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1.  ABSTRACT

Nitric oxide (nitrogen monoxide; NO) is a simple molecule
with diverse biological functions.  NO and related reactive
nitrogen oxide species (RNOS) mediate intricate
physiological and pathophysiological effects in the central
nervous system.  Depending on environmental conditions,
NO and RNOS can initiate and mediate neuroprotection or
neurotoxicity either exclusively or synergistically with
other effectors.  The focus of this review is limited to the
neuroprotectant / neurotoxic role of NO in Acquired
Immune Deficiency Syndrome (AIDS) Dementia Complex
(aka HIV – Associated Dementia; HAD) Amyotrophic
Lateral Sclerosis (aka Lou Gehrig’s Disease), Alzheimer's
Disease, Huntington’s Disease, Multiple Sclerosis and
Parkinson’s Disease.  This review will shed light on the
question:  “How important is NO in neurodegenerative
diseases?”

2.  INTRODUCTION

Nitric oxide is a simple molecule with diverse
biological functions.  Owing to its relative stability (a
biological half-life of several seconds under ideal
conditions), a net ionic charge of zero and a high 1-
octanol/water partition coefficient, NO can diffuse across
lipid membranes to exert effects distal from its biosynthetic
source (1-3).  NO and related reactive nitrogen oxide
species (RNOS) mediate complex physiological or
pathological functions (4).  As a signal transduction agent,
NO is physiologically active in various organ systems, e.g.,

musculature, pulmonary, gastrointestinal, immune, renal,
endocrinological and reproductive systems (5-10), in
addition to modulation of regional and systemic circulation
(11-13), and developmental neurosynaptic plasticity (14,
15).  As a participant in oxidative stress, NO may serve as a
protective antioxidant to reduce oxidative damage, or
alternatively NO (and RNOS) may intensify oxidative
stress via it’s own oxidative and nitrative actions (16).
Whether or not NO serves as an antioxidant or toxicant
likely depends on the cellular source(s) and mode of NO
synthesis, cellular targets, and the efficiencies of
endogenous antioxidant defenses coupled with cellular
repair mechanisms.

The NO literature is quite broad, owing to NO's
ubiquitous presence and multi-faceted functions.  There are
many diverse, contemporary reviews of NO and nitric
oxide synthase (NOS).  For a succinct, global overview
with a historical perspective, the reader may wish to consult
the review by Salvador Moncada and Robert Furchgott
(17), who have made seminal contributions to the discovery
and identification of NO.  Another excellent historical
review is contained in the article by Law et. al. (18).
Reviews of specific functions of NO, RNOS and NOS are
readily retrievable from various scientific literature
databases.

NO and related species exert intricate
physiological and pathophysiological effects in the central
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Figure 1.  Generation of RNOS and Reactive Free Radical Derivatives from NO. (For illustrative purposes, NO and other free
radicals are depicted with an unpaired electron.).

nervous system (CNS).  Under the "right" conditions, NO
and its derivatives can initiate and mediate neuroprotection
or neurotoxicity either exclusively or synergistically with
other effectors.  As such, NO neurotoxicity represents only
one mechanism of neurotoxicity (19); other mechanisms
are operative, depending on the brain region, cell type and
initial cellular insult.  The focus of this review is limited to
the neuroprotectant / neurotoxic role of NO  in Acquired
Immune Deficiency Syndrome (AIDS) Dementia Complex
(aka HIV – Associated Dementia; HAD) Amyotrophic
Lateral Sclerosis (aka Lou Gehrig’s Disease), Alzheimer's
Disease, Huntington’s Disease, Multiple Sclerosis and
Parkinson’s Disease.  Hopefully, this review will shed light
on the question:  “How important is NO in
neurodegenerative diseases?”

3.  NITRIC OXIDE BIOCHEMISTRY

The biochemistry and molecular biology of NO
and related species have been lucidly presented in several
excellent reviews (1-3, 20).

3.1.  Nitric Oxide Synthase Isoforms
NO is synthesized by one of three isoforms of

NOS, each of which are distinct gene products:  eNOS for
endothelial NOS, nNOS for neuronal NOS, and iNOS for
immunoinducible NOS.  Each isoform was characterized
and cloned from many tissues from diverse animal species,
including humans (17).  Human NOS are gene products of
chromosomes 12 (nNOS), 7 (eNOS) and 17 (iNOS) (18).
nNOS is dynamically regulated during CNS development,
plasticity and injury (21).  Subsets of neuronal populations
can express two to three NOS isoforms, e.g., hippocampal
pyramidal CA1 - CA3 neurons express nNOS and eNOS,
and cultured cerebellar granule neurons express all three
isoforms (22, 23).  While activated microglial cells clearly
express iNOS, astrocytes express all three isoforms (24-
27).  Cerebrovascular endothelial cells express eNOS
constitutively and can be induced to express iNOS
following exposure to immunostimulatory agents.

3.2. Synthesis and Metabolism of Nitric Oxide
Synthesis of NO requires L-arginine, O2,

NADPH, flavin adenine dinucleotide, flavin
mononucleotide and tetrahydrobiopterin in a five electron
oxidation of the guanidino moiety of arginine. The
biosynthesis of NO is highly regulated by intracellular
calcium, immunoinducing agents and arginine availability
(28).  Constitutively expressed NOSs (eNOS and nNOS)
are calcium/calmodulin dependent and thus sensitive to

alterations in intracellular calcium.  Constitutively
expressed NOSs transiently produce NO for signal
transduction processes, however, persistent receptor –
ligand stimulation can lead to continual elevations of
intracellular calcium and subsequent generation of NO, as
might occur with glutamate neurotoxicity.  Immunoinduced
NOS (iNOS) is transcriptionally induced following cellular
exposure to a variety of inducing agents:  inflammatory
cytokines (gamma interferon, tumor necrosis factor alpha,
interleukin 6), lipopolysaccharides, beta-amyloid peptides,
S100B  and HIV coat proteins (29). iNOS is tightly bound
by calcium / calmodulin such that it is calcium insensitive.
The availability of intracellular arginine modulates NO
production:  sufficient arginine, either through available
cellular pools or via increased arginine transport via
cationic amino acid transporters, will ensure NO synthesis;
however, insufficient arginine results in NOS generation of
superoxide (30).

The biological fate of NO is influenced by a
variety of factors:  its local concentration, physiological
milieu (redox environment, pO2, pH, CO2 concentration)
and local concentrations of other bioreactants
(metalloproteins, thiols, reactive oxygen species) (3, 31,
32). NO is chemically reactive towards O2 or O2

•-,
depending on the local concentrations of NO and oxygen
tension, and on NO scavenging agents (e.g., glutathione or
other thiols) or O2

•- scavenging agents (e.g., superoxide
dismutase (SOD)) (33).  Oxidation, reduction or adduction
of NO produces into a variety of nitrogen oxide species
(e.g., NO-, NO+, ONOO-, ONOOCO2

-, NO2, NO2
-, NO2

+,
and N2O3) (Figure 1), collectively referred to as reactive
nitrogen oxide species (RNOS) (19).

4.  NEUROPROTECTIVE / NEUROTOXIC
MECHANISMS OF NITRIC OXIDE AND REACTIVE
NITROGEN OXIDE SPECIES

The issue of whether NO is a neuroprotective or
neurotoxic in neurodegenerative diseases is the subject of
much scientific discussion.  Lipton et al proposed a NO
redox based mechanism to explain NO’s neuroprotective
and neurotoxic effects (34).  There are those who maintain
that NO is a very modest effector of toxicity (3, 20, 31, 32),
and may serve as a neuroprotectant under the right
conditions (low local concentrations of NO and oxygen
tension; presence of NO scavenging agents, such as
glutathione or thiol compounds; superoxide scavenging
agents, e.g. superoxide dismutase).  The oxidant/
antioxidant balance of the central nervous system is also a
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Figure 2.  Mechanisms and Targets of Nitric Oxide – Mediated Neurotoxicity and Neurodegeneration.  NO reacts with O2
•- or O2

to form RNOS and highly reactive free radical derivatives.  These potent oxidizing compounds attack critical cellular targets in
neurons, glia and cerebrovascular endothelium.  Depending on the brain region and extent of toxic injury, these insults may
initiate or promote the listed neurodegenerative diseases.

contributing factor in determining whether NO behaves as a
neurotoxicant or neuroprotectant (35).

The protective effects of NO typically occur
through inactivation of oxidants and reactive oxygen
species known to evoke oxidant stress.  The deleterious
effects of NO result directly from its excitotoxicity; or
through the generation of reactive nitrogen oxygen species
(RNOS), resulting in neuroinflammatory, oxidative and
nitrative stresses (19).

The sources and targets of NO are the cells on the
CNS themselves:  neurons, astrocytes, activated microglia
and endothelial cells.  Given the diffusivity of NO,
neighboring cells are susceptible to RNOS toxicity.
Neurons (25, 36), oligodendrocytes (37), choroid
epithelium of the blood-cerebrospinal fluid barrier (38) and
endothelial cells of the blood-brain barrier (39-41) are
susceptible to RNOS toxicity.  Neurons and
oligodendrocytes, in contrast to astrocytes, are exquisitely
vulnerable to RNOS toxicity owing to an inability to
sustain a high level of glycolysis and lower reserves of
intracellular antioxidants, such as glutathione and alpha-
tocopherol (vitamin E) (42).  Although nNOS neurons
compose < 5% of the neuronal population (43), they are
remarkably resistant to RNOS toxicity due to their high
expression and activity of manganese SOD (44).

4.1.  Mechanisms of Neuroprotection
Under certain environmental circumstances, NO

can protect cells against oxidative stress.  NO can scavenge
oxidants such as hydroxyl (OH), alkoxyl (RO•) and alkyl
hydroperoxyl (ROO•) radicals, thereby reducing oxidative
stress mediated by these radicals (45) (1, 20, 46).  NO can
also limit lipid peroxidation through chain termination of
the lipid free radical reaction (47, 48).  The antiapopotic

effects of NO occur through multiple mechanisms,
including cellular elevations of cGMP, which interrupts the
signal transduction process promoting apoptosis and/or
through direct inhibition of caspase activity (47).

4.2.  Mechanisms of Neurotoxicity
Neuronal death can occur through any number of

potential mechanisms (19):  derangements in intracellular
calcium homeostasis and cellular energetics, oxidative and
nitrative stresses, excitotoxicity, neuroinflammation and
apoptosis.  NO has major or minor roles in each of these
mechanisms.  The deleterious effects of NO are manifest as
cytotoxic insults that contribute to the underlying pathology
of various disease states (Figure 2) (49).  Perhaps the major
neurotoxic mechanism of NO is through the oxidative and
nitrative effects of RNOS (16), although NO excitotoxicity
subsequent to over activation of glutamate receptors is
important as well (22).

4.2.1. Chemical Molecular Mechanisms
NO toxicity can be mediated via oxidative and

nitrative stresses.  The initial reaction of NO with
superoxide (O2

•-) forms peroxynitrite (ONOO-).  Similarly,
NO can react with O2 to produce NO2, which then reacts
with NO to produce N2O3.  While ONOO- is considered as
the primary and most injurious effector of nitric oxide
toxicity, NO2 and N2O3 may also contribute substantial
biological toxicity (1, 20).  Targets of ONOO- and RNOS
toxicity include amines, thiols, tyrosine and tryptophan
residues, nucleic acids, iron-sulfur centers and
metalloproteins.

ONOO- can effect toxicity through chemical
reactions leading to the generation of other damaging
species.  At physiological pH, ONOO- also exists in
equilibrium as its conjugate acid, ONOOH.  Depending on



Nitric Oxide & Neurodegenerative Diseases

766

the cellular environment, ONOOH may decompose to
cytotoxic species, i.e., hydroxyl radical (HO-) and nitrogen
dioxide (NO2), or to the relatively inert nitrites/nitrates
(NO2

-, NO3
-) via nitric acid (e.g. ONOOH → HNO3) (1-3,

50).  In addition, ONOO- rapidly and readily reacts with
CO2 to form ONOOCO2

-, a far more potent nitrating specie
than ONOO-  (31).

Nitroxyl anion (NO-) is a one-electron reduction
product of NO, and is postulated to be physiologically
synthesized by NOS, SOD and/or S-nitrosothiols (51-54).
NO- also reacts rapidly with NO to form reactive N2O2

•- or
with O2 to form ONOO-  (2).  NO-, in the presence of
hydrogen peroxide or transition metals, will react to form
potent cytotoxic oxidants (55).

4.2.3.  Cell Biological Mechanisms
Typically, high and sustained concentrations of

NO and RNOS will indiscriminately attack critical
macromolecules (lipids, proteins, DNA), subcellular targets
(mitochondria) and cellular targets (neurons, glia,
cerebrovascular endothelium) via the NO/ O2

•- and NO/O2
reaction pathways (20, 56).  RNOS are capable of
damaging macromolecules thereby creating cellular
distress.  When the number of damaging insults sustained
by critical targets reaches an upper limit, cell death ensues
via apoptotic or necrotic mechanisms (47, 57).

There are three mechanisms of DNA damage by
RNOS (20):  (1) direct interaction with DNA, resulting in
mutagenic insults and DNA strand breakage; (2) inhibition
of enzymes involved in DNA repair processes; and (3)
chemical reaction with endogenous molecules to form
DNA alkylating carcinogens, such as nitrosoamines.
RNOS mediated nitrosative deamination of cytosine,
adenine and guanine results in mutagenesis and DNA
strand breaks (20, 58).  This event sets in motion events
that lead to apoptosis (47).  RNOS inhibition of DNA
ligase precludes the repair of RNOS – mediated DNA
strand breaks (59-61).  Lastly, RNOS – mediated DNA
damage activates the DNA repair enzyme, poly(ADP-
ribose) polymerase (PARP), which, ironically, undergoes
RNOS nitrosylation.  In the nitrosylated state, PARP
activity is enhanced, which leads to excessive consumption
and depletion of cellular energy reserves in compromised
neurons (22, 62).

Another important mechanism of
neurodegeneration is disruption of cellular energetics
through mitochondrial dysfunction (63).  RNOS can
reversibly and irreversibly depress mitochondrial
respiration by reversible inhibition of cytochrome c oxidase
(complex IV) through low concentrations of NO (64); and
by irreversible inhibition of mitochondrial complexes I-IV
(e.g. cis-aconitase, NADH:ubiquinone oxidoreductase and
succinate:ubiquinone oxidoreductase) through RNOS
nitrosylation of the iron-sulfate centers (42, 65).  RNOS
inhibition of key respiratory enzymes promotes an
intracellular mobilization and loss of iron.  In addition,
glycolysis is inhibited through RNOS nitrosylation of thiol
residues on glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (64, 66).  The net effect of RNOS inhibition of

mitochondrial complexes and impairment of GAPDH
activity is the crippling of cellular ATP synthesis.

RNOS can nitrosylate and nitrate key amino
acids in proteins, thereby altering protein function through
alteration of active sites, conformation changes or blockade
of phosphorylation sites.  Nitrated proteins are typically
targeted for degradation, which suggests a physiological
mechanism for regulation of protein turnover.  RNOS
tyrosine nitration typically diminishes protein function, as
observed with SOD and glutamine synthetase (56).  RNOS
- mediated S-nitrosylation of thiol groups may alter protein
structure / function or promote oxidation of vicinal thiols or
histidine residues (32, 67, 68).  For example, the activities
of G-proteins, ion channels and kinases are altered by S-
nitrosylation (64, 67).  RNOS also influence gene
regulation through nitrosylation of cysteine residues of
transcriptional regulators (24, 64), as exemplified by NO –
mediated functional alterations of the transcription factors
NF-kappaB and AP-1.

Lastly, while NO itself acts to quench lipid
alkoxyl (LO•) or lipid hydroperoxyl (LOO•) radicals,
RNOS can initiate and propagate lipid peroxidation (1, 48,
56).  The reaction mechanisms are unclear, but may include
a direct oxidant effect on fatty acids and/or oxidation of
endogenous antioxidants, such as alpha-tocopherol (48).

4.2.3.  Excitotoxicity
The N-methyl-D-aspartate (NMDA) glutamate

receptor subtype is a ligand-gated ion channel that fluxes
calcium upon ligand binding by the co-neurotransmitters
glutamate and glycine.  Under conditions of persistent
synaptic glutamate, the subsequent chronic influx of
calcium via the NMDA receptor complex promotes
excitotoxicity through calcium-calmodulin interaction with
nNOS, thereby triggering NO synthesis.  NMDA receptor
activation in non-nNOS neurons leads to mitochondrial
synthesis of O2

•-.  The products NO and O2
•- diffuse from

their sources to form ONOO- which is cytoxic to
neighboring neurons (36, 69).  nNOS neurons are uniquely
resistant to NMDA toxicity due to over-expression of
MnSOD (44).  This hypothesis of NO-mediated NMDA
excitotoxicity is not universally accepted, as the
phenomenon has been inconsistently replicated by various
laboratory groups using in vitro cell cultures (70).

S-nitrosylation of a redox modulatory site of the
NMDA receptor complex (thought to be Cys-399 of the
NR2A subunit) causes a down-regulation of the frequency
of NMDA receptor channel opening (71, 72).  Thus,
NMDA receptor S-nitrosylation represents a feedback
mechanism to provide neuroprotection through curtailment
of excessive receptor activation under conditions of high
NO levels.  However, not all laboratory groups are
convinced that NO acts exclusively at the redox modulatory
site, as other evidence suggests that NO may act at multiple
sites of the NMDA receptor complex (70).

4.2.4.  Neuroinflammation
Neuroinflammation is an important process that

promotes and contributes to neurodegeneration.  Activated



Nitric Oxide & Neurodegenerative Diseases

767

glia (reactive astrocytes and microglia) and cerebrovascular
endothelial cells are stimulated by and participate in
neuroinflammatory processes.  Activated astrocytes and
microglia in regions of neurodegeneration were identified
in Alzheimer’s Disease, Parkinson’s Disease, Multiple
Sclerosis, Huntington’s Disease, HIV-dementia, and
Amyotrophic Lateral Sclerosis (73-77).  Microglial
activation appears to be an early pathological event in
neurodegenerative diseases, as suggested by observations
from autopsy specimens from patients with early stage
disease and in vivo imaging in patients with progressive
disease (77).  Neuroinflammatory activation of
cerebrovascular endothelial cells initiates and contributes to
blood-brain barrier disruption (see section 4.2.5.),
permitting inward migration of activated T-cells and
macromolecules normally excluded from brain
parenchyma.

Neuroinflammation is typically marked by up
regulated expression of major histocompatibility complex
(MHC) molecules, elevations in proinflammatory cytokines
(e.g. IL-1alpha, IL-1beta and TNF-alpha) and chemokines
(e.g., MIP-1alpha, IL-5, and IL-8) (77), leukocyte -
endothelial adhesion molecules and reactive oxygen
intermediates (38, 39, 78).  Elevated cytokines, in turn,
promote the transcription of other a variety of inflammatory
elements, including iNOS and cyclooxygenase-2 (COX-2;
which is responsible for prostaglandin synthesis).  In
general, elevated concentrations of prostaglandins and
nitrites/nitrates (end-products of NO metabolism)
concurrent with increased COX-2 and iNOS expression are
observed in experimental meningitis (79), Parkinson’s
Disease (80), Alzheimer’s Disease (81), HIV-Associated
Dementia (82, 83) and Amyotrophic Lateral Sclerosis (84).

COX-2 and iNOS are part of a family of primary
inflammatory response genes, whereby COX-2 and iNOS
expression are coordinately co-induced by
lipopolysaccharides (LPS), bacterial endotoxins and
various cytokines.  Published reports suggest that NO and
prostaglandins can modulate the activity of their own
respective enzymes, and modulate each other’s enzymatic
counterpart.  Pharmacological inhibition of one enzyme
may also alter the activity and/or expression of the other
enzyme.  Based in an in vivo animal model of
neuroinflammation (experimental meningitis) an empirical,
biphasic, bell-shaped relationship between cerebrospinal
fluid levels of prostaglandin E2 (PGE2) and NO was
observed and mathematically validated, illustrating the
complex behavior of the neuroinflammatory response (79).

Neuroinflammatory processes may activate
excitotoxic mechanisms (19).  Activated microglia release
glutamate thereby initiating excitotoxicity (85).  Moreover,
prostaglandins trigger astrocytic release of glutamate (86),
and the subsequent neuroinflammatory processes impair
astrocytic glutamate reuptake.

4.2.5.  Blood-Brain Barrier and Blood-Cerebrospinal
Fluid Barrier Toxicity

The integrity of the blood-brain barrier and/or
blood-cerebrospinal fluid barrier is often compromised

during central nervous system infection or inflammation
(19, 78).  Barrier disruption leads to increased vascular
permeability with subsequent influx of macromolecules,
exudation of fluid and plasma proteins into cerebrospinal
fluid (CSF) and brain tissue, and leukocyte recruitment and
migration into the area of inflammation.

Altered barrier integrity can contribute to
neurotoxic and neurodegenerative processes.  For example,
barrier disruption is often seen in multiple sclerosis (87,
88), HIV-1 dementia (89), cerebral ischemia (90), brain
tumors (91) and meningitis (92).  Given that excessive NO
is an observed pathological process in these disease states
(discussed in detail in following sections), it is tempting to
hypothesize that NO is involved in evoking permeability
changes of the blood-brain and blood-cerebrospinal fluid
barriers.

The blood-brain barrier consists of astrocytic
processes enveloping cerebral endothelial capillaries.
Cerebrovascular endothelial cell production of
physiological levels of NO is thought to maintain the
integrity of the blood-brain barrier (93), whereas conversely,
excessive NO levels disrupt the blood-brain barrier.  Support
for the hypothesis that excessive production of NO mediates
blood-brain barrier disruption is derived from in vitro studies
identifying iNOS induction in human astrocytes (94, 95),
fibroblasts (96) and endothelial cells (97, 98).  Preclinical
evidence identified a role of NO in modulation of barrier
integrity.  In rats, intracisternal administration of
lipopolysaccharides resulted in blood-brain and blood-
cerebrospinal fluid barrier disruption, meningeal inflammation,
and NO and prostaglandin E2 synthesis (38, 39, 79, 99-101).
Treatment with a specific iNOS inhibitor, aminoguanidine,
during meningeal inflammation significantly diminished
meningeal NO production and preserved normal blood-brain
and blood-cerebrospinal fluid barrier integrity (38, 39).  Lastly,
NO donor agents that released NO (as NO, NO- and NO+
redox forms) enhanced the blood-brain barrier permeability in
normal rodents (41, 102). While  NO itself provoked only
modest elevations in permeability, the greatest enhancement of
barrier opening occurred with NO donors that released the NO-
and NO+ redox forms (41).

Clinical evidence supporting the deleterious effects
of NO on blood-brain barrier integrity was provided by a study
by Giovannoi et al, who observed a correlation of increased
cerebrospinal fluid nitrite and nitrate concentrations
(metabolites of NO) with increased cerebrospinal fluid
albumin concentrations (103).  Similarly, increased
cerebrospinal fluid albumin ratios are a feature of HIV
dementia (104), as is increased nitrotyrosine immunoreactivity
in cerebrovascular capillary regions (105).  Although these
findings are observational and not proof of a NO cause and
blood-brain barrier integrity effect, a compromised blood-brain
barrier may contribute to disease pathogenesis.

5.  NITRIC OXIDE IN NEURODEGENERATIVE
DISEASES

Excitotoxicity, neuroinflammation and oxidative
and nitrative stresses and are thought to contribute to the
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neurodegenerative processes (Figure 2) in AIDS dementia,
Parkinson’s disease, Alzheimer’s dementia, Huntington’s
disease, Multiple Sclerosis and Amyotrophic Lateral
Sclerosis (ALS or “Lou Gehrig's Disease”).  The disease
clinical courses are likely due to initiating factors
(environmental, genetic, and malfunctional biochemical
processes) with a complex interplay of diverse secondary
pathological mechanisms.  It is difficult to determine if
excitotoxicity, neuroinflammation and oxidative and
nitrative stresses are primary causes, secondary effects or
merely associated with disease progression.  The general
consensus is that NO neurotoxicity is a midstream
pathological event, even though nitrated nervous system
proteins are early markers of NO neurotoxicity in
Alzheimer’s, multiple sclerosis and ALS (16).

5.1.  Acquired Immune Deficiency Syndrome (AIDS)
Dementia Complex

AIDS dementia complex, aka HIV-Associated
Dementia (HAD), is a neurological complication of human
immunodeficiency virus type 1 (HIV-1) infection that
affects about 1 in 5 patients in the late stages the disease.
Neuronal loss is a prominent feature observed in autopsy
specimens from AIDS patients (106).

Neurodegeneration occurs subsequent to release
of viral proteins (tat, nef, vpr, rev, gp120 and gp41) (105-
107), neurotoxins (excitatory amino acids, free radicals)
and cytokines from reactive glia (105, 106, 108).  A variety of
mechanisms promote neurodestruction, including a
contribution by NO and RNOS.  HIV-1 viral proteins, notably
gp 41and gp 120, trigger NO toxicity through microglial and
astroglial induction of iNOS (108-110).  Glial – derived
glutamate triggers excitotoxicity via the NMDA receptor.
Cytokine release triggers an inflammatory response, which
includes induction of iNOS.  NO and RNOS generated by
reactive glia may contribute to the pathogenesis of AIDS
dementia (111-115).  Post-mortem examination of patients
with AIDS dementia revealed nitrotyrosine
immunohistochemical staining in perivascular regions,
suggesting that NO and RNOS may contribute to blood-brain
barrier dysfunction (105).  Several reports observed iNOS
immunoreactivity and increased nitrotyrosinated proteins were
colocalized with gp41 (111-114).  Moreover, iNOS mRNA
levels in frontal white matter correlated with the severity of
AIDS dementia complex (111, 116).

5.2.  Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a chronic and

progressive paralytic disorder characterized by
neurodegeneration of the large motor neurons in the brain and
spinal cord.  The disease prevalence is approximately 1 out of
100,000 people, typically striking people over the age of 50.
The clinical presentation ranges from initial muscle weakness,
tripping, abnormal fatigue of the limbs, slurred speech and
muscle cramps and/or twitching.  Disease progression involves
muscle weakening and paralysis that eventually encompasses
difficulty with speech, chewing, swallowing and breathing,
followed by permanent ventilatory support in the late stages of
the disease.  ALS typically leads to an early death.

In the early 1990's, Beckman hypothesized that
SOD-1 mutations found in 20% of patients with familial ALS

may contribute to increased protein nitration and impaired
phosphorylation due to ineffective scavenging of O2

•- and
subsequent formation of RNOS (117, 118).  In support of this
hypothesis, iNOS and nitrotyrosinated proteins are found in
ALS patients and transgenic ALS mice (119-122).  Moreover,
patients with sporadic ALS have elevated CSF NO2

- and NO3
-

(123, 124).  However, the SOD mutation hypothesis remains
controversial, with current hypotheses favoring reduced
antioxidant defenses, impaired proteasome function, increased
protein aggregation and NO neurotoxicity (16, 125).

5.3.  Alzheimer's Disease
Alzheimer's disease is a progressive degenerative

dementia, characterized by a gradual decline of memory,
cognition (reasoning, judgment, disorientation, learning
difficulties), loss of language skills, and decline in the
ability to perform routine tasks.  Sometimes agitation,
anxiety, depression, delusions and/or hallucinations may
also be clinically present.  Approximately 5% of the elderly
population over 70 years are afflicted with Alzheimer’s,
with that number doubling for each decade of life past 70.

The etiology of Alzheimer’s is likely to be
heterogeneous, multifaceted, complex and intricate.  While
several hypotheses on the etiology of Alzheimer’s are
advanced (disorders of beta-amyloid and/or tau protein
processessing, neuroinflammation, genetic mutations,
cardiovascular risk factors) (126, 127), all are the subject of
much debate, and each likely offers a partial understanding
of the disease etiology.  Though far from perfect, the beta-
amyloid hypothesis is currently favored (128).

Both epidemiological and basic research have
established that inflammation and oxidative stress are
major contributing mechanisms in the progression of
Alzheimer’s Disease.  That NO and RNOS are contributory
factors in the Alzheimer’s disease process is supported by
post mortem observations of increased nitrotyrosinated
proteins and lipids in Alzheimer's patients (129-131).  Beta-
amyloid elicits NO - mediated excitotoxicity,
neuroinflammation and oxidative stress (18).  Beta-amyloid
is directly neurotoxic in neuronal cell cultures (132, 133)
and triggers excitotoxicity through elevations in
intracellular calcium and subsequent activation of nNOS.
Growing evidence suggests that beta-amyloid is critically
involved in the induction of an inflammatory response
through activation of astrocytes and microglia, eliciting
subsequent production of inflammatory cytokines and
neurotoxic factors, including NO (via iNOS), superoxide,
prostaglandins (via COX-2) and glutamate.  (For a detailed
review, see (18).)  Apolipoprotein E, thought to be a risk
factor for Alzheimer’s, elicits NO production from
microglia, with isoform apoE4 as the most potent
stimulator (134).  Additional evidence supporting a
neuroinflammatory process derives from
immunohistochemistry findings of up regulated expression
of cytokines (IL-1, TNF-alpha), iNOS and nNOS and
Alzheimer’s patients with Lewy body pathology (135).

5.4. Huntington’s Disease
Huntington's disease (HD) is clinically

characterized by a progressive deterioration in cognition,
memory, mood and behavior, often accompanied by
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choreic movements in late stage disease.   Huntington’s is a
fatal autosomal hereditary neurodegenerative disease
caused by a trinucleotide repeat disorder, involving an
unusual expansion of CAG repeats coding for a
polyglutamine tract of the huntingtin protein (136).  Mutant
huntingtin triggers interactions with multiple proteins to
cause disruption of normal processes.  Two mechanisms
currently thought to be operative involve a role of mutant
huntingtin in the disruption of normal transcriptional
mechanisms and catabolism of misfolded proteins via the
ubiquitin-proteasome system (137, 138).  Mutant huntingtin
also catalyzes downstream neurotoxic effects attributable to
derangements in neuronal energetics and mitochondrial
function.  The resultant oxidative stress causes progressive
neuronal degeneration in specific brain regions, e.g. the
caudate nucleus and putamen in early disease, and the
frontal cortex and other regions during disease progression
(136).

The evidence for a role of NO in the
neuropathology of Huntington’s Disease is not nearly as
convincing as it is for other diseases.  NO is hypothesized
to effect neurodegeneration in Huntington’s by several
hypothesized mechanisms.  Glutamate excitotoxicity (via
the NMDA receptor) and subsequent synthesis of NO (via
nNOS) may occur due to excessive synaptosomal
glutamate release / impaired glutamate reuptake secondary
to oxidative stress.  In support of this, animal models of
Huntington’s (transgenic mice and excitotoxic lesioned
animals) suggest a participatory role of NO in neurotoxicity
(136).  Transcriptional dysregulation, secondary to altered
mutant huntingtin – transcription protein binding, may alter
nNOS expression and activity (136).  Reduced nNOS
activity may result in a loss of neuroprotection if NO serves
as a neuroprotectant; alternatively, enhanced nNOS activity
may promote neurodegeneration.  In transgenic mice, age
dependent alterations in nNOS activity (increased nNOS
activity up to 19 weeks, followed by a progressive decline)
suggest a neurotoxic role in the progression of
Huntington’s (139).

5.5. Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory

demyelinating neurological disorder with a relapsing and
remitting clinical presentation.  The disease affects
approximately 1 out of 1,000, and tends to afflict women
more commonly than men.  Disease onset occurs usually
between the ages of 20-40, but can occur at any age.  The
initial clinical presentation typically involves a range of
symptoms, including muscle weakness, paralysis or
tingling, fatigue, decreased coordination and loss of
balance and visual disturbances.  Because of the relapsing
and remitting nature of the disease, patients may have a
near normal lifespan with variable disabilites.

Data from multiple sclerosis patients and animal
models of MS, i.e. experimental allergic encephalomyelitis
(EAE) offer evidence for a contributing neurotoxic role of
RNOS (140).  iNOS and nitrotyrosinated proteins are
prominent features found in the central nervous system
lesions of patients and EAE animals (16, 32, 42, 141).  MS
patients with active disease also present with increased

cerebrospinal fluid concentrations of NO metabolites, NO2
-

and NO3
- (142-144).  However, it is unresolved whether

elevated cerebrospinal fluid NO metabolites correlate with
the severity of active disease (145, 146).

5.6.  Parkinson’s Disease
Parkinson's disease is a chronic and progressive

neurological disorder involving "shaking palsy" (paralysis
agitans) with cardinal features of tremor, rigidity,
bradykinesia and postural instability.  The disease
progresses to total disability, often accompanied by general
deterioration of all brain functions, and may lead to an
early death.  The disease affects approximately 2 of every
1,000 people, usually afflicting people over the age of 50.

Nigrostriatal dopaminergic toxicity in idiopathic
Parkinson’s is thought to occur via oxidative stress,
mitochondrial dysfunction and neuroinflammation
mediated by NO, RNOS and hydroxyl radicals (147-150),
secondary to environmental toxins (such as pesticides),
altered iron metal homeostasis or genetic factors (mutations
in alpha-synuclein).  Excitotoxicity and altered catabolism
of misfolded proteins via the ubiquitin-proteasome system
(151) are additional mechanisms leading to
neurodegeneration.

While some scientists reported a destructive role
for NOS in the MPTP (1-methyl-4-pheny-1,2,3,6-
tetrahydropyridine), animal model (152, 153), others
suggest that NO is serves as an antioxidant and
neuroprotectant through a scavenging action on toxic
hydroxyl radicals (45).  Evidence for a deleterious
neuroinflammatory role of NO in Parkinson’s is
accumulating (150).  Increased numbers of reactive glial
cells expressing iNOS, COX-1 and COX-2 were observed
in the substantia nigra of patients (76, 149, 150, 154).
Oxidized and nitrated proteins were identified in Lewy
bodies (protein inclusions), providing additional support for
a RNOS contribution to the disease process (16, 155).  In
addition, elevated striatal tissue and cerebrospinal fluid
levels of proinflammatory cytokines (150) and NO
metabolites (NO2

- and NO3
-) (156) were detected in patient

samples.  The fact that nitric oxide displaces iron from
ferritin supports hypotheses implicating deranged Fe(II)
metabolism and  Fe(II) – mediated oxidative damage in
Parkinson’s (151, 157).

6.  PERSPECTIVE

During the “Decade of the Brain” in the 1990’s,
NO was named by Science as “Molecule of the Year”
(158).  While it came as no surprise when NO was first
identified in the cerebellum (159-161), the breadth and
depth of it’s various roles continue to be absolutely
amazing (162, 163).

The deleterious effects of NO and RNOS in in
vitro and preclinical animal models of central nervous
system diseases are well documented.  The scientific
literature provides a wealth of reports documenting the
protective effects of pharmacologic modulation of NO
meditated toxicities in in vitro and preclinical models.   In
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many instances, these preclinical pharmacology studies
provide a “proof of concept” supporting a deleterious role
of NO in various diseases states and an improvement in
outcomes with a pharmacologic reduction of NO.  In
contrast, there are very few published clinical trials using
pharmacologic agents that reduce NO levels.  Concerns
about drug side effects (such as severe hypertension), drug
toxicities, poor pharmacokinetic characteristics (absorption,
distribution across the blood-brain barrier, metabolism and
elimination), and adverse effects on clinical outcomes are
issues that have dogged clinical trials involving the
systemic administration of non-selective NOS inhibitors
(164).

There is considerable interest in developing
effective pharmacologic agents that disrupt NO – mediated
toxicities.  Critical issues for the drug development of NOS
inhibitors involve isoform selectivity and potency, as well
as specificity for NOS over other arginine metabolizing or
transport proteins.  Drug discovery efforts have been
focused not only on the development of NOS inhibitors but
on other approaches, such as NO scavengers, NOS
dimerization inhibitors, NOS cofactor antagonists and NOS
transcriptional inhibitors (164).  The stakes are high:
Development of a successful NO modulating agent will
have broad therapeutic indications for not just
neurodegenerative diseases, but also for other systemic
diseases where the deleterious effects of NO are evident,
e.g. asthma, arthritis, diabetes, inflammatory bowel disease,
inflammatory pain, other inflammatory conditions, septic
shock and wound healing.  However, just as intracellular
calcium plays critical roles in homeostasis and
disregulation, so too does NO.  The question, though, is
whether pharmacological modulation of NO will cause
more harm than good, given the ubiquitous physiological
roles of NO.

The composite perspective gleaned from the
scientific literature offers a central, though not exclusive,
role of NO in neurodegenerative diseases.  While NO is
one of several deleterious secondary mediators of
neurodegeneration, its contributory effects should not and
cannot be ignored.  In the absence of a true cure for the
neurodegenerative diseases discussed herein, the clinical
management of these diseases will likely require the
development of new therapeutic strategies that target not
only NO but other neurotoxic mediators.
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