not seem to contact directly the
DNA but rather seems to interact with adjacent
nucleosomes (145). It is therefore likely that acetylation
modifies several proteins engaged in controlling
transcription including histones, enhancer-binding factors
and members of the basal transcriptional machinery (105)
and that stimulation of transcription derives from the sum
of these modifications (48).

Here we will review recent advancements in the
field of transcriptional regulation of different cell-types with a
particular focus on the role of acetylation/deacetylation.

3. SKELETAL MYOGENESIS

The understanding of how skeletal muscle cells
are specified, maintained and undergo differentiation has
received a tremendous impetus since the isolation of MyoD
(53). MyoD- related factors have been isolated that belong
to the same family of transcriptional activators, the
myogenic bHLH proteins (277,202). The myogenic bHLH
interact with a specific DNA motif, the E-box, and they are
assisted in promoting transcription by two general
activators, the E proteins and the MADS-box –containing
factors MEF2 (134,170). Overexpression of any of the
myogenic bHLH proteins redirects the fate of both
established cell lines and primary cells to take up the
skeletal muscle phenotype (280). Genetic ablation of the
individual genes in animal models has revealed a specific
role for each of the myogenic bHLH. MyoD and Myf-5 are
responsible for the specification (28, 231, 232) whereas
myogenin controls differentiation of skeletal muscle cells
(97,177). MyoD is also involved in muscle regeneration
(159). The role of MRF4 is less clear at the moment (201).

3.1. Chromatin remodeling
Over the years, it has been appreciated that

chromatin remodeling is a hallmark of the initial steps that
may result in gene activation and that chromatin
remodeling enzymes are involved in regulating both
chromatin modification and gene expression (267). MyoD
expression causes chromatin remodeling of muscle-specific
genes including those for myogenin, muscle creatine kinase
and MyoD itself (73). Importantly, changes in chromatin
structure could be directly ascribed to the activity of MyoD
since they were observed in the presence of the protein
synthesis inhibitor cycloheximide (73). The effects exerted
by MyoD on chromatin are highly specific and are limited
to regulatory regions controlling expression of muscle –
restricted genes. In fact, the structure of the chromatin
surrounding the locus control region of the beta globin
cluster and the immunoglobulin enhancer - active in red
blood cells and lymphocytes, respectively- is not affected
by MyoD expression (73). Two regions of MyoD, the
cysteine-histidine rich domain (73) and the carboxyl-
terminus (73,19), mediate chromatin remodeling activity.
Reflecting the different roles of the individual myogenic
bHLH proteins observed in the animal, Myf-5 but not
myogenin also causes chromatin modification at muscle-
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specific loci (73). The SWI/SNF complex or related
chromatin remodeling complexes (70) may mediate the
activity of MyoD. Upon inducible expression of a
dominant-negative version of either BRG1 or BRM, the
ATPase subunits of SWI/SNF, MyoD-dependent
conversion of NIH3T3 fibroblasts is prevented and, most
importantly, this correlates with lack of chromatin
remodeling on the promoter of an endogenous muscle-
specific gene (55). Recent experiments suggest that
SWI/SNF associates with MyoD (C. Palmer and M.A.
Rudnicki, personal communication).

3.2. Co-activation and acetylation
3.2.1. MyoD

Numerous proteins counteract the ability of
skeletal muscle cells to differentiate in tissue culture.
Among these are the viral oncoproteins E1A and SV 40 T
antigen (222). The transcriptional coactivator p300 has
been purified exploiting its ability to interact with E1A (94,
60). The SV40 T antigen also interacts with p300 (7, 61).
While E1A interacts with several cellular proteins
including pRb, p130 and p107 (94), deletion of 30 amino
acids at its N-terminus prevents p300 binding and greatly
diminishes the ability of E1A to prevent muscle
differentiation (38) – despite the integrity of the other E1A
modules necessary to interact with the aforementioned
cellular proteins-. These findings prompted several groups
to ask the question of whether p300 may be a coactivator of
muscle transcription. Indeed, p300 was found to interact
and augment transcription mediated by both MyoD (289,
62, 221, 233) and MEF2 (233) and microinjection of p300-
specific antisera blocked differentiation of cultured muscle
cells (223, 62).

While Eckner et al. (62) found the bHLH region
of MyoD could mediate interaction with MyoD, Sartorelli
et al. (233) reported that the N-terminal region of MyoD –
containing an acidic activator domain- was � to mediate
both interaction and sense coactivation of MyoD. The N-
terminal region of MyoD is required for cooperative
binding of MyoD to two adjacent DNA binding sites (E-
boxes) and transcriptional activation of MCK enhancer
(276). Deletion of 53 amino acids located at the N-terminal
region of MyoD renders it inactive when tested in transient
transfection assays (278) whilst it does not seem to affect
the ability of stably transfected MyoD to activate
transcription of endogenous muscle genes (259). It may be
possible that, in the cellular context, MyoD may
simultaneously interact with p300 through both
the N-terminal and the bHLH regions. On p300, two
regions encompassing amino acids 1-596 and including the
cysteine/histidine-rich region 1  (C/H1) (60) and amino
acids 1572-1900 spanning the C/H3 region (60)
independently mediate interaction with MyoD and possibly
other myogenic bHLH proteins  (289, 62, 233, 228). In
addition, p300 seems to be also involved in controlling cell
cycle exit of myoblasts induced to differentiate. Indeed,
microinjection of anti-p300 antibodies prevents up-
regulation of the cell cycle inhibitor p21 and abrogates
MyoD-dependent cell cycle arrest (62, 221). Thus, p300
provides a pivotal function in at least two critical steps of
the myogenic program, that is cell cycle arrest and

expression of muscle-specific genes. It is likely that E1A
and SV40 T Ag may cause cell cycle progression and block
expression of muscle-restricted proteins by competing with
MyoD for p300 binding. The p300/CBP-associated factor
P/CAF competes with the oncoprotein E1A for binding to
p300/CBP (287). Both P/CAF and MyoD interact with an
overlapping but distinct region of p300 (223). Furthermore,
P/CAF directly interacts with MyoD albeit with a much
lower affinity than that exhibited for p300 (223).

Microinjection experiments conducted with a
P/CAF antiserum resulted in a blockade of muscle
differentiation indicating the need of P/CAF for this
process (223). It is worth noting that the P/CAF antisera
utilized in those experiments cross-react with GCN5 (R. L.
Schiltz, personal communication) raising the possibility
that both P/CAF and GCN5 were neutralized. Based on co-
immunoprecipitation experiments and relative protein
affinities, a model has been proposed where the primary
function of p300 would be to recruit P/CAF on MyoD to
activate transcription. Both p300/CBP and P/CAF have
intrinsic acetyltransferase activities (199, 12, 287) raising
the question of why MyoD engages two different proteins
with the same enzymatic activity to promote transcription.
Using deletion mutants of both p300 and P/CAF with no
detectable histone acetyltransferase activity, MyoD-
dependent transcription was found to require the HAT
activity of P/CAF but not of p300 (224). This difference is
unlikely to reside in the distinct patter of histone
acetylation observed for p300 and P/CAF. In fact, while
p300/CBP acetylates the majority of the H3 lysines and all
the H4 lysines acetylated in vivo, P/CAF acetylates only a
subset of them (237).

A possible level of discrimination between the
HAT activity of p300 and P/CAF may reside in the
observation that whilst MyoD itself is acetylated by both
p300 (234, 217) and PCAF (234, 150), only acetylation
mediated by the latter causes an increase in DNA binding
and modify MyoD conformation (235). The functional
relevance of MyoD acetylation is suggested by the
observation that mutagenesis of the acetylated lysines
reduces MyoD activity (234, 217). Additional mechanisms
- possibly involving the ability of MyoD to interact with or
repulse a specific subset of cellular proteins in an
acetylated-dependent manner- are likely to mediate the
transcriptional effect of MyoD acetylation. A further
support for a positive role MyoD acetylation derives from
experiments in which recombinant MyoD was first in vitro
acetylated using either p300 or P/CAF and then
microinjected in mouse fibroblasts. Acetylated MyoD was
more efficient in activating a muscle-specific reporter when
compared to non-acetylated MyoD (217). Considering that
only a small fraction of recombinant MyoD can be
acetylated in an in vitro acetylation reaction (V. Sartorelli
and P.L. Puri, unpublished results), it is likely that the role
of MyoD acetylation on transcription may have been
underestimated. Both p300 and P/CAF acetylate
overlapping lysines of MyoD and the artificial acetylation
induced by either acetyltransferases in vitro (217) precludes
to conclusively ascribe to either one or the other a role in
acetylating MyoD in the cell. Additional experiments have
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suggested that the HAT of p300 may regulate MyoD-
dependent transcription. Frog oocytes microinjected with
MyoD and p300 RNAs were subsequently re-microinjected
with the p300 HAT-specific inhibitor Lys-CoA. After one
hour the oocytes were microinjected with the frog MyoD
promoter fused to 100 bp of its coding region and
transcription evaluated using primer extension using a
radiolabeled MyoD primer. The MyoD coactivation exerted
by p300 was counteracted in a dose-dependent manner by
Lys-CoA (135). While it is not clear which MyoD promoter
regions has been employed by Lau et al., previous reports
indicate that a region of the Xenopus MyoD promoter
retaining tissue-specific activation does not contain any
MyoD-binding sites (137). It is therefore formally possible
that the Lys-CoA blockade may target the activity of
molecule/s induced by MyoD and not MyoD itself. Further
circumstantial evidence supporting a role for MyoD
acetylation derives from studies conducted with the
oncoprotein E1A and the bHLH Twist which both inhibit
muscle-specific transcription and differentiation (273, 98,
250, 92). By directly interacting with p300 and P/CAF,
both E1A and Twist inhibit their acetyltransferase activity
(91,39) and indeed MyoD acetylation is blocked by either
E1A or Twist (P.L.Puri, Y. Hamamori, and V. Sartorelli,
unpublished results). Consistently, two studies have
reported the identification of an endogenous E1A-like
inhibitor of differentiation (the EID-1 protein), whose
ability to prevent muscle-specific transcription correlates
with the inhibition of p300 HAT activity (165, 148).
Whether EID-1 also blocks the acetyltransferase activity of
P/CAF has not been investigated yet.

Additional studies will be required to clarify the
very detailed mechanisms through which acetylation influence
muscle differentiation. Nevertheless, it seems now clear that
MyoD requires both SWI/SNF (55) and acetyltransferase
activity (234, 217) to promote muscle –specific transcription
and cell differentiation. Thus, it is possible that the ordered
sequence of molecular events described in yeast for the HO
gene (50) may well be taking place also for MyoD-dependent
transcription in mammalian cells.

3.2.2. MEF2
The myocyte enhancer factors 2 MEF2 synergize

with the myogenic bHLH factors in activating muscle
transcription and differentiation (169). Recently, such
synergism has been shown to be mediated by the cell-cycle
regulator and tumor suppressor pRb (187). MEF2-
dependent transcription is augmented by p300 (233,216)
and this may rely on the fact that p300 interacts with
MADS-box (233) of MEF2 (62). The myogenic bHLH also
interact with the MADS-box of MEF2 (118,168) making it
attractive to speculate that p300, myogenic bHLH and
MEF2 may form a transcriptional complex. The apparently
elevated concentration of p300 present in rabbit
reticulocyte lysate (62) may in fact be responsible for the
interaction between myogenin and MEF2 observed when
reticulocyte lysate is employed to transcribe and translate
these two proteins (168). MEF2 is also in vitro acetylated
by p300 (C.Poizat and L.Kedes, personal communication)
but whether this modification is functionally relevant has
not been investigated yet.

Using an analogy with the nuclear receptor-
mediated transcription -where recruitment of p300-P/CAF
has been suggested to involve the presence of the steroid
receptor coactivator SRC-GRIP-1- (203), Chen et al. (45)
have postulated that GRIP-1 may participate in regulating
muscle differentiation. Indeed, these authors have found
that GRIP-1 interacts with and coactivates MEF2C. Muscle
cells expressing GRIP-1 antisense RNA do not activate
muscle-specific transcription and fail to undergo
differentiation. GRIP-1 also interacts directly with the
myogenic bHLH myogenin but this interaction is not
accompanied by functional transcriptional coactivation.
Transcriptional coactivation exerted by GRIP-1 on MEF2C
does not require DNA binding of the latter protein
suggesting that, in muscle cells, the GRIP-1-MEF2C
complex may be tethered on the DNA by another protein,
possibly a myogenic bHLH. In view of the reported
physical and genetic interaction of MEF2 with p300 and
P/CAF (233, 160), it will be of interest to biochemically
purify complexes containing GRIP-1 to establish their
protein composition in muscle cells.

The MEF2 factors control expression of the
insulin-sensitive glucose transporter (GLUT4), the
principal insulin-sensitive transporter in skeletal muscle,
which has been implicated in the genesis of type 2 diabetes
(295). Recent studies suggest that GLUT4 expression in
skeletal muscle is controlled by the concerted action of
MEF2C and the cold-inducible coactivator PGC-1 (160).
Cultured muscle cells lack GLUT4 expression, which is
promptly restored once the cultured cells are infected with
an adenovirus expressing PGC-1. PGC-1 expression is
accompanied by both GLUT4 expression and stimulation
of both basal and insulin-stimulated glucose transport.
Since the GLUT4 promoter is activated by MEF2 (261), the
effects of PGC-1 on GLUT4 expression are likely due to its
ability to directly interact with an activation domain of
MEF2C and coactivates MEF2-dependent transcription.
Removal of the PGC-1 region shown to interact with
MEF2C should abrogate its ability to stimulate GLUT4
expression and insulin-stimulated glucose transport in
cultured myotubes. At variance with other transcriptional
coactivators, PGC-1 has no detectable intrinsic
acetyltransferase activity (220) but recruits both p300 and
SRC-1 acetylases (220). Whether the enzymatic activities
of p300/SRC-1 contribute to the effects of PGC-1 on
GLUT4 gene expression remains to be determined.

3.3. Deacetylation
As predicted by the experiments conducted with

acetyltransferases, their deacetylase counterparts impinge
on muscle transcription and differentiation. Class II
deacetylases have a N-terminal domain absent from class I
deacetylases (81). It is this N-terminal region of HDAC 4
and 5 that serves as interface for interaction with MEF2
(163,268). HDAC 4 and 5 overexpression prevents skeletal
myogenesis in culture and in vitro experiments indicate that
the HDAC4/5-MEF2 complex may be present on MEF2-
DNA binding sites, but this evidence is not supported by in
vivo approaches (143). Importantly, the repressive activity
of HDAC 4 and 5 on muscle transcription was mapped to
their deacetylase domain, even though residual repression
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was observed with deacetylase mutants. HDAC 4 and 5 do
not interact with the myogenic bHLH but forced expression
of MyoD restored activation of the MCK enhancer in the
presence of exogenously transfected HDAC 5 (143).
Recently, the corepressor SMRT has been shown to be
involved in maintaining both HDAC4 and 5 in the nucleus.
Furthermore, in transient transfection experiments, SMRT
synergizes with HDAC4-5 to mediate MEF2-dependent
transcriptional inhibition (Wu et al., in press). MEF2 is a
positive regulator of myogenesis. How is HDAC-mediated
repression of MEF2 relieved? Upon differentiation of
C2C12 muscle cells, HDAC 4 and 5 relocate from the
nucleus to the cytoplasm (164,157), a phenomenon that is
stimulated by the calcium/calmodulin-dependent protein
kinase CaMK (157). CaMK also impinges of HDAC-MEF2
interaction by phosphorylating HDAC 5 and dissociating it
from MEF2 (142). Therefore CaMK seems to favor muscle
differentiation by two independent but functionally
converging mechanisms: dissociation of HDACs from
MEF2 (142) and cytoplasmic export of HDACs (157). 

Once shuttled to the cytoplasm, phosphorylated
HDAC 4 and 5 are there retained via interaction with
members of the 14-3-3 protein family (82, 269, 158).
MEF2 is also negatively regulated by the co-repressor
MITR (248). Isolated in a two-hybrid screening, MITR
binds to both Xenopus XMEF2A and XMEF2D and
represses MEF2-dependent transcription in injected
oocytes. As suggested by protein-protein interaction
studies, MITR is likely to mediate MEF2 repression by
recruiting class I deacetylase HDAC1. In frog embryos,
MITR is initially expressed within the mature somite and is
later restricted to the myotomal muscle. Since both
XMEF2A and D are expressed in differentiated skeletal
muscle and in cardiac precursors, respectively, their
interaction with MITR is likely to be developmentally
regulated. Surprisingly, ectopic expression of MITR in the
whole frog embryo shows no effect on myogenesis.
Nevertheless, when two phosphorylated serine residues(
Ser-218 and Ser-448) that regulate MITR interaction with
14-3- proteins are substituted with alanines, MITR becomes
a repressor of myogenesis. These data suggest that stimuli
favoring muscle differentiation may promote
phosphorylation and subsequent cytoplasmic retention of
MITR. Therefore, class II deacetylases and MITR undergo
a similar cellular redistribution mediated by 14-3-3 proteins
(290)

Class I deactylase HDAC1 and 2 regulate muscle
differentiation using a different mechanism from that
described for HDAC 4 and 5. MyoD is transcriptionally
inactive in undifferentiated myoblats and becomes
competent once muscle cells initiate to differentiate. The
inability of MyoD to promote transcription has been
ascribed to the presence of Id1, an HLH protein devoid of
the basic domain, that competes for binding to E-proteins –
ubiquitous bHLH proteins necessary for MyoD binding to
DNA (17). This model has been substantiated by the in vivo
findings that an E-box of the MCK enhancer is unoccupied
in myoblasts and becomes “footprinted” in differentiated
myotubes (173). Nevertheless, several observations suggest
an alternative scenario.

Overexpression of Id1 only retards differentiation
without blocking it (113). Furthermore, the levels of several
Id proteins (1-4) in myoblasts are much lower than those of
E-proteins (274), rendering a direct titration effect unlikely.
Additionally, genetic ablation of both Id 1 and 3 have
revealed a role for these genes in neurogenesis and
angiogenesis, but was without consequences on
myogenesis (146). Since Id 4 is not expressed in muscle
(112), its hypothetical compensatory role can be excluded.
Therefore, while Id can clearly counteract the activity of
MyoD (17), additional mechanisms may operate to keep
MyoD function in check (274). Accordingly, MyoD has
been found associated with class I HDAC1 in
undifferentiated myoblasts (150) (Puri et al. submitted).
HDAC1 immunoprecipitated from undifferentiated cells
can deacetylate both an acetylated MyoD peptide (Puri et
al., submitted) and recombinant acetylated MyoD  (150)
more efficiently than HDAC1 obtained from differentiated
myotubes. This is partly due to reduced transcription of the
HDAC1 gene (Puri et al., submitted) and consequent
lowered levels of HDAC1 protein present in differentiated
cells (150) (Puri et al., submitted). Nevertheless, post-
translational modifications of either HDAC1 and /or MyoD
itself may account for the reduced deacetylase activity of
HDAC1 obtained from differentiated muscle cells. In
agreement with a positive role of MyoD acetylation (234,
217), overexpression of HDAC1 reduces the transactivation
abilities of MyoD (150) (Puri et al, submitted) and P/CAF-
dependent MyoD coactivation (150). Importantly, the
transcriptional synergism exerted by MyoD and MEF2
(168) is interrupted by forced expression of either class I
HDAC1 or class II HDAC4 (Puri et al., submitted).
Association of MyoD with HDAC1 and P/CAF may be
mutually exclusive as indicated by the absence of PCAF in
complexes containing MyoD derived from undifferentiated
myoblasts (150). Upon cellular differentiation, HDAC1 is
released from MyoD and this may allow the engagement of
P/CAF (150). Beside the reduced levels of HDAC1 (150)
(Puri et al., submitted), pRb hypophosphorylation may be a
regulatory switch that allows the disengagement of HDAC1
from MyoD during muscle differentiation (Puri et al.,
submitted). As a result of p21 induction (90), pRb is
progressively hypophosphorylated in differentiating
myocytes (84) and such hypophosphorylation increases the
affinity of HDAC1 for pRb (93) (Puri et al., submitted).
Biochemical experiments indicate that while HDAC1 is
associated with MyoD in undifferentiated myoblasts, a
pRb-HDAC1 complex –absent in myoblasts- is detected in
differentiated myotubes (Puri et al., submitted). Interaction
between hypophosphorylated pRb and HDAC1 is
functionally relevant since a single amino acid substitution
introduced in pRb that abolish its binding to HDAC1 (46)
also diminishes pRb-dependent coactivation of MyoD
activity and activation of endogenous muscle gene
expression (Puri et al., submitted). The HDAC1-pRb
interaction is also important for the establishment of the
irreversible cell cycle arrest in terminally differentiated
myotubes (46). Finally, the deacetylase inhibitor
trichostatin A (TSA) anticipates muscle gene expression
and favors differentiation when applied to undifferentiated
myoblasts (Sartorelli et al., submitted). Notably, embryos
exposed during their fetal life to non-toxic doses of TSA
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display an increased number of somites expressing the
myogenic bHLH Myf-5 (183).

4. NEUROGENESIS AND ENDOCRINE PANCREATIC
DIFFERENTIATION

Tissue-specific bHLH proteins have been
implicated in promoting neuronal and oligodendrocyte
differentiation during development of the central nervous
system (CNS). Genetic evidence has revealed the critical
role of the bHLH proteins neurogenin (Ngn1 and Ngn2),
Math1, Mash1 and NeuroD1/Beta2 during neuronal
differentiation (85, 147, 16, 69, 166) whereas two other
bHLH factors – oligo 1 and oligo 2 -are involved in
oligodendrocyte differentiation (144, 293). NeuroD1/Beta2
plays also an important role in development and
differentiation of intestinal endocrine cells and endocrine
pancreas (182). The similarity in structure, function and
regulation between these proteins and the muscle-specific
bHLH regulatory factors suggests that acetyltransferases
could also be involved in the regulation of both pancreatic
cells and neuronal differentiation.

Indeed, several groups have reported both
physical and functional interactions between p300/CBP and
NeuroD1/Beta2. Mutoh et al. first showed that p300 could
associate with NeuroD1/Beta2 to promote transcription of
the secretin gene and to induce cell cycle arrest by
enhancing p21 transcription in enteroendocrine cells (176).
This dual function of p300 in intestinal cells – induction of
both tissue-specific gene expression and cell cycle arrest -
is reminiscent of the role of p300 during skeletal
myogenesis and suggests that this coactivator may have a
specific role in the induction of terminal differentiation.
Further experiments have established the importance of
p300 in mediating the activation of the insulin gene
transcription in pancreatic β?cells. These studies have shown
that p300 can potentiate NeuroD1/Beta2 dependent insulin
transcription via an E-box site (225). Notably, insulin
expression is controlled by two critical cis-elements in the
insulin promoter - the E-box binding site for
NeuroD1/Beta2 and a PDX-1-binding element. Another
study has suggested the importance of p300/CBP also in
mediating PDX-1 dependent activation of insulin
transcription (6). Thus, both NeuroD/Beta2 and PDX-1 can
recruit p300/CBP to the regulatory region of the insulin
gene. However, whether p300/CBP is preferentially
recruited only by one or both these DNA binding proteins
remains to be established. Since NeuroD1/Beta2 and PDX-
1 are required for normal pancreas development (115,
197,182), p300 function is likely to be important during
pancreatic differentiation. Interestingly, a p300 mutant in
which amino acids 1680 to 1811 - a region next to the
acetyltransferase domain - were deleted continued to
coactivate NeuroD1/Beta2-dependent activation of insulin
transcription (225). However, whether the acetyltransferase
activity of p300, or other p300-binding HAT proteins, is
required for NeuroD1/Beta2-dependent transcription has
not clearly addressed. The regions of NeuroD1/Beta2 that
mediate the interaction with p300 were mapped within two
evolutionary conserved sequences spanning the bHLH
region and the C-terminal activation domain (241). The

same regions are necessary for activation of insulin
transcription and ectopic neurogenesis upon injection of
NeuroD1/Beta2 in Xenopus (241). Remarkably, a mutation
in the C-terminal domain of NeuroD1/Beta2, giving rise to
a truncated peptide unable to associate with p300/CBP, has
been identified in patients with type 2 diabetes (151),
further underscoring the importance of p300-dependent co-
activation in controlling insulin transcription. A defective
function of p300 has also been reported in a rare autosomal
dominant form of diabetes, which is characterized by an
abnormal insulin secretion in response to glucose – the
maturity-onset diabetes of the young (MODY). In this
study, Soutoglou et al. show that two dominant-negative
mutants of hepatocyte nuclear factor 1α (HNF-1α) detected
in MODY3 patients can interact with CBP and P/CAF with
a stronger affinity, as compared to the HNF-1 wild type.
However, the CBP and P/CAF recruited by these HNF-
1α mutants have deficient HAT activity (247). Previous
studies reported the ability of HNF-1 to recruit both CBP
and P/CAF in one complex, with interactions of CBP to the
N-terminal of HFN-1 increasing the association of P/CAF
to the C terminal of HFN-1 (246). Furthermore, HNF4,
which is also mutated in MODY1, requires both p300 and
SRC-1/GRIP1 to activate target genes (271).

Taken together, these observations establish a
causative link between malfunctioning transcription and
certain forms of diabetes. Specifically, they establish that in
both type 2 diabetes and MODY1 disregulated transcription
is consequent to defective acetyltransferase-dependent
transcriptional coactivation.

A more complicated picture involving p300/CBP
in the regulation of CNS development emerges from recent
observations reporting on two distinct mechanisms
controlling gene expression during cell fate specification of
cortical progenitors (255). Progenitor cells lining the
ventricular cavities of the brain give rise to three cell types:
neurons, astrocytes, and oligodendrocytes. In a series of
elegant experiments, Sun et al. have provided evidence that
Ngn1 associates with CBP to promote the expression of
genes required for neurogenesis and, at the same time, to
sequester the CBP-Smad1 complex away from STAT1 and
STAT3, two critical inducers of astrocyte differentiation
(255). Thus, Ngn1/CBP complex formation mediates both
induction of neurogenesis and inhibition of glial
differentiation. Within cell-fate specification in the cerebral
cortex , neurogenesis precedes gliogenesis. Therefore, the
regulated recruitment of CBP into discrete protein
complexes not only controls transcription of different set of
genes but also dictates the temporal sequence of events
leading to an ordered development of the CNS. The ability
of proneural bHLH factors to inhibit gliogenesis is
established also by genetic studies conducted in the mouse
embryo (264, 186, 172) and confirmed in Xenopus embryo.
Xenopus neurogenin-1 (XNGN-1) promotes the expression
of genes required for neuronal differentiation by recruiting
p300/CBP and P/CAF. Moreover, it was observed that the
same complex (XNGN-1-p300/CBP-P/CAF) also activates
the expression of genes that antagonize neuronal
differentiation in neighbour cells – a process named lateral
inhibition. While the HAT of p300/CBP and P/CAF seems
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to be important only during the activation of neuronal
differentiation , it is dispensable for the regulation of genes
involved in the lateral inhibitory pathways (129). In
agreement with these studies, Kato et al. have reported that
inhibition of p300/CBP function leads to neural induction
and primary neurogenesis in the entire embryo (117).

p300/CBP and P/CAF are likely to be only part of a
larger number of acetyltransferases involved in cerebral cortex
development. In fact, Querkopf, a member of the MYST
family of zinc finger histone acetyltransferases – which include
MOZ, Ybf2/Sas3, Sas2, HBO-1 and Tip 60, reviewed in
(252)– has  also been implicated in the development of the
cerebral cortex (262) . In this study, the authors show that
Querkopf is strongly expressed in cells within the ventricular
zone of the cortex and that mice homozygous for Querkopf
mutations display defective cerebral cortex development (262).
Consistent with an essential role of MYST acetyltransferases
in brain development, another MYST protein (the enoki
mushroom, “enok”) is required for the formation of the
mushroom bodies – the centers for olfactory learning and
memory in Drosophila brain. Interestingly, either genetic
ablation of Enok or a point mutation within the zinc finger
domain ,impairing its HAT activity, produces a block in
neuroblast proliferation (240). Given the recent observation of
biochemical and genetic interactions between MYST family
members and the replication factors mcm-2 and orc-1 (34) and
the role of TIP 60 in DNA repair and apoptosis  (102), it is
tempting to speculate that MYST HAT activity may be
important in the process of DNA replication , proliferation and
apoptosis of neural precursors during brain development. It is
intriguing to note that also p300 null embryos show defect in
neuralization and reduced DNA synthesis, suggesting that
defective proliferation may be responsible for the neural
phenotype in p300 nullizygous mice (288). Finally, the
involvement of HAT proteins in neuronal differentiation is
underscored by the positive effects of deacetylase inhibitors on
differentiation of established cultures of cells with neurogenic
potentyial in vitro (106, 162).

4.1. Coactivators, corepressors and neurodegenerative
disorders

Huntington’s disease (HD) and dentatorubral and
pallidoluysian atrophy (DRPLA) are neurodegenerative
disorders caused by an expansion of a polyglutamine tract in
the huntingtin (htt) and atrophin-1 proteins, respectively (87,
86, 15). HD is clinically characterized by choreoathetotic
movements and progressive dementia and is transmitted as
an autosomal dominant disease  (88, 211). Pathological
features of HD include a distinctive atrophy of the caudate
nucleus, the putamen and the globus pallidus (285).
Histologically, neuronal intranuclear and cytoplasmic
inclusions are observed in both transgenic mice expressing
an amino-terminal fragment of htt (52)  and HD patients
(14). There is not presently form of treatment for HD. The
neuronal inclusions contain a truncated form of htt and
ubiquitin (57). The acetyltransferase CBP has been shown to
be present in nuclear inclusions of both transgenic mice and
human HD and DRPLA postmortem brains (119, 251, 188).
Furthermore, co-localization and biochemical studies
indicate that htt with expanded polyglutamine repeat
sequesters CBP via interaction with a polyglutamine-rich

region present on CBP (188). The CBP- related p300
protein – which does not have a polyglutamine repeat- fails
to interact with htt and it is not found in nuclear inclusions
(188). Furthermore, CBP mutants devoid of the
polyglutamine repeat do not associate with htt. CBP is
located in the nucleus. Upon interaction with htt, CBP is
redistributed in the cytoplasm where it is found in htt
aggregates (188). Overexpression of htt with an expanded
polyglutamine repeat, inhibits CBP-dependent
transcriptional coactivation suggesting that CBP-mediated
transcription may be defective in HD. Notably, CBP
overexpresion can rescue htt- and atrophin-1-induced
cellular toxicity (188). Htt also interacts with the tumor
suppressor p53 protein and the corepressor mSin3a (251).
CBP was found in postmortem brain of patients affected by
the spinal bulbar muscular atrophy/Kennedy’s disease- also
caused by an expanded polyglutamine repeat (251). The
results of these studies are consistent with the possibility
that expanded polyglutamine repeats of htt and atrophin-1
may disturb transcriptional regulation through interaction
with coactivators, corepressors and transcription factors
and that such disregulation may result in neuronal
alterations and cell death. On this note, expression of the
neuronal survival  protein BDNF – which is coregulated by
CBP via interaction with CREB- has been reported to be
reduced in HD patients (66). Furthermore, htt has been
recently shown to up-regulate transcription of BDNF and to
loose this property in HD patients (296).

5. CARDIAC GENE EXPRESSION AND MORPHOGENESIS.

A role for p300 in controlling cardiac gene
expression and heart development emerges from three
independent lines of evidence. As discussed in the previous
paragraph, MEF2 activity is influenced by both
acetyltransferases and deacetylases. MEF2C is expressed in
heart precursor and mice homozygous for a MEF2C null
mutation die before birth. No viable embryos are observed
after E10.5 and the heart defects affect both atria and
ventricles (140). These defects include poor ventricular
trabeculation and pericardial effusion, both signs of heart
failure. The timing of interrupted development and
phenotype of MEF2C null animals remarkably resemble
those of p300 null animals (288). At E10.5, 50% of p300
nullizygous are dead and show reduced heart trabeculation
and severe pericardial effusion. A comparison of the
transcriptional profiles of the MEF2 and p300 nullizygous
animals cannot be drawn since the markers used in the two
studies differ. In MEF2 nullizygous animals, transcripts for
atrial natriuretic factor, cardiac α-actin and α-myosin
heavy chain are severely downregulated whereas those for
myosin light chain MLC2V and MLC2A are normal (140).
p300 null embryos have reduced levels of myosin heavy
chain and α-actinin transcripts (288). Given that p300 also
regulates neurogenesis (see below), it is not surprising that
p300 mutant embryos have also neural tube defects (288).

Further circumstantial evidence for a role of p300
in cardiac transcription derives from studies that employed
the adenoviral E1A oncoprotein. Regions of E1A
interacting with p300 (122) (95) and p107 (122) are
necessary to mediate the inhibition exerted by E1A on
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cardiac gene expression. On the other hand, Bishopric et al.
have reported that E1A-mediated inhibition of cardiac
transcription is independent from its ability to interact with
p300 (21). Nevertheless, in the same study p300
overexpresion could bypass the transcriptional repression
exerted by E1A (21). The same authors have recently
reported that MEF2D utilizes p300 to activate cardiac-
specific transcription in primary isolated rat
cardiomyocytes (244).

Finally, a recent study implicates p300 in
mediating the transcriptional effects of the cardiotoxic
antineoplastic drug doxorubicin. Poizat et al. (216) have
indicated that overexpression of p300 in primary neonatal
cardiomyocytes augments MEF2-dependent transcription.
This effect is due not solely to the ability that p300 has to
coactivate MEF2 protein but possibly also to a p300-
mediated increased transcription of the MEF2 gene itself.
In this study, p300 is also shown to coactivate Nkx 2.5-
mediated transcription. Doxorubicin represses skeletal and
cardiac–specific transcription (133, 109). Exposure of
primary cardiomyocytes to doxorubicin causes repression
of MEF2-dependent transcription and p300 overepression
counteracts this effect (216). Transcripts for the cardiac
transcription factors MEF2C, dHAND, eHAND and
NKX2.5- but not those of p300- are rapidly depleted upon
doxorubicin treatments of primary cardiomyocytes.
Interestingly, doxorubicin exposure induces proteasome-
mediated degradation of the p300 protein that may or may
not be dependent on ubiquitination of p300 (216).
Degradation of p300 protein is observed also in C2C12
skeletal muscle cells and may be responsible- along with an
increased transcription of the Id gene (133)- for the
observed transcriptional repression exerted doxorubicin.
Whether or not the effects that p300 seems to have on
cardiac transcription and morphogenesis depends on its
acetyltransferases activity remains to be determined in
future studies.

6. HEMATOPOIESIS

In 1973, Axel, Cedar and Felsenfeld observed
that the RNA polymerase derived from E.coli   promoted
transcription of globin genes derived from reticulocyte
chromatin but not from either liver or brain chromatin (9).
This observation was followed by a seminal paper by
Weintraub and Groudine who reported that ” globin genes
are digested by deoxyribonuclease I in red blood cell nuclei
but not in fibroblast nuclei” (279) and suggested that
histones of the chromatin surrounding the globin genes in
red blood cells are in a conformation that differs from that
of the same genes in fibroblasts where globins are not
produced. These studies established the technical and
conceptual framework to investigate chromatin remodeling.

6.1. Chromatin remodeling
During erythroid maturation, expression of genes

residing in the β-globin locus and encoding for embryonic,
fetal and adult globins is temporally regulated to allow
production of globin isoforms with different physical-
chemical properties that better suit the distinct
developmental stages of the organism. In particular, the

transition from fetal to adult life is characterized by activation
of adult β-globin genes δ and β and repression of the fetal γ-
globin Gγ, Aγ and ψβ?genes (205) ??

The transcription factor Ikaros binds to a
pyrimidine-rich sequence between the human fetal γ-globin
and adult β-globin-like genes (194). Deletion of this DNA
region causes a delayed switch from fetal to adult globin
expression in transgenic animals indicating that this region
is involved in globin switch (193). Ikaros is found
associated with components of the SWI/SNF and NuRD
remodeling complexes in extracts derived from mature
erythroid cells (194). While the SWI/SNF complex has an
ATP-dependent remodeling acitivity – provided by either
BRM or BRG1 subunits- (121) the NuRD complex
contains both nucleosome remodeling and histone
deacetylase activities provided by class I deacetylase
HDAC1 and 2 and RbAp46/48. It is not clear whether
Ikaros exists in two distinct complexes- one with
nucleosome remodeling activity and the other with
remodeling as well as deacetylase activity- (121).
Furthermore, the functional relevance of the Ikaros-
SWI/SNF-NuRD complex on globin isoform switching
remains to be addressed.

The role of the transcription factor EKLF in fetal
and adult hematopoiesis is more clearly defined. EKLF is a
zinc-finger transcriptional activator required for fetal
hematopoiesis (189) and ELKF nullizygous animals die
because of β-thalassemia (209). Interestingly, ELKF-/-
animals display a delayed switch from fetal to adult globin
expression (209) such as that observed in animals lacking
the pyrimidine-rich sequence containing an Ikaros-binding
site (193). EKLF associates with the E-RC1 complex
containing subunits of the SWI/SNF complex. In this case,
chromatin remodeling and transcription driven from a
chromatinized β-globin promoter requires both ELKF –
more specifically its activation domain- and E-RC1
indicating a functional link between chromatin remodeling,
transcription and complex formation (3). Recently, p300-
mediated acetylation of EKLF has been reported to increase
its affinity for the SWI/SNF complex (292) once again
indicating an intimate relationship between chromatin
remodeling and acetylation

6.2. Co-activation and acetylation
Numerous transcriptionl regulators participate in

regulating erythroid differentiation and several of these
proteins have been shown to interact and sense coactivation
of p300/CBP. A comprehensive revision of the literature on
the  role of CBP/p300 in hematopoiesis is reported in (22).
GATA-1 is a zinc finger-containing transcriptional
activator required for erythroid (215, 214) and
megakaryocytic proliferation and differentiation (242). A
point mutation abolishing binding of GATA-1 to the
promoter region of the Duffy antigen/chemokine receptor
gene (DARC), a blood group antigen, abolishes DARC
expression in erythrocytes and it is responsible for its
absence in Duffy-negative individuals (265). GATA-1-
dependent transcription is inhibited by the oncoprotein E1A
(23) and is augmented by overexpressing p300/CBP (27)
(23). While there is general agreement on the findings that
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p300/CBP promotes GATA-1 acetylation (23, 27), the
molecular consequences on hematopoietic transcription
have not been unequivocally determined and whilst a study
indicates that acetylation enhances GATA-1 DNA binding
(27) another has failed to detect such enhancement (23).

Besides recruiting the chromatin remodeling E-
RC1 complex (3), EKLF interacts also with p300/CBP and
P/CAF (291). Interestingly, both p300/CBP and P/CAF
interact with EKLF but only p300/CBP, and not P/CAF,
coactivates EKLF-dependent transcription. These findings
correlate with the ability of p300/CBP and inability of
P/CAF to acetylate EKLF both in vitro and vivo (291).
Acetylated ELKF has an increased affinity towards the
chromatin remodeling enzymes SWI/SNF and is a more
effective transactivator when tested on chromatinized DNA
templates (292)

6.3. Deacetylation
Sodium butyrate and trichostatin A, two

deacetylase inhibitors, reactivate fetal γ-globin expression
in adult erythroid cells (35, 210, 58, 108, 229). These
observations suggest that deacetylation is a mechanism
utilized during erythroid differentiation to silence gene
expression. Isobutyramide, a derivative of butyric acid, can
stimulate fetal hemoglobin production in patients with
thalassemia intermedia (37). In vivo footprinting analysis
conducted on erythroblasts isolated from patients with beta-
globin disorders before and after butyrate therapy indicates
the appearance of new “footprints’ on the gamma-globin
gene promoter of responsive patients. The footprinted
region (BRE-G, for butyrate-response elements gamma)
confers butyrate-inducibility in reporter gene assays (103).
Using as a model the human erythroleukemia K562 cells,
McCaffrey et al. (156) showed that a CCAAT box and
flanking sequences located in the gamma-globin promoter
are critical for gene activation promoted by the histone
deacetylase inhibitors butyrate, trapoxin, and trichostatin.
Taken together, these studies suggest that the gene
silencing that occurs on the fetal globin genes during adult
hematopoiesis is an active process that can be reverted by
the use of histone deacetylase inhibitors. Whereas the
detailed molecular mechanisms leading to reactivation of
fetal globin genes remain to be worked out, nonetheless,
the treatment of hemoglobinopathies with histone
deacetylase inhibitors offers an example of successful
“chromatin” therapy.

7. LYMPHOCYTE DIFFERENTIATION

B and T lymphocytes and natural killer (NK)
cells are likely to derive from a common lymphoid
progenitor (126). Cues deriving from the extracellular
milieu instruct uncommitted progenitors to choose between
alternative fates (64). Ikaros (see Hematopoiesis section)
forms homo- and heterodimers with Aiolos (101,171) and
is required for the development of a common lymphoid
progenitor. In fact, animals with germline mutations in the
DNA-binding domain of Ikaros lack B, T and NK cells
whilst the erythroid and myeloid cells develop normally
(24, 72, 49, 184, 185). Furthermore, a dominant mutation in
the Ikaros gene is associated with the development of T and

B leukemias and lymphomas in the mouse (282), T-cell
acute lymphoblastic leukemia in children (253) and B-cell
acute lymphoblastic leukemia in adults (179).

 Once the identity of the uncommitted lymphoid
progenitor has been established, cells face the decision to
take up either the B or T phenotype.

7.1. B cells
B-lymphocytes commitment is initiated by the

two basic HLH EBF (139) and E2A gene products (294,
10, 11, 196). B lymphocytes derived from mice with
inactivated EBF or E2A genes are arrested at the earliest
stage before rearrangement of the IgH gene (36). EBF and
E2A genetically cooperate since compound heterozygous
EBF+/- E2A+/- animals have a more severe B cell defect
(195). Furthermore, forced expression of E2A and EBF in
hematopoietic precursors can synergistically activate
transcription of several B-lymphoid-specific genes (243)
(120). The E2A and EBF gene products activate expression
of the downstream target Pax5 (195), which is required for
B cell commitment and development beyond the early pro-
B cell stage. The normal expression of E2A in Pax5-/- pro-
B cells indicate that the bHLH proteins are hierarchically
upstream of Pax5 (191).

As elegantly shown by Nutt et al. (192), the
initial activation of Pax-5 expression is stochastic,
reversible, monoallelic and independent of the parental
origin. Pro-B cells derived from Pax5-/- animals exhibit
fascinating properties. When cultured in vitro, they have
the ability to redirect their fate according to extracellular
stimuli. In the presence of macrophage-colony-stimulating
factor (M-CSF), they differentiate into macrophages, when
exposed to granulocyte-CSF they become granulocytes,
they differentiate into NK when treated with IL-2, into
dendritic cells when treated with granulocyte-macrophage
CSF and osteoclasts when challenged with TRANCE (190).
Some of the properties of Pax5-/- cells are observed also in
the animal. For instance, when injected into RAG2-
deficient mice, Pax5-/- pro-B cells acquire the T cell
phenotype (230) and become osteoclasts when introduced
in osteoclasts-deficient c-fos-/- mice (80).

The behavior of Pax5-/- cells indicates that while
Pax-positive pro-B cells are destined to the B-lymphoid
lineage, their Pax5-/- counterparts are far from being
committed and retain multilineage capabilities. It also
suggests that Pax5 is required to repress genes necessary
for later stages of B-cell development. Examples of genes
repressed by Pax5 are those encoding for the M-CSF
receptor, myeloperoxidase, perforin, and GATA-1 (190).

7.2. T cells
The molecular understanding of T cell

commitment and differentiation is less advanced if
compared to what it is known for B cells (207). Beside its
role in establishing lineage commitment (see above), Ikaros
is also involved in controlling critical stages of thymocyte
differentiation (281, 8). An additional regulator of
thymocyte differentiation is the zinc-finger-containing
transcription factor GATA-3. GATA-3 is required for
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development of T- cells in vitro (132). Since GATA-3 -/-
nullizygous animals are embryonic lethal (208), embryonic
stem (ES) cells derived from GATA-3 -/- animals were
employed to populate mice with a RAG2-/- genotype. The
GATA-3-/- embryonic stem cells were unable to contribute
to CD4-/CD8- double-negative cell indicating that T cell
development is blocked at the earliest stage (263). The
transmembrane protein Notch1 has been implicated in
establishing the specification of the T cell fate (206).
Analogously to GATA-3 nullizygous animals (208),
Notch1-/- embryos die early (256). Using a conditional
gene inactivation protocol, Radtke et al. have shown that T
cells development in Notch-/- animals is arrested at the
most immature stage whereas differentiation along the B
cell and other hematopoietic lineages is preserved (226).
Interestingly, immature B cells were observed in the
thymus (226). A complementary approach has utilized the
intracellular domain (constitutively active form) of Notch1
delivered by infecting the bone marrow of mice with a
Notch-expressing retrovirus (219). In this case, T cell
development ectopically occurred in the bone marrow and
was thymus-independent. Furthermore, B cell development
was impaired (219). The results of these experiments
suggest that there is a cross-talk between B and T cell
development whose molecular basis may reside in the
ability of Notch to interfere with the transcriptional activity
of the bHLH protein E47 (219, 204). According to this
scenario, Notch signaling would prevent maturation of B
lymphocytes from the uncommitted progenitor via E2A
blockade and would-by default- promote T lymphocytes
development through a secondary fate instructive
commitment in the thymus. Finally, recent evidence
indicates that Notch may protect developing T cells from
programmed cell death (56, 111).

7.3. Co-activation and acetylation
GATA-3- dependent transcription is augment by

p300 and p300 can acetylate in vitro GATA-3. Importantly,
GATA-3 is acetylated in T cells (286). Substituting the
acetylated lysines with arginines decreases GATA-3
acetylation and impairs its ability to transactivate. To address
the role of GATA-3 acetylation in T cell function, Yamagata et
al. (286) have expressed a non-acetylatable (KRR-GATA3)
form in the T-cells of transgenic mice using the T-cell –
specific Lck distal promoter. The spleen derived from
KRRGATA3 mice was enlarged with an increased T/B cell
ratio. An increased T cell population was also evident in the
peripheral blood whereas the peripheral lymphnodes and the
Peyer’s patches displayed a decreased presence of T cells. The
cellular basis of the abnormal ratio of T/B cells in different
organs seems to reside in both a defective homing and
increased survival of the T cells. To date, this is the study (286)
that more directly assesses the role of acetylation in controlling
the function of transcription factors in the animal. Mutations of
two lysines to arginines (KKK>KRR) as those present in
KRR-GATA3 are not expected to induce significant
conformational changes in GATA3. Nevertheless, this
possibility should be taken into account when interpreting the
data obtained with the KRR-GATA3 mice.

The E2A gene products E12 and E47 interact
with and are coactivated by p300 (62, 204). As with MyoD,

the E12 interaction sites may be multiple since both the
HLH (62) and the activation domains AD1 and AD2 of E12
have been reported to interact with p300 (225). The AD1
and AD2 activation domains are conserved in the other
members of the bHLH family, E2-2 and HEB (153). Within
the AD1, the LDFS motif is conserved in the yeast bHLH
transcription factor Rtg3p. A series of genetic and
biochemical experiments indicate that the LDFS motif of
both the E2A and Rtg3p mediate transcriptional activation
and is required to recruit purified yeast SAGA complex,
containing an acetyltransferase activity (152). The ability of
the mammalian equivalent of the yeast SAGA complex,
P/CAF and hGCN5 to interact with E2A was not
investigated in this study. Nevertheless, the biochemically
indistinguishible properties of the SAGA (77) and P/CAF-
hGCN5 (198) complexes suggest that the transactivation
domain AD1 may interact with P/CAF/hGCN5. The
requirement for the HAT activity of SAGA to sustain E2A
transcriptional activation has not been addressed yet.

7.4. Gene silencing and deacetylases
Depending on the experimental conditions, Ikaros

can either promote or inhibit transcription. In proliferating
lymphocytes, a significant fraction of Ikaros is found at
centromeric DNA in close association with heterochromatin-
containing foci (31), suggesting that Ikaros may be involved
in gene silencing. Ikaros, and Aiolos co-localize with the
DNA-dependent ATPase Mi-2 and the deacetylase HDAC-1
at discrete DNA foci located at heterochromatin regions
(121, 125). The Ikaros-associated proteins have the ability to
remodel chromatin in vitro and deacetylate histones (121).
Ikaros also interacts with the co-repressor C-terminal
binding protein (CtBP) and mutations in Ikaros preventing
CtBP binding reduce its ability to repress transcription
(124). CtBP represses transcription in a histone
deacetylase-independent manner indicating that Ikaros
utilizes both dependent- and independent-deacetylase
strategies to silence transcription. In agreement with its
transcriptional stimulatory properties, Ikaros was also
found associated with the chromatin remodeling machine
SWI/SNF (194). Therefore, Ikaros is present in two
separable protein complexes, one containing Mi-2 and
HDAC-1 (121) and the other SWI/SNF (194). Interestingly,
the composition and location of the Ikaros-complexes is
dynamic and subject to modification according to the
different phases of the cell cycle. These biochemical
findings support the notion that Ikaros (and Aiolos) may
behave as either transcriptional activators or repressors,
depending on the cellular circumstances.

Recently, the transcriptional repression properties
of Pax5 have been associated with its ability to recruit
corepressors of the Groucho/TLE protein family (59).

Upon interaction with its cellular receptors
Jagged and Delta, the transmembrane receptor Notch (4)
(5) is processed and its intracellular (IC Notch) domain is
translocated to the nucleus (239) where it associated with
the DNA-binding protein CBF1/RBP-Jk. In the absence of
IC Notch, CBF1/RBP-Jk is a transcriptional repressor. The
direct interaction of CBF1/RBP-Jk with the corepressor
SMRT and the deacetylase HDAC-1 confers transcriptional
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repression (116). Notch activation (154, 254, 155) and
nuclear translocation (239) disrupts formation of the
repressor complex allowing the molecular switch that turns
CBF1/RBP-Jk into an activator (116). The newly formed
IC-Notch-CBF1/RBP-Jk protein complex positively
regulates transcription of the Hairy/Enhancer of Split
(HES) gene (116). In turn, the HES proteins repress
transcription of several bHLH transcription factors
including the neurogenic regulators Mash1 (44, 54, 107)
and neurogenin (2, 257). The HES proteins bring about
repression by engaging the Groucho/TLE repressor via
their tetrapeptide motif WRPW (67, 78). There are
evidences indicating the Groucho/TLE can recruit the
deacetylases HDAC1 and Rpd3 (42, 41). Recently, Notch
has been shown to regulate expression of additional genes,
the Hey (149), HRT (178), gridlock (275) and HERPs
family which interact with the HES proteins and mediate
transcritptional repression by interacting with the
transcriptional repressor NcoR and the deacetylase HDAC1
(Iso, T., V. Sartorelli, C. Poizat, S. Iezzi, H-Y Wu, L.
Kedes, and Y Hamamori, in press). At variance with the
HES proteins, interaction of HDAC1 is mediated through
the bHLH domain and not the WRPW motif of HERPs
(Iso, T, V. Sartorelli, G, Chung, T. Shichinohe, L. Kedes,
and Y. Hamamori, in press). The sequential
engagement/disengagement of corepressors and
deacetylases by CBF-1/RBP-Jk and its target protein
HES/HERPs offers an example of how regulated protein
interactions can modulate gene expression within a defined
molecular pathway.

The genes regulated by Notch in T cells have not
been identified yet. Nonetheless, a clue on the potential
targets has come from the observation that expression of IC
Notch protects both T cell lines and thymocytes from
apoptosis induced by glucocorticoids (56). During negative
selection, thymocytes undergo apoptosis mediated-at least
in part- by the nuclear hormone receptor Nur77 (141, 284).
Recent experiments indicate that Notch1 causes repression
of Nur77 activity suggesting a molecular explanation of the
protective role of Notch in T cell death (111).

7.5. Acetyltransferases and Disregulated Hematopoiesis
Patients affected by the Rubinstein Taybi

syndrome (RTS) bear mutations in one CBP allele (see
below) and have an increased incidence of cancers (161).
Furthermore, biallelic mutations of the p300 gene have been
described in some patients with gastrointestinal cancers
(174). Therefore, CBP/p300 (74) and the associate factor
P/CAF (238) have been proposed to behave as tumor
suppressor genes. This hypothesis seems to be substantiated
– at least for CBP- by a genetic analysis conducted in
animals with a monoallelic inactivation of the CBP gene
(131). These animals recapitulate some features of the RTS
including growth retardation and craniofacial abnormalities.
Unexpectedly, CBP heterozygous animals display also
multiple abnormalities of the hematopietic system including
splenomegaly, reduced bone marrow cellularity and
deficiencies in pre-B cell and myeloid colony-forming
progenitor cells (131). On the other hand, p300 heterozygous
animals do not reveal any hematopoietic abnormality. As the
CBP heterozygous animals age, histiocytic sarcomas,

myelogenous and lymphocytic leukamias develop. These
malignancies can be transmitted to sublethally irradiated
recipients transplanted with either bone marrow or spleen
cells derived from tumor-affected  donors (131). Consistent
with a tumor-suppressor activity of CBP, tumors derived
from CBP hemyzygous animals reveal loss of the second
CBP allele (131). Several questions can now be addressed
including the specific role of CBP in hematopoiesis and the
target genes of CBP coactivation . To address the role of
the acetyltrasnferase activity of CBP in the genesis of these
malignancies , it will be of interest to reconstitute the CBP
hemyzygous animals with a HAT-deficient allele of CBP.

The MYST acetyltransferase MOZ and the
mixed-lineage leukemia (MLL) are often translocated in
acute leukemias or myelodysplasia secondary to therapy
with drugs that target DNA topo isomerase II, respectively,
to either the p300 or CBP locus giving rise to fusion
proteins composed of either MOZ-CBP (26), MOZ-p300
(123) or MLL-CBP (245). Fusion of MLL occurs with the
bromodomain and the HAT region of CBP. Bone marrow
trasnplantation of cells trasnduced with the MLL-CBP
protein induces myeloid leukemia in recipient animals
(136). The bromodomain and the HAT region of CBP fused
to the amino region of MLL are sufficient to induce
leukemia (136) suggesting an active role of the
acetyltransferase activity of CBP in leukemogenesis. The
MOZ region translocated to CBP retains the HAT domain
(138) but whether this has any role in neoplastic
transformation has not been addressed.

8. MELANOCYTES AND SKELETAL
DEVELOPMENT

As indicated by genetic inactivation studies, the
bHLHZip transcription factor Microphtalmia (Mi) regulates
melanocyte differentiation and survival (100). While Mi
expression is up-regulated in response to exposure to
melanocyte stimulating hormone, Mi activity is induced
upon stimulation of the c-Kit signaling pathway.
Concomitantly, the c-Kit pathway activates  the MAPK
system, which in turn phosphorylates Mi (20, 99).
Phosphorylated Mi recruits  p300/CBP, which enhances the
transcriptional activity of Mi (218). The p300/CBP binding
region of region of Mi was mapped at the N-terminal
activation domain and the synergistic activation of
transcription could be inhibited by E1A (236). Genetic
studies have also implicated CBP function in the
development of the skeletal system. Abnormal skeletal
patterning was observed by Tanaka et al. in embryos
lacking one CBP allele (258). This phenotype is
reminiscent of the Rubinstein Taybi syndrome (RTS), an
autosomal dominant disease associated with mutation of
CBP gene (213). Another study has subsequently showed
that heterozygous CBP-deficient mice with a truncated
CBP protein (residues 1-1084) exhibit a typical RTS
phenotype, indicating that CBP mutations may produce a
dominant negative molecule (200). Finally, Murata et al.
have identified in human RTS patients mutations which
may impair the HAT activity of CBP, implicating that
acetylation may play an important role in skeletal
development and related diseases (175).
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The involvement of p300/CBP and other
acetyltransferases in differentiation of additional cell
lineages as well as in the development of other animal
models (e.g. Drosophila and Xenopus) are illustrated in
other excellent reviews (76).

9. CONCLUDING REMARKS

The molecular foundations of chromatin remodeling
and acetylation have begun to be clarified. Perhaps one of the
most intriguing observations relates to the differential roles of
even closely related acetyltransferases and deacetylases in
controlling distinct cellular processes  (223, 291). Specific
inhibitors that interfere with the acetyltransferase activity of
either p300/CBP or PCAF/GCN5 are already available (135)
and may be used to selectively interfere with cellular processes
such as apoptosis and differentiation. Clearly, these
compounds have the potential to be employed as therapeutical
tools. Deacetylase inhibitors are already used in clinical trials
(see Hematopoiesis) (272, 79)

 Acetylation seems to act in concert with other
post-translational modifications including histone
phosphorylation (for a review see (47) and methylation (1,
40, 180, 13, 270) for a review see (227) suggesting that
combinatorial histone (and perhaps transcription factors)
modifications may serve as a”code” to either attract or
repulse transcriptional complexes. Elucidation of the
temporal and spatial modifications will allow to interfere
with specific cellular functions.

Only five years have passed since the initial
isolation and characterizations of nuclear acetyltransferases
(33) and deacetylases (260) and the progresses in the
understanding of their biological roles have been impressive.
The involvement of both acetyltransferases and deacetylases
in the genesis of several human pathological conditions
should provide a continuous incentive for the clarification of
their functioning.
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