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CHAPTER1
Introduction

This thesis focuses on various spatial and nonspatial game-theoretical models of biological
interactions. On the one hand, we are interested in general properties of these models,
analyze their eco-evolutionary (population and strategy) dynamics and study the factors
that impact these dynamics, and, on the other hand, we apply these models to understand
interactions between the predatory mites and the fruit-tree red spider mites, to explain
coexistence of bacterial strains, and to model tumorigenesis. For each of these biological
problems we use a different game-theoretical model, one which we find most suitable for the
problem at hand. We therefore start with an introduction to the basics of game theory.

1.1 Basics of game theory

Game theory provides analytic tools to study decision making in situations where the out-
come of one’s decision may depend not just on one’s own choices, but also on the decisions
made by others. Such situations, which we will call games, arise in many different contexts.
Not only games like cards, chess or sports, but also situations which we do not usually call
games, can be modeled and analyzed using game theory. Examples include the pricing of a
new product when other firms have similar new products, choosing a route through a trans-
portation network, deciding whether to adopt an aggressive or passive stance in international
relations or deciding how to negotiate a job contract.

Game theory was established as a field since the birth of the book “Theory of games
and economic behavior” by the mathematician John von Neumann and the economist Oskar
Morgenstern (Von Neumann and Morgenstern, 1944). Since the 1950’s, game-theoretical
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CHAPTER 1. INTRODUCTION

models have been used in social sciences and economics. From the 1960’s onwards, game
theory has been also used to describe and understand many different phenomena in biology.
To understand some basic notions of game theory, let us start with an example.

Game 1 Suppose two animals, Animal 1 and Animal 2, are engaged in a contest in which
they will decide how to divide a piece of food between them. Each animal can choose to act
aggressively or friendly and both animals act simultaneously. If both of them act aggressively,
they end up being injured and the food is destroyed, thus neither animal gets the food. If
both animals act friendly, they share the food evenly. If one animal behaves aggressively
while the other one behaves friendly, the aggressive animal obtains most of the food while
the friendly one gets the rest. We use numbers to indicate what portion of food an animal
can get in this game: 0, 1

6 , 1
2 and 5

6 represent the outcomes as getting no food, a minor piece,
a half and a major piece of the food, respectively. We represent possible outcomes of the
game in Table 1.1, where Animal 1 chooses a row and gets outcomes highlighted in blue and
Animal 2 chooses a column and gets outcomes highlighted in red. Clearly, in this contest,

Animal 2
act aggressively act friendly

Animal 1
act aggressively 0, 0 5

6 , 1
6

act friendly 1
6 , 5

6
1
2 , 1

2

Table 1.1: Game 1

the portion of food an animal gets does not depend on this animal’s choice only, but also
on what the other one decides to do. Therefore, analyzing what both animals are likely to
do is necessary for predicting the outcome of this game. The process of considering possible
outcomes by taking into account the decisions made by all players (Animal 1 and Animal 2
in Game 1) is a standard procedure of game theory. Let us now introduce the basic elements
of a game:

Basic elements of a game

(i) players – the participants in the game. In Game 1, the two animals are the two players;

(ii) strategies (actions) – the decisions that players take. In Game 1, there are two
strategies: “act aggressively” and “act friendly”. We denote the strategies by H and D,
respectively, as Game 1 is an example of is the classical Hawk-Dove game introduced
by Maynard Smith (1974), where Hawk and Dove strategies refer to the aggressive and
friendly behaviors, respectively;

(iii) payoffs – players’ outcomes that may depend on the strategies chosen by other players
as well. Each player wants to maximize its1 own payoff. In Game 1, the payoffs are
defined by the matrix in Table 1.1. We see that the payoffs of the row and column

1Throughout this thesis we assume players are gender-neutral.

2



players are symmetric in Table 1.1. Therefore, the game can be fully described by listing
the payoffs for the row player only, see Table 1.2. Such games are called symmetric
games.

H D

H 0 5
6

D 1
6

1
2

Table 1.2: The payoff matrix for Game 1

Game 1 is a game with two players and two strategies. The strategies are denoted by H and
D and each player has to choose one of them, simultaneously and independently of the other
player’s choice. Here we assume that Game 1 is played only once. Moreover, we assume
that each player is rational and has full knowledge of possible strategies and corresponding
outcomes for all players. In general the number of players, as well as the number of strategies,
may of course be larger or smaller than 2.

Best reply and dominant strategy It is easier to decide what to do if one knows, or
can predict, what strategies the other players are going to play. In Game 1, if Animal 2
plays H, then Animal 1 should play D; if Animal 2 plays D, then Animal 1 should play H,
as these choices give Animal 1 the highest payoff when the strategy of Animal 2 is fixed. We
observe that H is the best reply to D and D is the best reply to H.

Generally, in a game, each player wants its strategy to be a best reply to the strategies
chosen by all other players. Imagine a game with m players, where each player can choose a
strategy from a set of strategies S = {1, ...,n}. For any player k ∈{1,2, ...m}, let sk ∈S denote
its strategy and (s1, ..., sm) the strategy profile (an m-tuple of strategies) for all m players.
Let s−k=(s1,...,sk−1,sk+1,...,sm) denote the strategy profile chosen by all players except for
player k. From player k’s point of view, s−k is the strategy being played against its own
strategy sk. Let us denote by wk(sk, s−k) the payoff that the player k receives when playing
sk, while the other players are jointly playing s−k. We say sk is a best reply to s−k, if

wk(sk, s−k)≥ wk(s′k, s−k), for all s′k ∈ S.

In Game 1, H is a best reply to D and D is a best reply to H.
However, even if the players are aware of their best replies, Animal 1 may not always be

able to choose a best reply to a strategy of Animal 2, since the game is played simultaneously
and independently, and it may well be unclear to Animal 1 which strategy Animal 2 will
play, for example if there are more of such best strategies. For Animal 1, there is no single
strategy that is a best reply to all strategies of Animal 2. This brings us to the concept of
strategic dominance, which can be defined in terms of the best reply: We say that a strategy
is a so-called dominant strategy, if this strategy is always a best reply to any strategy profile
of the other players. In Game 1, neither Animal 1 nor Animal 2 has a dominant strategy.

3



CHAPTER 1. INTRODUCTION

Nash equilibrium If for every player k ∈ {1,2, ...,m}, its strategy sk is a best reply to
s−k, then the strategy profile (s1, ..., sm) forms a Nash equilibrium, an equilibrium state in
which no player can be better off (i.e., getting a higher payoff) by unilaterally deviating from
its current strategy. The Nash equilibrium is named after John Nash, who introduced this
concept (Nash, 1950). There are two Nash equilibria in Game 1: (1) Animal 1 plays H while
Animal 2 plays D, (2) Animal 1 plays D while Animal 2 plays H. For brevity, we denote
these two Nash equilibria by (H,D) and (D,H), respectively.

Mixed strategy In Game 1 the two Nash equilibria yield different payoffs. It is therefore
difficult to predict which of these will be played. While there are other games with multiple
Nash equilibria, such as Coordination games (Cooper et al., 1990), there are also games which
have no Nash equilibria if each player k has to select a unique strategy sk from the finite set
of actions S, as for example the Rock-Scissors-Paper game. The game of choosing sides is
an example of a coordination game.2 Assume two drivers approach each other on a narrow
road, and both have to swerve in order to avoid a head-on collision. If both choose the same
swerving strategy, Left or Right, they will manage to pass each other, otherwise they will
collide. In the payoff matrix depicted in Table 1.3, a successful passing and a collision are
represented by payoffs of 10 and 0, respectively. The Rock-Scissors-Paper game is usually
played between two players, in which the players simultaneously and independently, chooses
one of the three strategies Rock, Scissors or Paper. The game has the rule “Rock crushes
Scissors”, “Scissors cuts Paper” and “Paper covers Rock”. If both players choose the same
strategy, the game is a tie. In the payoff matrix shown in Table 1.4, the outcomes of winning,
losing and tying are represented by payoffs of 1, −1 and 0, respectively. From this payoff

Left Right
Left 10 0
Right 0 10

Table 1.3: The payoff matrix for the game of choosing sides

Rock Scissors Paper
Rock 0 1 −1
Scissors −1 0 1
Paper 1 −1 0

Table 1.4: The payoff matrix for the Rock-Scissors-Paper game

matrix one can see that none of the entries of the Rock-Scissors-Paper game corresponds
to a Nash equilibrium. However, if player 2 would randomize over its actions by playing
each with probability 1

3 , then the expected payoff to player 1 would be 0 for each of the
actions Rock, Scissors and Paper. This means that each of these actions would be a best

2The game of choosing sides is a coordination game, because the two players’ goal is to coordinate on the
same strategy.
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reply to this particular randomization by player 2. That is how we arrive at the concept of
a mixed strategy, which applies when players are allowed to randomize over their actions. A
mixed strategy for a player is simply a probability distribution over the set of all possible
strategies for this player. So, each player k ∈ {1, ...,m} playing a mixed strategy assigns
a probability pk(l) ≥ 0 to each of its possible strategies l ∈ S, where

n∑
l=1

pk(l) = 1. We call
pk = (pk(1), . . . ,pk(n)) a mixed strategy for player k. To distinguish the definition of a mixed
strategy from the concept of strategy introduced earlier, we call every l ∈ S a pure strategy.
Note that a pure strategy is a trivial case of a mixed strategy. In Game 1, S = {H,D} is the
set of two pure strategies, and (pk(H),1− pk(H)) is a mixed strategy for player k ∈ {1,2}
playing H with probability pk(H) ∈ [0,1] and D with probability 1−pk(H).

If players use mixed strategies, they do so to maximize their expected payoffs. In Game 1,
assuming that Animal 2 plays the mixed strategy (p2(H), 1−p2(H)), Animal 1 would expect
the payoff

wH = p2(H)a11 + (1−p2(H))a12

if it plays H, and
wD = p2(H)a21 + (1−p2(H))a22

if it plays D, where A = (aij) denotes the payoff matrix in Table 1.2, and aij denotes its
entry at the i-th row and the j-th column (i, j ∈ {1,2}). Animal 1’s expected payoff wH

(or wD) is linear in Animal 2’s probability distribution (p2(H), 1− p2(H)) over the set of
strategies S = {H,D} and the situation is the same from Animal 2’s point of view. In short
we can say that the payoffs to players are linear on the other player’s strategy space.

Mixed-strategy Nash equilibrium Let us continue with Game 1. If wH is greater than
wD, Animal 1 should play H; if wH is smaller than wD, Animal 1 should play D. In either
case, Animal 1 should play a pure strategy as the best reply to Animal 2’s strategy (p2(H),
1−p2(H)). Therefore, when seeking for a mixed-strategy Nash equilibrium for this particular
game, we are looking for a pair of strategies for which the expected payoffs should satisfy

wH = wD,

i.e.,
p2(H) ·0 + (1−p2(H)) · 56 = p2(H) · 16 + (1−p2(H)) · 12 .

This equation is satisfied for p2(H) = 2
3 . Since the game is symmetric, the situation is the

same from Animal 2’s point of view. Thus, the pair ((2
3 ,

1
3),(2

3 ,
1
3)) is the unique mixed-

strategy Nash equilibrium in Game 1, while the two Nash equilibria (H,D) and (D,H), can
be referred to as the pure-strategy Nash equilibria. In his seminal paper, John Nash proved
that a mixed-strategy Nash equilibrium exists in any m-person game in which all players
have finitely many pure actions (Nash, 1950).

Interpretation of the mixed-strategy Nash equilibrium When we talk about a
mixed-strategy Nash equilibrium we are referring to a Nash equilibrium where at least one
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CHAPTER 1. INTRODUCTION

player is playing a mixed strategy. Having derived the mixed-strategy Nash equilibrium for
Game 1, it is useful to think of its interpretation. If Game 1 is played only once, the mixed
strategy means that an animal plays H or D with a certain probability.

Another interpretation of the mixed-strategy applies when a game is repeated many
times: The mixed strategy then indicates how many times from the total number of repeti-
tions each strategy is supposed to be played. Suppose Game 1 is played repeatedly between
Animal 1 and Animal 2, where in each repetition both animals play (2

3 ,
1
3) according to the

mixed-strategy Nash equilibrium. Then, on average each animal will actually choose H 2
3 of

the time and D 1
3 of the time. On average each animal would get 5

18 , while in each of the
pure strategy Nash equilibria one of them would get less.

Especially in biological applications of game theory, we are often focusing on populations
of individuals, which have fixed strategies that they cannot change. Then, the pure actions
are often interpreted as different types of individuals and a mixed strategy as a population
distribution over these types. In such problems, we are often interested in equilibrium dis-
tributions over the types in the population. The part of game theory investigating such
problems is called Evolutionary Game Theory and we will introduce its basics below.

1.2 Basics of evolutionary game theory

One of the first and most influential works which made a formal connection between game
theory and biology was written by J. Maynard Smith and G. R. Price, who provided con-
siderable insights on behavioral strategies in animal conflicts (Maynard Smith and Price,
1973) and established the domain of Evolutionary Game Theory. Evolutionary game theory
applies game-theoretical analysis to study evolution, where games are often played within a
population.

Before we proceed to a population version of evolutionary games, let’s recall Game 1 and
give more thoughts about the payoffs: Suppose that in Game 1 food as a payoff transforms
into nutrients, and, therefore, the animal that obtains a larger piece of food will become
more fit (assuming both animals process nutrients equally effectively). Bearing this in mind,
let us introduce Game 2.

Game 2 Consider a population composed of many animals. Any two of these animals may
engage in a pairwise interaction as described in Game 1. Here the individuals do not make
explicit decisions, i.e., they do not ask themselves “How do I obtain a piece of food, do I
go and fight for it or shall I share with the other?” We rather assume that each animal is
hardwired to play one particular strategy throughout its entire life. We now interpret the
strategies H and D as different types (such as phenotypes or genotypes). The only way how
the population frequencies of these types can evolve over time is via reproduction, where
the types H and D are passed onto the offspring. In this game we relate reproduction to
interactions of two individuals (i.e., one as a row player and the other a column player).
While these interactions directly lead to payoffs determining how fit the row player is, we
further assume a fitter individual tends to have a higher rate of reproduction (where its

6



offspring is assumed to be of its type). Hence over time a fitter type will likely produce more
offspring, causing the frequency of its type in the population to increase.

Game 2 is an example of a population game. We will now introduce the population games
in a more formal way.

Population game Suppose m individuals of n distinct types (where m is much greater
than n, i.e., m� n) participate in a game. The n types are distributed in the population
as3 x = (x1,x2, ...,xn) ∈ Rn, where xi ≥ 0 is the proportion or frequency of type i for each
i ∈ {1, ...,n}, and where

n∑
i=1

xi = 1. The elements of this game, i.e., players, strategies and
payoffs, require different interpretations:

(i) A player can be an individual from the population, e.g., player k ∈ {1,2, ...,m}; players
of the same type i are usually represented by their proportion xi, while an entire
population is usually represented by its type distribution x.4

(ii) Payoffs, termed fitnesses, have a biological meaning. Fitness translates into reproduct-
ive success (as described in Game 2) such as the number of offspring or the rate of
reproduction (Godfrey Smith, 2009; Zietsch et al., 2014). For a population, its fitness
is the expected payoff when it plays against itself. Here the underlying assumption is
that for each individual in the population its reproductive success depends on a ran-
dom interaction with another individual of the same population. For a particular type
from a population, its fitness is the expected payoff it receives when playing against
an arbitrary type from the population. Within evolutionary game theory, the payoff
matrix is often called the fitness matrix.

Population games generally describe situations in which players of distinct types interact
and these interactions will determine for each type its success over time, i.e., its ability to
persist in the population. The types receiving higher fitness are more successful. But will
these types be successful over a long period of time or will they be beaten by another type
at some point? This leads to the notion of the Evolutionarily Stable Strategy (ESS), which
defines a stable population distribution that would persist once prevalent. The concept of
Evolutionarily Stable Strategy (ESS) was introduced by Maynard Smith and Price (1973).
We introduce this concept more formally.

Evolutionarily Stable Strategy An ESS is a strategy that, when adopted by an entire
population, is immune against invasion by a small number of mutants, who come from the
same entire population but use a different strategy. This implies that (an average member
of) the mutants should have a lower fitness than (an average member of) the non-mutant

3In this thesis we write the population distribution, e.g., x, as a row vector.
4Population models consider proportions as players, assuming populations are well mixed. Population

models date back to the 19th century, e.g., Richards (1959), and in the past years these models have been used
in evolutionary game theory (Maynard Smith and Price, 1973). Population models do not track information
of each individual, but that of an average individual.
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population. Since fitness translates into reproductive success, its lower fitness would cause
the mutant population to shrink over time and die out.

To formulate ESS, let us consider a population game where n types are distributed ac-
cording to a population distribution x and where A is the fitness matrix. If in this population
x a small proportion µ > 0 is replaced by mutants that are distributed as x̂ (represented as
a row vector over the same n types), then the new population distribution will be given by

xµx̂ = (1−µ)x+µx̂.

Interpreting the population distributions as strategies, this means that x is an ESS if for any
small µ > 0 and any mutant x̂, strategy x always yields a strictly higher fitness against the
strategy xµx̂ than the mutant strategy x̂ does, i.e.,

xAx>µx̂ > x̂Ax>µx̂ .

This can be rewritten as

(1−µ)(xAx>− x̂Ax>) +µ(xAx̂>− x̂Ax̂>) > 0.

Therefore, x is an ESS if and only if the following conditions are both satisfied:

(i) xAx> ≥ x̂Ax> for all x̂;

(ii) if x̂ 6= x and xAx> = x̂Ax>, then xAx̂> > x̂Ax̂>.

According to (i), x should be a best reply to itself, implying that (x,x) is a Nash equi-
librium. According to (ii), if a different strategy x̂ is also a best reply to x, then x should
perform strictly better against x̂ than x̂ does against itself. This condition prevents the pop-
ulation strategy from drifting away from x, and we consider this a condition for evolutionary
stability. It is well possible to have a game where (x,x) is a Nash equilibrium, while x is not
an ESS because the second condition is violated. While each game always has at least one
(possibly mixed-strategy) Nash equilibrium (Nash, 1950), some symmetric games may have
no ESS, while others may have more than one (Maynard Smith, 1974).

Let’s now re-examine Game 2. Assume the population is distributed as x= (xH ,1−xH)
where xH denotes the proportion of the type H in the population. Recall that this game
has two pure-strategy Nash equilibria: (H,D) and (D,H), and one mixed-strategy Nash
equilibrium where both players choose H with probability 2

3 .
The fact that H is not a best reply to itself and D is not a best reply to itself, indicates

that a population consisting of only H-individuals would be invaded by a small number of
D mutants, and vice versa. Thus, neither pure strategy of the population (or population
strategy) x = (1,0) nor x = (0,1) is an ESS. It remains to be analyzed whether or not
x= (2

3 ,
1
3) is an ESS.

We observe that, for any strategy x̂ = (x̂H ,1− x̂H), where x̂H is the proportion of type
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H, when playing against x= (2
3 ,

1
3), the payoff is always 5/18:

x̂Ax> = (x̂H ,1− x̂H)
0 5

6
1
6

1
2

2
3
1
3


= (x̂H ,1− x̂H)

 5
18
5
18


= 5

18 ,

Because x̂Ax> = xAx> for any x̂, we have to examine the second condition for x= (2
3 ,

1
3) to

be an ESS, i.e. we have to show that xAx̂> > x̂Ax̂> for all x̂ 6= x. This follows from

xAx̂> =
(2

3 ,
1
3

)0 5
6

1
6

1
2

 x̂H

1− x̂H


= 13

18 −
2
3 x̂H ,

and

x̂Ax̂> = (x̂H ,1− x̂H)
0 5

6
1
6

1
2

 x̂H

1− x̂H


=−1

2 x̂
2
H + 1

2 .

Therefore,

xAx̂>− x̂Ax̂> = 13
18 −

2
3 x̂H + 1

2 x̂
2
H −

1
2

= 1
18(3x̂H −2)2,

and hence xAx̂> > x̂Ax̂> for all x̂H 6= 2
3 , implying that x= (2

3 ,
1
3) is an ESS of Game 2.

While the second condition of the ESS definition relates to the dynamic stability of
the population, it does not contain any specification of an actual dynamic process. In the
following section we will therefore address the evolutionary game dynamics.

1.3 Evolutionary game dynamics

Evolutionary dynamics are very helpful in understanding biological processes. For example,
Pfeiffer et al. (2001) did a pioneering work which used game-theoretical approaches in bio-
chemistry. They analyzed two different strategies, respiration and fermentation, in ATP-
producing pathways through a game-theoretical model, and they gave insights into why
many micro-organisms may rely on fermentation even under aerobic conditions. Dingli et al.
(2009) studied interactions between different types of cancer cells and stromal cells in the
bone in multiple myeloma. Their dynamical model showed that, targeting the interactions
between the tumor and the stromal cells so that those stromal cells can effectively outcom-
pete the tumor, is a promising approach, while traditionally the cure of myeloma is targeting
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CHAPTER 1. INTRODUCTION

directly on the cancer cells. Outside biology there are other scientific fields that make use
of evolutionary dynamics. For example, in multiagent systems5 decision making may be
modeled and evaluated by evolutionary dynamics (Parsons and Wooldridge, 2002).

Before we move to standard forms of evolutionary game dynamics, we will introduce the
basics of dynamical systems and stability analysis.

Dynamical systems

Dynamical systems are used to mathematically describe the time evolution of a process
under study, taking all the relevant variables, their interactions and inter-dependencies into
account. In the literature, e.g. Olsder (1997), there are many different system classes and
representations in use; here we will restrict ourselves to some of the simplest ones that are
yet rich enough and sufficiently powerful for the purposes of this thesis.

For dynamics taking place in continuous time, we focus on systems characterized by a
system of first-order ordinary differential equations (ODEs):

ẋ= f(x). (1.1)

The time set Γ involved, is an interval (with non-empty interior) in R. We typically choose
it to be Γ = [0,∞) which enables us to consider systems starting from some initial state at
time t = 0, for which (among other things) we can study what happens when time goes to
infinity. At each time instant t ∈ Γ, the state vector x(t) = (x1(t),x2(t), . . . ,xn(t)) is a point
in the state space (also called the phase space) X ⊆ Rn. Without going into full details,
this space X is assumed to be suitably selected: to be connected and to have a non-empty
interior, and such that solutions of the system of ODEs starting in X do not leave X. The
dynamical map f : X → Rn which defines the system is required to be sufficiently smooth
for the system of ODEs to have a unique local solution for every initial point x(0) ∈X.6

A state trajectory is defined as the collection of points visited by a solution of the system
of ODEs (1.1), starting at some initial point x0. It has the form ζ(x0) = {x(t) ∈X |x(0) =
x0, t ∈ Γ}, for a choice of initial state x0 ∈X. An equilibrium point x∗ ∈X of the dynamical
system (1.1) is a point which satisfies f(x∗) = 0; but to avoid confusion with game-theoretic
equilibria we will rather call this a steady point. Note that steady points can be identified with
state trajectories consisting of a single point (i.e., “singleton trajectories”), because solutions
to the ODE were assumed to be locally unique. For steady points and state trajectories of

5In a multiagent system, agents are autonomous entities placed within an environment. These agents
perceive through sensors and act upon their environment through actuators, towards achieving some given
goal (Bloembergen, 2015).

6Because in this set-up f is a function of x alone, it only depends on time implicitly (i.e., through x(t));
then the system is either called autonomous or time-invariant, depending on what is common in the specific
field of research. It implies that if a solution reaches a certain state, from there on it proceeds in one and
the same way regardless of its history and of the time at which that state was reached. This allows one to
visualize the system dynamics by plotting non-intersecting state trajectories in the state space (phase space).
Generalizations of this set-up allow f to depend also on time t, or on player strategies (c.q. control inputs)
u, or both. Other extensions involve the incorporation of time-delays or stochastic terms in the equation.
We will not go into this here.
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dynamical systems, many different concepts of stability exist (Olsder, 1997). In this thesis
we focus on the most common ones only.

A steady point x∗ is called stable, if for every open neighborhood U of x∗ in X there exists
another open neighborhood V of x∗ in X such that for all x0 ∈ V the state trajectory ζ(x0)
is entirely contained in U . A steady point x∗ is called asymptotically stable if in addition all
solutions x(t) starting in such V converge to x∗ for t tending to infinity. If a steady point
is stable but not asymptotically stable, it is called neutrally stable. If it is not stable, it is
called unstable.

For a state trajectory ζ(x0), one can introduce stability concepts in a similar way, by
considering neighborhoods of trajectories. If a state trajectory corresponds to a periodic
solution x(t) of the dynamical system, one speaks of a cycle. By extension, a state trajectory
(e.g., a steady point, a cycle, or any other trajectory) is called stable if all trajectories
starting in a sufficiently small neighborhood of ζ(x0) remain close to ζ(x0) according to
some appropriate distance measure. And, it is called asymptotically stable if in addition
these trajectories all converge to ζ(x0) as time goes to infinity. Other useful stability concepts
in Bronshtein et al. (2015) can be more restrictive, e.g., by requiring convergence to occur
uniformly over time, but we will not consider them in this thesis.

An asymptotically stable steady point (state trajectory) of a dynamical system (1.1) is
also called an attractor. For an unstable steady point (state trajectory), one speaks of a
repeller (also known as repellor, see for example Akin (2010); Osipenko (2007); Arrowsmith
and Place (1992)) if it turns into an attractor when time is reversed. In that case there exists
a neighborhood U (of the steady point c.q. state trajectory) such that for all initial states
in U except for the steady point (points on the state trajectory), the resulting trajectory
leaves U at some moment in time. Finally, a steady point x∗ in this thesis is called a saddle
point if it is unstable and every neighborhood of x∗ contains a point x0 6= x∗ for which the
trajectory converges to x∗ when time goes to infinity.

If the state space is the entire Euclidean space X = Rn and f : x 7→ xM is a linear map
with an n×n real matrix M , we speak of a linear dynamical system. For such systems, the
eigenvalue and eigenspace structure of M is well-known to fully determine the nature of the
steady point at the origin, x∗ = 0. Asymptotic stability holds, and x∗ = 0 is an attractor,
if and only if all eigenvalues of M are in the open left half of the complex plane (i.e., in
{z ∈ C |Re(z)< 0}). Stability holds if and only if all eigenvalues of M are in the closed left
half of the complex plane while those which are on the imaginary axis (if any) have Jordan
blocks of size 1×1 only (Olsder, 1997). The steady point x∗ = 0 is a repeller if and only if
all eigenvalues of M are in the open right half of the complex plane.

A non-linear dynamical system is usually approximated by linear equations (lineariza-
tion): Suppose the smooth dynamical system (1.1) is non-linear, let the Jacobian matrix
of (1.1) be an n×n matrix J(x) = (Jij) where

Jij = ∂fi
∂xj

, for i, j ∈ {1, ...,n}.

Suppose x∗ is a steady point of the dynamical system (1.1). We denote by J(x∗) = (J∗ij)
the Jacobian matrix of (1.1) evaluated at x∗. Linearizing the dynamical system (1.1) at x∗,
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CHAPTER 1. INTRODUCTION

using the first-order Taylor approximation and disregarding the errors of this approximation
(Kline, 1990), we get the approximation:

ẋ1 ≈ J∗11x1 +J∗12x2 + · · ·+J∗1nxn,

ẋ2 ≈ J∗21x1 +J∗22x2 + · · ·+J∗2nxn,
...

ẋn ≈ J∗n1x1 +J∗n2x2 + · · ·+J∗nnxn,

i.e.,
ẋ≈ J(x∗)x>, for x ∈ Rn. (1.2)

When all eigenvalues of J(x∗) have non-zero real parts, the non-linear system (1.1), close
to the steady point x∗, is similar and behaves in the same way as the linear system (1.2)
(for which we are able to find solutions). If all eigenvalues of J(x∗) have real parts less
than zero, then the steady point x∗ is asymptotically stable. If some eigenvalues of J(x∗)
have positive real parts while the others have negative real parts, then the steady point x∗

is unstable. If at least one eigenvalue of J(x∗) is purely imaginary, one needs to consider
non-linear terms of the Taylor series of f(x) (1.1), which we will not go into here.

The game dynamics

Depending on the actual problem, different kinds of evolutionary dynamics may be appro-
priate. In this thesis we only use the replicator dynamics and the Lotka-Volterra dynamics.
Traditionally, the former dynamics describe interactions within one population consisting of
different types while the latter dynamics focus on interactions between multiple populations.

Replicator dynamics The replicator dynamics were introduced by Taylor and Jonker
(1978). Suppose there is one population consisting of n types, and the type distribution
of this population is denoted by x = (x1, ...,xn) and

n∑
i=1

xi = 1. Let fi(x) denote the fitness

of type i ∈ {1, ...,n} and f̄(x) =
n∑
i=1

xifi(x) the average fitness for any type. The replicator

dynamics describe that the per capita growth rate of type i at any time7 is proportional to
the difference between fi(x) and f̄(x)

ẋi = xi(fi(x)− f̄(x)), for all i= 1,2, ...,n. (1.3)

This is the general form of the replicator dynamics. If we assume players are engaging in
the population game defined by an n×n fitness matrix A, then fi(x) = eiAx

> (where ei is
the i-th row of an n×n identity matrix). We can write the replicator dynamics as

ẋi = xi(eiAx>−xAx>), for i= 1,2, ...,n. (1.4)

As discussed earlier, when the time derivative in (1.4) is zero, we are at a steady point
x∗, which can either be stable or unstable. But how does this dynamic stability relate to the

7Where clear from the context, we will suppress the dependence on time t in the equations to follow.
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concept of evolutionary stability, initially introduced as a measure which we can calculate
directly from the fitness matrix A? It can be shown that the two concepts do not always
overlap (Hofbauer and Sigmund (1998); Cressman (2003); Hofbauer and Sigmund (2003)).
If the steady points are dynamically stable, then they are Nash equilibria, e.g., in Game 2
the mixed (population) strategy (2

3 ,
1
3) is a stable steady point (let’s write x∗ = (2

3 ,
1
3)) of

the corresponding replicator dynamics (1.4), and (x∗,x∗) should be a Nash equilibrium of
Game 2 as well. However, the converse does not always hold. There are Nash equilibria which
do not correspond to stable steady points. For example, the coordination game described in
Table 1.3 has one mixed-strategy Nash equilibrium (1

2 ,
1
2), which is no stable steady point

of the replicator dynamics given by (1.4) (i.e., neither neutrally stable nor asymptotically
stable), and the game dynamics (given by (1.4) starting close to the mixed-strategy Nash
equilibrium) will converge to one of the two pure-strategy Nash equilibria.

Regarding evolutionary stability, we can state that ESSs are asymptotically stable (or
attractors) but the converse is not always true. There are dynamical attractors which are
not ESSs. We provide a well-examined game by Zeeman (1980); Bomze (1983); Hofbauer
and Sigmund (1998) with the following fitness matrix

0 6 −4
−3 0 5
−1 3 0

 . (1.5)

The state trajectories of (1.4) with fitness matrix (1.5) are shown in the unit simplex in
Figure 1.1. There are two attractors, one is at the center (1

3 ,
1
3 ,

1
3) and the other one is at

the point (1,0,0) (the full red circles). Other steady points include one repeller (0,1,0) (the
open circle) and three saddle points (0,0,1), (4

5 ,0,
1
5), (0, 5

8 ,
3
8) (the full black circles). We

can calculate that (1,0,0) is an ESS by using the first condition for examining evolutionary
stability. However, the strategy (1

3 ,
1
3 ,

1
3) can be invaded by (1,0,0), and this implies that

(1
3 ,

1
3 ,

1
3) is not evolutionary stable. Alternatively, we can rule out (1

3 ,
1
3 ,

1
3) as an ESS by

using the Bishop-Cannings Theorem8 (Bishop and Cannings, 1978; Maynard Smith, 1982):
If (1,0,0) is an ESS in game 1.5, then (1

3 ,
1
3 ,

1
3) cannot be an ESS of this game.

Figure 1.1: Trajectories of the game with an attractor not coinciding with an ESS, depicted
in the simplex. The vertices correspond to populations consisting of just one type.

8The Bishop-Cannings Theorem forbids the occurrence of interior (of the simplex) and boundary ESSs
at the same time.
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Lotka-Volterra dynamics For our purposes, we will confine ourselves to the Lotka-
Volterra predator-prey model. This model is commonly used for studying the dynamics
between two interacting populations: One is referred to as the predator and another one as
the prey. The Lotka-Volterra model that we will introduce here is also sometimes referred to
as the predator-prey model, while other predator-prey models exist and not all Lotka-Volterra
systems of equations describe predator-prey dynamics.

The Lotka-Volterra model was proposed separately by Lotka (1926) and Volterra (1927).
Formally, let y1 ≥ 0 and y2 ≥ 0 be the prey and predator population sizes, respectively.

The per capita growth rates of the two population sizes over time are given as

ẏ1 = y1(α−βy2)
ẏ2 = y2(δy1−γ),

(1.6)

where α (the growth rate of the prey, in the absence of the predator), β (the predation rate),
δ (the rate at which the predator is consuming the prey), and γ (the mortality rate of the
predators) are positive constants. In the absence of prey, the predator population would
decay exponentially to zero due to starvation; but it increases with the prey population. In
the absence of predators, the prey population would grow exponentially; but its growth rate
decreases linearly as a function of the predator population.

Even though the Lotka-Volterra predator-prey dynamics were introduced earlier than
evolutionary game theory was introduced, the dynamical system may fit well to describe
evolutionary dynamics generated from predator-prey games. In such games, the predator and
the prey populations interact with each other as two players using two strategies, respectively,
and through such interactions players influence each other’s chances of survival (as fitnesses).
For instance, a scarcity of prey will cause the predator population to decrease; as a result, the
prey population will increase. This, in turn, will cause the predator population to increase,
eventually leading to a decline in the prey, etc.

The model (1.6) can be extended to describe the dynamics of n interacting populations.
The n interacting populations can be also referred to as n types. Formally, let ri be the
intrinsic growth/decay rate of type i ∈ {1,2, ...,n}, let each entry of aij ∈R denote the effect
of type j ∈ {1,2, ...,n} on type i, i.e., type j is enhancing, indifferent to, or inhibiting the
growth of type i if aij is positive, zero, or negative, respectively. We arrive at the generalized
predator-prey model

ẏi = yi(ri+
n∑
j=1

aijyj), for i= 1,2, ...,n. (1.7)

We consider A = (aij) being the payoff (or the fitness) matrix, since the effect of type j on
type i can be interpreted as a kind of payoff to an individual of type i that results from
interacting with an individual of type j.

We could calculate the steady points of (1.7), which are useful to analyze the dynamic
stability of the predator-prey system for n types. It is possible to convert the replicator
dynamics for n types into the Lotka-Volterra model with n− 1 types, and vice versa. We
provide the proof of this equivalence in Appendix A (page 147). Our calculation is based on
Hofbauer (1981).
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Other evolutionary dynamics such as adaptive dynamics and best-response dynamics
exist and are very interesting to study, however as this thesis focuses mainly on the two
dynamics introduced in this section, we will refer the interested reader to Hofbauer and
Sigmund (1998) for further study.

1.4 Spatial games

In this section we focus on a more recent topic in evolutionary game theory. We introduce
the extension of the standard game dynamics (i.e., equations (1.4) and (1.7) in the previous
section), which takes into account spatial interactions (of players) in games.

The standard game dynamics hypothesize that the population is well mixed (Bomze,
1983; Malcai et al., 2002; Hauert et al., 2002; Traulsen et al., 2005; Lee et al., 2005; Hofbauer
et al., 2009; Hauert, 2010). By a well-mixed population we mean that every individual is
equally likely to interact with any other individual in the population. This hypothesis may
also imply that an individual either interacts with every other individual or with an average
individual which uses the population strategy. In a situation deviating from the well-mixed
population hypothesis, interactions depend on space (or a spatial structure) which may
not allow one playing against any other individual from the same population. Such space
(or spatial structure) dependent interactions are what we call spatial interactions. We will
call games that take spatial interactions into account spatial games and standard games
nonspatial games.

Spatial games are often used in defining real biological interactions (Boyd and Richerson,
2002; Santos and Pacheco, 2005; Roca et al., 2009; You et al., 2017). In general, there are two
approaches to apply spatial models. On the one hand, spatial game dynamics take the form
of diffusion processes framed as partial differential equations. The term “diffusion process”
may refer to a dispersal process of players, such as migration. On the other hand, interactions
can take place over some spatial structures such as grids or graphs. This is usually done
via an agent-based approach, where every individual player is treated as a single agent.
Dynamics of these agent-based models require specified game rules, which define how each
individual player perceives its own surrounding, what information it obtains, and how this
information translates into strategy imitation or reproductive success during a play. While
it is beyond this thesis to explain all possible spatial games, let us here focus on some of
their key representatives.

Games with diffusion processes

In this approach, game dynamics in space are framed as partial differential equations (Ferriere
and Michod, 1995; Wakano et al., 2009; Helbing, 2009). Generally, players are diffusing
(i.e., dispersing) randomly in a continuous space and the dynamics are obtained by adding
diffusion terms to ordinary differential equations.9 For example, the diffusion equations

9Although in more complex spatial games the players’ decisions may be included in the diffusion terms.
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regarding the general replicator dynamics (1.3) in a 2-dimensional space are given by

ẋi = diO
2xi+xi(fi(x)− f̄(x)) for i= 1,2, ...,n (1.8)

where xi denotes the density of type i at a point of a two-dimensional space at time t, di
specifies the diffusion rate for type i and O2xi denotes the diffusion rate of xi in the directions
of the space coordinates (χ,ξ), i.e., O2xi = ∂2xi

∂χ2 + ∂2xi
∂ξ2 . In this case, the fitness of type i does

not merely depend on how type i is playing against an arbitrary type from the population,
but also depends on its diffusion rate in the two (or more) directions in space. The space
effect incorporated by diffusion equations may change the game dynamics (1.3). Examples
include a game of Prisoner’s Dilemma with diffusion terms (Wakano and Hauert, 2011)
and a Rock-Scissors-Paper game where all three strategies can coexist when diffusion terms
are included (Wang et al., 2010). The diffusion equations may be approximated by agent-
based simulation of spatial games taking place on certain spatial structures, e.g., Avelino
et al. (2014) showed that for a Rock-Scissors-Paper game, dynamics generated by a spatially
explicit game over a grid discretizing the continuous two-dimensional space are very close to
those of the diffusion equations for the same game.

Games on specific spatial structures

The well-mixed population hypothesis likely does not apply in many real-life situations. For
example, geographical or physical constraints may limit the interactions between players
(Axelrod et al., 2002; Onnela et al., 2011; Singh and Marx, 2013). Also, social group forma-
tion may challenge the idea of interacting with everyone equally (Ashforth and Mael, 1989;
Backstrom et al., 2006; Tajfel, 2010).

Hence, it is adequate to come up with certain discrete-space or continuous-space struc-
tures (of the field where games take place) which define who is allowed to interact with
whom. Discrete-space games are usually played over a grid composed of identical cells, such
as identical squares or hexagons, or vertices in a graph. The individuals are then residing
in these cells or vertices and in the simplest case only adjacent individuals are allowed to
interact with each other. In a continuous space, individuals can reside at any coordinate of
the game field. Two individuals can interact with each other if their coordinates are within
a certain distance (Cardillo et al., 2012).

As opposed to nonspatial games, in spatial games the interactions are usually between
players and their neighbors. In studies of social behaviors, player payoffs depend on their
local interactions and the players may modify their strategies by mimicking their neighbors’
strategies in order to get higher payoffs. The corresponding evolutionary outcomes may be
very different from those generated by nonspatial game dynamics.

Next, we list some examples of spatial games with local interactions. We first introduce
games on grids and (regular) graphs. As a result of structural regularity, spatial games
on grids and (regular) graphs enjoy remarkable popularity due to mathematical simplicity
and/or simulation efficiency. Examples of evolutionary games on grids include the spatial
variants of Prisoner’s Dilemma (Nowak and May, 1992; Lindgren and Nordahl, 1994; Hutson
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and Vickers, 1995; Grim, 1996; Nakamaru et al., 1997; Szabó and Tőke, 1998; Brauchli et al.,
1999; Cohen et al., 2001; Schweitzer et al., 2002), the Snowdrift game10 and the Hawk-Dove
game (Killingback and Doebeli, 1996; Hauert and Doebeli, 2004; Sysi-Aho et al., 2005).
We are going to introduce a few of these examples. Nowak and May (1992) introduced a
spatial version of the standard Prisoner’s Dilemma game, in which a player can choose either
Cooperation or Defection. They considered the payoff matrix :


Cooperation Defection

Cooperation 1 0
Defection q z

,

with 1 < q < 2 and 0 < z � 1. While the nonspatial dynamics of the Prisoner’s Dillema
tend to favor the defectors (i.e., full defection of the population is an ESS for the nonspatial
game), Nowak and May (1992) demonstrated that local interactions can lead to maintaining
cooperation. The authors observed formation of clusters of cooperators on a 2-dimensional
grid, which gave cooperators enough payoff to survive when surrounded by some defectors.
However, a spatial structure may not always have a positive influence on cooperation. Hauert
and Doebeli (2004) studied the following Snowdrift game on a grid:


Cooperation Defection

Cooperation 1 2− q
Defection q 0

,

with 1 < q < 2. The authors observed that the promotion of cooperators was only seen for
low q (≈ 1), whereas for medium q (≈ 1.5) and high q (≈ 2) cooperation did not prevail.
However, based on their results of a spatial Hawk-Dove game on a grid, Killingback and
Doebeli (1996) reported that a spatial structure is beneficial to cooperation. The outcomes
of the spatial Snowdrift game and the spatial Hawk-Dove game seemed to be contradicting
each other. Roca et al. (2009) found out that this was due to different updating rules: Both
Nowak and May (1992) and Killingback and Doebeli (1996) applied the imitation rule (i.e.,
a player always mimics the strategy of a neighbor with the highest payoff), and Hauert and
Doebeli (2004) used the pairwise interaction rule (i.e., a player mimics a randomly selected
neighbor’s strategy with a probability that depends on their payoff difference). Roca et al.
(2009) concluded that the updating rule is crucial to spatial games. Similarly, Ohtsuki et al.
(2007) suggested that the evolutionary results on graphs may differ from the results obtained
by standard game dynamics (e.g., the replicator dynamics) to an extent depending on the
updating rule. Ohtsuki et al. (2007) examined classical games (e.g. Prisoner’s Dilemma,
Snowdrift game or Hawk-Dove game) on a regular graph and examined different updating
rules, like the birth-death rule (i.e., the probability of a randomly selected player to reproduce
is proportional to its payoff and the offspring replaces its randomly chosen neighbor), the

10Snowdrift is another name for the Hawk-Dove game. Different names stem from different research areas,
while Snowdrift game describes a situation mostly arising in social behavior study: Two car drivers are stuck
in a snowdrift. If both refuse to shovel the snow, none of them will get home. If one of them shoves while
the other refuses, both will get home. However, the shoveling player pays a cost. If both shovel the snow,
both will get home and share the cost (of shoveling).
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death-birth rule (i.e., a random player is chosen to die and the chances of its neighbors to
occupy the empty space is proportional to their payoffs). Updating rules may also differ
in terms of time. Experiments with simultaneous updating (i.e., strategies of all players
are updated simultaneously) and sequential updating (i.e., players update their strategies
one after another following a certain sequence) may lead to strikingly different evolutionary
outcomes. For instance, Nowak and May (1992) claimed that for a Prisoner’s Dilemma the
cooperation is improved with simultaneous updates in space, whereas Huberman and Glance
(1993) showed that for exactly the same game, sequential updates hinder cooperation and
drives all players to defect.

These mentioned spatial game-theoretical models have served well to study the evolution
of social behaviors. In these models a player’s switch from one strategy to another strategy is
sometimes considered as death of the player with the original strategy and birth of a player
with the new strategy. In this context, the updating rule is interpreted as reproduction.
More advanced models, however, introduced empty cells for hosting offspring.

Usually, empty cells are created when individuals die or move (Kerr et al., 2002; Reichen-
bach et al., 2007; Simpson et al., 2007; Avelino et al., 2014). The grids with or without empty
cells, however, may still be limited by further assumptions on the structure of the field and
by definition of the neighborhood. One of the common assumptions is that every player has
a fixed neighborhood structure.

A continuous space attracts interest of recent research as it allows for a more flexible
structure, where players can reside at any point of the game field. For example, players
can migrate to any coordinate of the field within a given migration distance and direction
(Cardillo et al., 2012), players can reproduce and place their offspring at any random co-
ordinate within the continuous space (Gallaher and Anderson, 2013; Gallaher et al., 2017).
In Chapter 3 of this thesis we will discuss differences between the dynamics produced by
continuous-space and discrete-space models.

1.5 An overview of this thesis

As mentioned earlier, the main topic of this thesis is spatial and nonspatial evolutionary
game theory. In Chapters 2, 4, and 5 we show its application in studying specific biolo-
gical problems, while in Chapter 3 we focus on comparing the dynamics of discrete-space
and continuous-space games. Below we list motivation, problem statement as well as our
methodology for each chapter.

Chapter 2 introduces a nonspatial game describing summer-season interactions of the
predatory mites (Acari: Phytoseiidae, the predator) and the fruit-tree red spider mites
(Acari: Tetranychidae, the prey), inspired by studies on the use of the predatory mites
for biological pest control of the fruit-tree red spider mites. Apart from interacting, the
predatory mites and the fruit-tree red spider mites may also avoid each other by moving
into refuges, giving up reproduction, and entering a state of physiological rest, the so-called
diapause. The player decisions of “joining” vs. “opting out” the game, may impact their
chances of survival. We expand a simple Lotka-Volterra two-dimensional ordinary differential
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equation system for describing the population densities of both species with time-varying
decisions, which are maximized with respect to the player fitness functions. We combine
analytical and numerical methods for finding these time-varying optimal decisions for the
predator and prey to answer the following question:

Research question 1: “Can a straightforward game-theoretical extension of a predator-
prey Lotka-Volterra model capture summer-season interactions between the predatory
mites (Acari: Phytoseiidae) and the fruit-tree red spider mites (Acari: Tetranychidae)
with a sufficient level of realism?”

We discuss whether the optimal decisions that we find correspond to those observed in labor-
atory and field experiments. We subsequently discuss another model, which was proposed in
Staňková et al. (2013a) and includes energy for predator and prey energy dynamics, but it
is a more complex approach to address research question 1, because the differential equation
system involved is four-dimensional.

When nonspatial games do not capture the critical elements of biological interactions
with a sufficient level of realism, then spatial models are needed. In Chapter 3 we focus
on a comparison of the dynamics of the two types of spatial games: The discrete-space and
the continuous-space game. Usually one of these two spatially explicit models is chosen for
studying specific problems, while the reason of choosing such model is usually not discussed.
A thorough understanding of the difference between the two types of spatial models is needed
in order to decide in which situations these two types of models can be interchanged and
in which situations a particular one of the two should be chosen. Moreover, we need to
understand how their predictions compare to their nonspatial variants. As a first step to
such understanding, in this chapter we ask ourselves the following question:

Research question 2: To what extent do the eco-evolutionary dynamics of the continuous-
space model, discrete-space model, and replicator dynamics differ from each other and
why?

We introduce discrete-space and continuous-space games as spatial extensions of the well-
known replicator dynamics. We use agent-based simulations to track eco-evolutionary (pop-
ulation and frequency) dynamics. We examine the conditions under which the population
and frequency dynamics of the two types of spatial games differ and why. In particular,
we observe that the two types of spatial models produce strikingly different population and
frequency dynamics when the space is nearly saturated. Moreover, the discrete-space model
shows much higher variance in predictions per run when compared to the continuous-space
model. The results of this chapter may help researchers who need a suggestion on selecting
a proper spatial model for the problem of their interest.

Chapter 4 demonstrates an application of discrete-space games in studying mechanisms
that lead to microbial coexistence. Huge numbers of microbes coexist in almost all habitats
of our planet. Not only their high numbers, but also their very high species diversity raise an
obvious question: How is the diversity maintained? Understanding how microbes interact
with each other is important for maintaining the homeostasis within the human body. Within
this chapter, we address the following question:
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Research question 3: “When modeling microbial interaction by means of a discrete-space
model, what impact do the so-called interaction matrix (determining whether or not
a microbial individual of a particular species kills its neighbor by toxin secretion), the
neighborhood size and the interaction rules have on the rate of coexistence for different
types of players?”

To do this we implement a number of scenarios to experiment with different interaction rules
and different neighborhood sizes. For each of these simulation experiments, we examine the
types that coexist in the population at the end of the runs. These models are inspired
by interaction matrices derived in several laboratory experiments on pairwise competition
between different types of microbes. Microbial interactions are usually local, thus a spatial
game lends itself better to study such interaction mechanisms. The game is played over a
discrete-space field composed of identical cells, as bacteria are assumed to be of a more or
less identical morphology. Other motivations for choosing this particular spatial model when
describing microbial interactions are discussed in this chapter as well. We use agent-based
simulations to mimic several scenarios of microbial interactions and analyze whether or not
the interacting strains coexist. We compare predictions of models on a square grid with
those on a hexagonal grid to understand the relation between the coexistence rate and the
neighborhood size.

In Chapter 5 we model tumorigenesis in a metastatic castrate-resistant prostate cancer
(mCRPC) as a continuous-space game. Understanding how tumors grow and how various
types of cancer cells interact in space is essential for designing a successful cancer treat-
ment. In our continuous-space game, we analyze the interaction of three different types of
cancer cells. Based on state of the art cancer biology for these types, 22 potential fitness
matrices are examined. Moreover, we examine the impact of three radii that influence the
eco-evolutionary (population and frequency) dynamics. These radii are (1) the frequency-
dependence radius within which cells interact with each other, (ii) the density-dependence
radius within which cells experience limits to population growth, and (iii) the dispersal radius
which determines the region in which daughter cells are being put in the field. Therefore,
we can formulate the main question to be answered in this chapter as follows:

Research question 4: “What is the impact of the choice of fitness matrix on the observed
processes and in how far do these processes depend on the three radii mentioned
before?”

In our model, each individual cancer cells represents a player, that can be of three different
types (differing in the way they react to testosterone). Together, these players make up
a population. Pairwise interactions between cells lead to cell proliferation according to a
specific fitness matrix. We use agent-based simulations to track the evolution of the spatial
(population and frequency) dynamics. We examine the spatial (population and frequency)
dynamics at stable equilibria and compare them to the corresponding nonspatial ESSs. We
investigate the reasons behind differences in the predictions of the nonspatial and spatial
models and search conditions under which their predictions coincide.
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Finally, Chapter 6 concludes this thesis by summarizing the results derived and by
discussing future research directions.

1.6 Reading guidelines

Here we conclude Chapter 1: Introduction in which we explained the main concepts
of standard (evolutionary) game theory and summarized some recent extensions relevant
for this thesis. Figure 1.2 presents an overview of how the chapters of this thesis relate
to each other. Chapters 2 to 5 can be read more or less independently of the others.
Chapter 2: Joining vs. opting out a predator-prey game addresses the nonspatial
predator-prey game between the predatory mites (Acari: Phytoseiidae) and the fruit-tree red
spider mites (Acari: Tetranychidae). Then, Chapter 3: Discrete-space vs. continuous-
space games discusses the differences between discrete-space and continuous-space games
and serves as an introduction to discrete-space and continuous-space evolutionary games
in Chapters 4 and 5 respectively. Chapter 4: A game-theoretical approach to mi-
crobial coexistence studies modeling assumptions that influence conclusions on microbial
coexistence and Chapter 5: Spatial and nonspatial games of tumorigenesis studies a
modeling approach to tumorigenesis in prostate cancer. Finally, Chapter 6: Conclusions
summarizes the results of this thesis and discusses possible directions for future research.

Figure 1.2: Schematic representation of the guidelines for the readers. Arrows represent the
connections between chapters.

21



CHAPTER 1. INTRODUCTION

22



CHAPTER2
Joining vs. opting out a predator-prey

game

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 The predator-prey game between the predatory mites and the
fruit-tree red spider mites . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Observations regarding the system of the predatory mites and the
fruit-tree red spider mites . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Hamilton-Jacobi-Bellman approach to find optimal strategies for
the predator and the prey . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Another way to model the problem . . . . . . . . . . . . . . . . 39

2.4 Conclusion & discussion . . . . . . . . . . . . . . . . . . . . . . . 41

23



CHAPTER 2. JOINING VS. OPTING OUT A PREDATOR-PREY GAME

Abstract

Apart from interacting, predator and prey may also avoid each other by moving into refuges
where they may lack food, yet survive by switching to an energy-saving physiological state,
the so-called diapause. Standard Lotka-Volterra dynamics of predator-prey interactions do
not include this option. In this chapter, we model the game of “joining-vs-opting-out”
by extending the Lotka-Volterra model to describe summer-season interactions in the real
predator-prey system of the predatory mites (Acari: Phytoseiidae) and the fruit-tree red
spider mites (Acari: Tetranychidae; the prey mites). In this population game, the predator
and the prey populations are the players and the time-varying frequencies of those “joining”
and “opting out” the game are their strategies, where both populations maximize their
chances of survival within the season. The model includes only two differential equations
describing the population densities of the predator and the prey, which depend on their
strategies. The goal is to see whether this relatively simple model can depict the interactions
of interest with a sufficient level of realism. The optimal strategies are found for general
parameter values using the Hamilton-Jacobi-Bellman approach. While this analysis cannot
be completed due its complexity, the optimal strategies which we obtain from this analytical
approach certainly do not match those observed in laboratory and field studies. This suggests
that the proposed model is too simplistic to capture the essentials of the interactions at hand.
Subsequently, we include numerical computations for specific parameter values to find the
optimal strategies in the specific instances of the game, which support our conclusions that
the optimal strategies in this game do not coincide with those observed in the real system.
Therefore, we discuss another model, which includes energy dynamics of mean predator and
prey individuals and hence transforms the problem into an energy-allocation type of game,
which leads to optimal strategies matching empirical observations. Therefore, we conclude
that including energy dynamics into the predator-prey game is a parsimonious manner for
describing the system of interest with a sufficient level of realism while keeping the model
simple.

Keywords: Diapause, Mites, Game-theoretical models, Predator-prey interactions, Non-
spatial games

Adapted from: Staňková Kateřina, Abate Alessandro, Sabelis Maurice W., Buša Ján, You Li, 2013.
Joining or opting out of a Lotka-Volterra game between predators and prey: Does the best strategy depend
on modeling energy lost and gained? Interface focus, 3(6), paper nr. 20130034.
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2.1 Introduction

The predator-prey model, proposed independently by Lotka (1926) and Volterra (1927),
assumes that predator and prey are continuously exposed to each other and therefore interact
all the time. In reality, however, predator and prey also have an option to avoid interacting
with each other. They may then move into refuges that are free of their enemies, but
may lack food, and where survival may demand a switch to an energy-saving physiological
state, such as the so-called diapause (Danks, 1987; Veerman, 1992). Diapause has always
been thought to emerge solely to overcome the winter season and to emerge in response to
abiotic factors signaling the onset of the winter season, but it may also emerge in response
to food scarcity and/or the risk of predation, as it is believed to happen in the system
of the so-called predatory mites (Acari: Phytoseiidae) and the fruit-tree red spider mites
(Acari: Tetranychidae; prey mites) (Tauber et al., 1986; Danks, 1987; Veerman, 1992, 1994,
1985; Kroon et al., 2004, 2005, 2008). Although empirical proof of these diapause-governing
principles is limited, they may well hold more generally for ecological interactions in many
other systems.

The work of this chapter was inspired by studies on the use of the predatory mites
(Acari: Phytoseiidae) for biological pest control of the fruit-tree red spider mites (Acari:
Tetranychidae) that feed on and damage leaves of apple trees (Helle and Sabelis, 1985).
This system is seasonal: Each year is divided into two parts, the summer and the winter
seasons. The summer season lasting for about five months alternates with the winter season,
lasting for about seven months (Helle and Sabelis, 1985). Winters are usually harsh and
as such endanger the survival of the prey mites (Helle and Sabelis, 1985) and (even more
so) that of the predatory mites (Fitzgerald and Solomon, 1991). The predatory mites and
the fruit-tree red spider mites can consume food only during the summer season. While for
both the predatory mites and the fruit-tree red spider mites the number of those entering
a summer season is a fraction of those entering the previous winter season, in the case of
the prey individuals all those which are not in diapause when the summer season ends will
die, while those in diapause can survive. Therefore, the decision to enter diapause promotes
the survival of fruit-tree red spider mites during winter. As without natural enemies, this
diapause emerges in response to abiotic factors signaling the onset of the winter season,
such as sufficient night length or low temperatures, it can be relatively easily induced in
a greenhouse (Veerman, 1992, 1994). However, using another but similar species of spider
mites, the two-spotted spider mite (Acari: Tetranychidae), it was shown that the decision
to enter diapause also depends on abundance of its predators during summer (Kroon et al.,
2004, 2005, 2008). From the point of view of the prey mite, going into diapause in response
to predation risks makes intuitive sense as it faces a grim future with increasing predator
densities and thus an increased risk of death: it may then do better by giving up reproduction,
moving away from leaves to twigs and branches, and entering diapause. Then, if many prey
mites would make the same decision, this could create a negative feedback on the population
of the predatory mites, so that at some point in time the prey mites would profit from the
decreased predation risk by terminating their diapause and returning to the leaves. However,
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such a behavior in predators is observed only very rarely as predators usually do not enter
the diapause in the summer season at all.

An early diapause raises the demands on the energy storage (fat resources) of the fruit-
tree red spider mites, as these resources need to cover a longer period without food before
terminating diapause at the beginning of the next summer season – the energy level at
diapause termination will determine the reproductive capacity of the prey mite (Kroon et al.,
2005). Thus, the decision to enter diapause within a summer season will depend on the
current internal energy storage of the prey mite, as this will have far-reaching consequences
for winter survival and reproduction in the summer season of the next year. Given the
negative feedback between the predator and the prey in this system and the complexity of
the decisions that prey mites are faced with, it is virtually impossible to intuitively pinpoint
the most likely strategies that will emerge from natural selection. However, it is believed
that the diapause of the fruit-tree red spider mites within one summer season is irreversible:
Once they enter the diapause, they are very likely to stay there, mainly because the diapause
is a very complicated and costly process for the prey mites. All observations suggest that
while the predatory mites enter a winter season being active, the prey mites are likely to be
all in diapause (Helle and Sabelis, 1985; Tauber et al., 1986; Danks, 1987; Veerman, 1992,
1994, 1985; Kroon et al., 2004, 2005, 2008).

While it is theoretically possible for the predatory mites to flexibly enter and leave dia-
pause during the summer season, the laboratory and field studies suggest that this option
is very rare and that the predatory mites are likely to stay active the entire summer season
and enter the diapause only when the winter season starts (Danks, 1987).

In this chapter, we will analyze a game-theoretical model that emerges as a plausible ex-
tension of the Lotka-Volterra two-species competition model, while keeping the ODE system
two-dimensional. This game-theoretical model allows for entering diapause for both predator
and prey. The fitness functions for both species reflect the finite horizon of the interactions.
Adopting an optimal control approach (Melikyan, 1998), we will find the optimal strategies
for the predator and prey, which are the strategies maximizing their fitness function for any
choice of the other player, and can be therefore thought of as best responses for the predator
and prey in the game. Our goal is to see what behaviors for the predator and the prey are
optimal with respect to fitness functions that we predefine; we do not analyze whether these
strategies are resistant against invasion by a rare mutant here. Subsequently, we will discuss
the applicability of the model for describing the interactions in the system of interest.

The remainder of this chapter is structured as follows. In Section 2.2 we formulate the
interactions between the predatory mites and the prey mites as a simple game between the
two populations and analyze its optimal strategies. In Section 2.3 we discuss another model
which could describe the interaction of interest in a more realistic manner, while being still
analytically tractable. Finally, in Section 2.4 we discuss the results of this chapter and
propose directions for future research.
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2.2 The predator-prey game between the predatory
mites and the fruit-tree red spider mites

2.2.1 Observations regarding the system of the predatory mites
and the fruit-tree red spider mites

During the winter season the predatory mites (Acari: Phytoseiidae) and the prey mites
(Acari: Tetranychidae) do not interact with each other and their densities are expected to
decrease monotonically. Therefore, in this chapter we will focus on the summer interactions
when the predatory mites and the fruit-tree red spider mites interact and consume food,
which is essential for their reproduction. Moreover, they can enter diapause to protect
themselves from the environment, predation, or lack of food.

We will formulate the interactions between the predatory mites and the fruit-tree red
spider mites during one summer season as a differential game over a finite horizon [0,Γ]
with Γ > 0 being the length of the summer season, with populations of the two different
species of mites being the players. The two options, “joining” and “opting out” the game,
define mixed strategies for the two populations at each time t ∈ [0,Γ]. More precisely, the
strategies of the predatory mites and the fruit-tree red spider mites are their portions joining
the game at time t, denoted by uP (t) and uR(t), respectively.11 Both players maximize their
fitness expressing their chances of survival until the next summer season, which we will define
mathematically in the next section. Seeking their optimal strategies, maximize their fitness
functions for any choice of the other player, is a key element of the game analysis.

2.2.2 The model

This model is a straightforward extension of the classical Lotka-Volterra model enriched by
the strategies. For the notation used in this model, see Table 2.1. The game dynamics are

parameter interpretation
Γ length of the summer season
R(t) fruit-tree red spider mite (prey) population density at time t ∈ [0,Γ]
P (t) predatory mite population density at time t ∈ [0,Γ]
uR(t) the strategy of the prey population at time t ∈ [0,Γ]
uP (t) the strategy of the predatory population at time t ∈ [0,Γ]
βR death rate factor for the prey population, due to predation
αP death rate factor for the predatory population
αR feeding rate factor of the prey mites, on apple-tree leaves
βP feeding rate factor of the predatory mites, on the prey mites

Table 2.1: Notation of the game-theoretical model

11Alternatively, we could think of a strategy of a mean individual at time t being aggregated into the
strategy of the corresponding population.
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described as follows:
dP
dt =−αP uP P +βPu

PuRP R, (2.1)
dR
dt = αRu

RR−βRuPuRP R. (2.2)

Here αP > 0 is the death rate factor for the predators, αR > 0 is the feeding rate factor for
the prey, βP > 0 is the population increase rate factor for the predators based on feeding and
βR > 0 is the population decrease rate factor for the prey due to predation. The predator and
prey decision variables uP ∈ [0,1] and uR ∈ [0,1], respectively, are the proportion (frequency)
of those being active, as opposed to being in diapause, the state of physiological rest. In
(2.1)–(2.2), it is expected that the predator and the prey can die only when they are active,
assuming that death rate of diapaused individuals is negligible on the population level.
Therefore, if all predatory mites are in diapause, their number does not change. If they are
active, they need to feed on active prey mites in order to increase their number. Herbivory
can take place only if the fruit-tree red spider mites are active while the prey mites in
diapause stay alive. Therefore, if all prey mites are in diapause, their number does not
change. If some of the predatory mites are active, the difference between the first and the
second term in (2.2) indicates whether their number will decrease or increase. We assume
that 0< αP ≤ βP , 0< βR ≤ αR, and 1≤ P (0),R(0).

The predators choose an optimal strategy uP,∗(t) ∈ [0,1] for t ∈ [0,Γ], so that for any
choice of uR(·)

uP,∗ = arg sup
uP (·)

P (Γ), (2.3)

while the optimal strategy uR,∗(t) ∈ [0,1] for the prey mites satisfies

uR,∗ = arg sup
uR(·)

∫ Γ

0
(1−uR(t))R(t)d t (2.4)

for any choice of uP (·). The optimal strategies for the predator and prey coincide with their
best response to any strategy of the other player with respect to its fitness function.

The arguments of (2.3) and (2.4) are the fitness functions for the predatory mites and
the prey mites, respectively. For the predatory mites, their fitness is defined as the number
of individuals that are alive at the end of the summer season (for preparing survival through
the upcoming winter season). For the prey mites, their fitness is defined as the number of
individuals which enter the diapause at any given time through the summer season, and the
longer in diapause they are, the higher chance of survival they have. Note that the fitness
function (2.4) is a fitness function for the entire prey population and therefore does not take
into account an individual behavior of a single mite which can become active once it has
entered diapause.

Thoughts on stability of the system (2.1)–(2.2)

We linearize the game dynamics (2.1)–(2.2) for fixed values of uP and uR and analyze the
linear stability of the steady points of such a system: The equations (2.1) and (2.2) have
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two pairs of steady points when uP and uR are nonzero: {P ∗,1 = R∗,1 = 0} and {P ∗,2 =
αR

βRuP
,R∗,2 = αP

βP uR
}. The Jacobian of the system (2.1)–(2.2) is

J =

 −αP uP +βP u
P uRR βP u

P uRP

−βRuP uRR αRu
R−βRuP uRP

 .
Eigenvalues of J at the steady point {P ∗,1 =R∗,1 = 0} are αRuR and −αP uP . Eigenvalues of
J at the steady point {P ∗,2 = αR

βRuP
,R∗,2 = αP

βP uR
} are i

√
αRuRαP uP and −i

√
αRuRαP uP .

If both uP ≡ 0 and uR ≡ 0, the system dynamics are neutrally stable everywhere, as the
right-hand sides of equations (2.1) and (2.2) both stay zero. If uP is nonzero and uR is
zero, then the steady points are all points of the form (P ∗ = 0, R∗ arbitrary); these are all
stable. If uP is zero and uR is nonzero, then the steady points are all points of the form
(P ∗ arbitrary, R∗ = 0); these are all unstable.

2.2.3 Hamilton-Jacobi-Bellman approach to find optimal strategies
for the predator and the prey

Firstly, we formulate the problem of the predator and the problem of the prey via Hamilton-
Jacobi-Bellman equations (Bellman, 1957). Starting from the end of the season and pro-
ceeding backwards in time, we will then study the best reply of the prey to any choice of
the predator and the best reply of the prey to any choice of the prey. This way, we will
compute optimal behaviors for both of them. While this way we consider a priori that this
game is a Nash game, we will see that its results coincide with a Stackelberg game in which
the predator as a leader can impose its decision on the prey.

As usual, the analysis is carried out in reverse time, i.e., proceeding from the end of the
summer season towards its beginning, we will study the optimal behavior of the predator
mites and the prey mites, taking advantage of the principle of optimality (Başar and Olsder,
1995; Melikyan, 1994; Metz et al., 2016).

Characteristic system for the prey

Let us introduce a reverse time τ = Γ− t (for which it follows that f ′ def= df
dτ = −ḟ) and a

value function for the prey

VR(t) =
∫ Γ

Γ−t
(1−uR)Rdt′.

With bP
def= ∂VR

∂P , bR
def= ∂VR

∂R , the Hamilton-Jacobi-Bellman equation (Bellman, 1957) has the
form

HR = ∂VR
∂t

+ max
uR

(
bP
(
−αP uP P +βPu

PuRP R
)

+ bR
(
αRu

RR−βRuPuRP R
)

+ (1−uR)R
)
. (2.5)
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The characteristic system (in reverse time) is:

P ′ = αP u
P P −βPuPuRP R, (2.6)

R′ =−αRuRR+βRu
PuRP R, (2.7)

b′P = bP
(
−αP uP +βPu

PuRR
)
− bRβRuPuRR, (2.8)

b′R = bP βPu
PuRP + bR

(
αRu

R−βRuPuRP
)

+ 1−uR, (2.9)

with transversal conditions bP (0) = 0, bR(0) = 0, and assuming P (0)> 0, R(0)> 0.

At the end of the game, the optimal strategy for the prey is to be in diapause,
i.e., uR,∗(0) = 0

The optimal decision can then be derived as in Melikyan (1998, 1994); Melikyan and Olsder
(2010): If SR is nonzero, then

uR,∗ = HeavSR =
 1, if SR > 0

0, if SR < 0

with

SR =R
(
βP bP u

P P + bR
(
αR−βRuP P

)
−1

)
. (2.10)

Note that the sign of SR does not depend on R, as R is always positive if the prey is alive.
As SR(0) =−R(0)< 0, uR,∗ equals 0 for some interval τ ∈ [0, τR1 ). Note that this may imply
that if the season is very short, uR = 0 is optimal for the prey for the entire season. While
the fact that uR,∗(0) = 0 is independent of the behavior of the predator, the (reverse) time
when the strategy of the prey should change may depend on the predator strategy uP .

This can be seen from the following characteristic system, obtained by substituting uR = 0
into (2.6)–(2.9) and with initial conditions bP (0) = bR(0) = 0, where P (0),R(0)≥ 1 :

P ′ = αP u
P P, (2.11)

R′ = 0, (2.12)
b′P =−αP bP uP , (2.13)
b′R = 1. (2.14)

The solution of (2.11)–(2.14) is

bP (τ) = 0, bR(τ) = τ, P (τ) = P (0)e
αP

τ∫
0
uP (ψ)dψ

, R(τ) =R(0).

Substituting this solution into (2.10) leads to:

SR(τ) =R(0)
(
τ αR− τ βRuP (τ)P (0)e

τ∫
0
αP u

P (ψ)dψ
−1

)
.

Note that when this expression for SR reaches 0 there will be either a discrete switch to
uR,∗ = 1 or there can be a mixed-strategy uR,∗.
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Remark 1. (Switching manifold starting at R(0) = 0) Note that in the above analysis we
assume R(0) > 0. This is because if we allowed the condition R(0) = 0, all prey would be
extinct and therefore it would not make sense to look on optimal strategy uR,∗. However, in
theory there could be a switching manifold starting at R(0) = 0, as SR(0) would then be equal
to zero. In such a situation, prey would either start in diapause or uR ∈ (0,1). The switching
mainfold starting at R(0) = 0 would then have the following parametrization:

SR(0) = 0,
SR =R

(
βP bP u

P P + bR
(
αR−βRuP P

)
−1

)
= 0,

S ′R =R
(
βP bP

(duP
dτ

)
P +αR−βRuPP − bRβR

(duP
dτ

)
P − bRβR (uP )2αP P

)
= 0.

Trivially, these two equations are zero for R = 0 (i.e., there exists a switching manifold for
R = 0). However, they are also zero for

bP =
−αR2 + 2αRβRuP P −βR2(uP )2P 2 +βR

(
duP
dτ

)
P +βR (uP )2αP P

βP P
((

duP
dτ

)
αR+βR (uP )3αP P

) , (2.15)

bR =−
−duP

dτ −u
PαR+βR (uP )2P(

duP
dτ

)
αR+βR

(
uP
)3
PαP

. (2.16)

Note that this solution makes sense only if uP 6= 0. We know that bP (0) = bR(0) = 0 and
P follows the dynamics in (2.6). From the second time derivative of SR we can obtain an
expression for uR along this switching manifold. However, we need to know the expression for
uP (in case that uP 6= 0) in order to be able to get an explicit expression for this intermediate
value of uR (as its expression contains uP and its time derivatives). There is a switching
manifold present in the dynamics, but only if uP ∈ (0,1]. The expression for uR,∗ alongside
this manifold is then

uR,∗ = ψ1
ψ2
,

with

ψ1 = 2βR
duP
dτ

2
PαR−βR2 duP

dτ P 2(uP )3αP + d2uP

dτ2 αR
2− d2uP

dτ2 αRβRu
P P

− d2uP

dτ2 βR (uP )2αP P + 5βR (uP )2αP P
duP
dτ αR+βR

2(uP )5αP
2P 2 +βR (uP )3αP

2P
duP
dτ

+βR (uP )4αP
2PαR+ 3βR

duP
dτ

2
αP u

P P,

ψ2 = βR (uP )2βP PR
(duP

dτ αR+uP αP
duP
dτ + (uP )2αP αR

)
.

Note that ψ2 = 0 if uP = 0 which means that as long as uP,∗ is zero, uR,∗ is zero as well.
Therefore, we can proceed to the analysis of the characteristic system for the predator and
only if uP ∈ (0,1].

Let us now investigate the optimal behavior of the predator at the end of the season,
taking into account that uR,∗ = 0 at the end of the season as derived earlier.
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Characteristic system for the predator

Adopting a similar analysis as the one for the prey, we can proceed as follows: We again
consider reverse time τ = Γ− t (with f ′

def= df
dτ =−ḟ) and a value function for the predator

VP (t) =
∫ Γ

Γ−t
(−αP uP P +βPu

PuRP R)dt′.

With aP
def= ∂VP

∂P , aR
def= ∂VR

∂R , the HJB equation has the following form:

HP = ∂VP
∂t

+ max
uP

(
aP
(
−αP uP P +βPu

PuRP R
)

+aR
(
αRu

RR−βRuPuRP R
)
−αP uP P +βPu

PuRP R
)
. (2.17)

The characteristic system is:

P ′ = αP u
P P −βPuPuRP R, (2.18)

R′ =−αRuRR+βRu
PuRP R, (2.19)

a′P = aP
(
−αP uP +βPu

PuRR
)
−aRβRuPuRR−αP uP +βPu

PuRR, (2.20)

a′R = aP βPu
PuRP +aR

(
αRu

R−βRuPuRP
)

+βPu
PuRP, (2.21)

with initial conditions P (0), R(0) ≥ 1 and transversal conditions aP (0) = aR(0) = 0. The
optimal predator decision can be expressed as

uP = HeavSP

with

SP = aP
(
−αP P +βPu

RP R
)
−aRβRuRP R−αP P +βPu

RP R. (2.22)

Note that the sign of SP is independent of P, as P has to be positive for the predator to
be alive. From the initial and transversal conditions it follows that SP (0) = P (0)(−αP +
βPu

R(0)R(0)). As uR(0) = 0, SP (0) = −αP P (0) < 0. Therefore, uP (0) = 0. Moreover, we
see that while the best response of the prey is a function of the strategy of the predator, the
converse is not true. As we can see this phenomenon consistently throughout the analysis,
we can conclude that this game has a Stackelberg structure.

Remark 2. (Switching manifold starting at P (0) = 0) Note that in our system it is impossible
for P to reach value 0. If we allowed the condition P (0) = 0, then there would be a switching
manifold starting at P (0) = 0. Then depending on the initial value of R and value of uR(0),
the predator would either start in diapause or uP ∈ (0,1), which is a contradiction with
P (0) = 0, as then the predator is extinct. Theoretically, if we allow P (0) = 0, R(0) = 0, and
uR(0)∈ (0,1), then there might be a switching manifold for the predator starting at P (0) = 0,
alongside which uP ∈ (0,1), while the prey would act as described in Remark 1. In such a
case, if uP ∈ (0,1) at the beginning of the season, the switching manifold for the predator
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would have to satisfy the following conditions:

SP (0) = 0,
SP = ApSP = aP

(
−αP P +βPu

RP R
)
−aRβRuRP R−αP P +βPu

RP R = 0,

S ′P =−P R
(
βP
(
uR
)2
αR−βP

duR
dτ +aRβR

duR
dτ −aPβP

d

dτ
uR+aPβP

(
uR
)2
αR
)

= 0.

From equations SP = 0, S ′P = 0, one can compute that aP =−1 and aR = 0. As with aP (0) = 0
and dynamics (2.20) aP = −1 cannot be achieved, we can conclude that the intermediate
strategy and switching manifold starting at τ = 0 do not exist. This, however, implies, that
also the switching manifold discussed in Remark 1 does not exist.

In reverse time, as long as uR,∗ = 0, also uP,∗ = 0

Assuming that uP (τ) = uR(τ) = 0 on some interval [0, τx), and given that τx = min(τP1 , τR1 ),
where τP1 and τR1 are the times at which the predator and prey change the strategy from
uP = 0 to uP ∈ (0,1] and uR = 0 to uR ∈ (0,1] at the end of the season, respectively, we find
on this interval that

P ′ = 0, (2.23)
R′ = 0, (2.24)
a′P = 0, (2.25)
a′R = 0. (2.26)

Therefore, for τ ∈ [0, τx), P (τ) = P (0), R(τ) =R(0), aP = 0, aR = 0, and (from (2.22))

SP =−αP P (0).

This means that as long as uR = 0, uP = 0 as well. Moreover, SP < 0 also if uP = 0 and uR = 1.
Therefore, τP1 > τR1 , while we cannot exclude the option that τP1 and τR1 are arbitrarily close
to each other.

As long as uP = 0, the solution to the system (2.11)–(2.14) equals bP (τ) = 0, bR(τ) = 1,
P (τ) = P (0), R(τ) =R(0). Consequently, SR = τ αRR(0)−R(0).

This implies that SR = 0 if R(0)(τ αR− 1) = 0, i.e., the time when uR = 0 changes into
another strategy is equal to τR1 = 1

αR
(and is therefore independent of R and P ). Clearly,

P (τR1 ) = 0, bR(τR1 ) = 1, P (τR1 ) = P (0), and R(τR1 ) =R(0).
If uP = 0, while uR ∈ (0,1), the characteristic system for the predator becomes

P ′ = 0, (2.27)
R′ =−αRuRR, (2.28)
a′P = 0, (2.29)
a′R = aRαRu

R. (2.30)

The switching manifold of the predator will become SP = P (0)
(
− asRβRuR,sRs − αP +

βP u
R,sRs

)
, where Rs solves (2.28) and asR solves (2.30), given that uR = uR,s ∈ (0,1).
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In reverse time, the strategy uR,∗ = 0 switches to strategy uR,∗ = 1 while uP,∗

stays at 0

We can use the following relation, with {·, ·} denoting Jacobi brackets (Melikyan, 1998):
S ′R = {SR,hR}, S ′′R = {S ′R,hR}, with hR being the Hamiltonian of (2.5). Based on our
previous analysis, we assume that uP (τ) = 0 until some τP1 > 0. Then

SR =R(αR bR−1), (2.31)
S ′R = {SR,h}= αRR. (2.32)

In other words, as R 6= 0, S1
R : 0 =−bR+ 1

αR
is a switching manifold for the prey. Moreover,

if there is an intermediate strategy uR,∗ = uR,s ∈ (0,1), SR = 0 implies S ′R = 0 (Melikyan,
1998). Setting (2.31) and (2.32) to 0 leads to only the trivial solution R= 0. Therefore, there
is no singular strategy for the prey under the assumption that once uR 6= 0, uP is still equal
to zero.

Note that if uR,∗ switched from 0 to a value from (0,1) at τR1 , also co-states bP and
bR would go through a discrete switch, thanks to the form of the corresponding Hamilton-
Jacobi-Bellman equation. However, from the expression for S1

R it can be seen that such a
switch does not take place.

In reverse time, after uR,∗ switches to 1, uP,∗ switches to 1 as well

Let us now investigate the optimal behavior for the predator once uR,∗ = 1 if the predator
plays uP = 0. The characteristic system for the predator (2.18)–(2.21) becomes

P ′ = 0, (2.33)
R′ =−αRR, (2.34)
a′P = 0, (2.35)
a′R = αR aR, (2.36)

with initial conditions P (τR1 ) = P (0), R(τR1 ) = R(0), aP (τR1 ) = 0, aR(τR1 ) = 0. This implies
that aP (τ) = 0, aR(τ) = 0 also for τ > τR1 , P (τ) = P (0), R(τ) =R(0)e−αR (τ−τR1 ). Then

SP =−αP P (0) +βP P (0)R(0)e−αR
(
τ−τR1

)
,

which is equal to 0 at time τP1 =
(
τR1 −

ln
(

αP
βP R(0)

)
αR

)
. Note that if R(0) = 1 and αP = βP ,

then τP1 = τR1 , otherwise, depending on values of R(0), αP , and βP , the difference between
τP1 and τR1 might be arbitrarily small or very high.

In order to find the strategy for the predator uP,s ∈ (0,1), we have to solve the system of
characteristic equations (2.18)–(2.21) with uR = 1, uP = uP,s, leading to:

SP = (aP + 1)
(
−αP P +βP P R

)
−aRβRP R (2.37)

= P
(
(aP + 1)

(
−αP +βP R

)
−aRβRR

)
= 0,

S ′P = {SP ,h}= βP P R(−aP αR− αR) = 0. (2.38)
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These two expressions can be equal to zero only for aP =−1, aR = 0 (note that this outcome
coincides with the outcome found in Remark 2). As aP (τP1 ) = 0, this is clearly impossible.
The conclusion is that at time τP1 the predator switches to strategy uP = 1 immediately.

We still need to check whether uR,∗ changes to another value when uR,∗ = 1, uP,∗ = 0.
If uR = 1 and uP = 0, i.e., for time τ ∈ [τR1 , τP1 ), the system of characteristics for the prey
becomes

P ′ = 0, (2.39)
R′ =−αRR, (2.40)
b′P = 0, (2.41)
b′R = αR bR, (2.42)

with initial conditions P (τR1 ) = P (0), R(τR1 ) = R(0), bP (τR1 ) = 0, bR(τR1 ) = τR1 . Notice that
with uP = 0 the switching manifold can be expressed as

SR =R(αR bR−1).

As bR is increasing on [τR1 , τP1 ) and R is positive, the prey does not go into diapause from
uR = 1 if uP = 0. Solving (2.39)–(2.42) yields P (τ) = P (0), bP = 0, r = R(0)e−(τ−τR1 )αR ,

bR(τ) = τR1 e(τ−τR1 )αR .

If uR = 1, uP = 1, will they switch to another value?

Last but not least, the situation to be examined is when the prey is active and the predator
is active as well, i.e., when τ > τP1 . Behavior of the prey can again be investigated from
substituting uR = 1, uP = 1 into the characteristic system (2.6)–(2.9), (2.20)–(2.21):

P ′ = (αP −βP R)P, (2.43)
R′ = (−αR+βRP )R, (2.44)
a′P = aP

(
−αP +βP R

)
−aRβRR−αP +βP R,, (2.45)

a′R = aP βP P +aR
(
αR−βRP

)
+βP P, (2.46)

b′P = bP
(
−αP +βP R

)
− bRβRR, (2.47)

b′R = bP βP P + bR
(
αR−βRP

)
, (2.48)

with P (τP1 ) =P (0), R(τP1 ) =R(0)e−(τP1 −τR1 )αR , bP (τP1 ) = 0, bR(τP1 ) = τR1 e(τP1 −τR1 )αR , aP (τP1 ) =
0, bP (τP1 ) = 0.

Note also that with uP = 1, uR = 1 the switching manifolds SP , SR become:

SP = P
(
aP
(
−αP +βP R

)
−aRβRR−αP +βP R

)
, (2.49)

SR =R
(
bP βP P + bR

(
αR−βRP

)
−1

)
, (2.50)

and they are both positive. Solving (2.44)–(2.48) analytically is impossible, however for
different parameter values we could get different behaviors of the optimal strategies in reverse
time:
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parameter value
Γ 10 or 20
αP 0.05
βP 0.2
αR 0.25
βR 0.24

Table 2.2: Values of parameters for numerical computations; based on Sabelis (1991); Sabelis
and Janssen (1994)

a. As the prey is active, the predator stays active as well, if the decrease of SR is faster
than the decrease of SP . Then, in reverse time, the prey would enter diapause earlier
than the predator and the entire analysis could be repeated from the situation uP = 0,
uR = 0.

b. If at any moment the decrease of SR becomes slower than the decrease of SP , the
predator would enter diapause later than the prey.

When both the predator and the prey are in diapause, we can repeat the analysis carried out
so far. Here we have just discussed a partial solution of the problem, focusing on the few first
switches of the optimal strategies of the predator and the prey. However, from this analysis
it is clear that our model suggests that the predatory mites enter the winter in diapause,
which is a clear contradiction to experimental observations of the system. Moreover, it seems
that for different parameters a highly varying set of optimal strategies can be obtained.

The typical behavior of the optimal strategies for the predator and the prey follow the
pattern in Figure 2.1: The predator may opt out the game before the prey, and the predator
and the prey clearly react to each other’s strategies.

To show how versatile the optimal strategies can be, in the next section we will focus
on numerical calculations with parameters fixed to the values estimated from the laboratory
observations. In our analytical analysis we saw that while the best response of the prey is
a function of the strategy of the predator, the converse is not true. This shows us that the
game has a Stackelberg structure and that is why we assume this structure in the remainder
of the chapter.

Numerical case studies

Next, we focus on a numerical solution to the optimization problem defined in (2.3) and
(2.4), subject to (2.1)–(2.2), for a specific set of values, defined in Table 2.2. These values
are calculated based on data from Sabelis (1991); Sabelis and Janssen (1994).

The model of the intra-seasonal interaction between the predatory mites and the fruit-tree
red spider mites is implemented in Fortran.12

12Fortran was very efficient in the numerical computations for our specific problem (i.e., on the order of
seconds), while for example Matlab computed the optimal strategies less efficiently in the order of minutes.

36



Figure 2.1: The analytical predictions of the optimal strategies in the game-theoretical
model, assuming that they are bang-bang, obtained by solving the Hamilton-Jacobi-
Bellman’s equations for the predator and prey in reverse time. Strategies at the end of
the season (to the right of the dashed line): Either the switches between being active and
in diapause happen exactly at the same time for both the predator and the prey, but the
predator may also switch before the prey does. This would suggest that the predator reacts
to the behavior of the prey in reverse time, as opposed to the reaction in the real time, which
we would expect. While this observation may be counterintuitive at first glance, it follows
from the principle of optimality (Bellman, 1957; Melikyan, 1998). Strategies before the end
of the season (to the left of the dashed line): The strategies may be very versatile, which we
will investigate in Section 2.2.3.

The time interval [0,Γ] is discretized into ν subintervals. Moreover, in order to search the
optimal strategies uP and uR, the time interval [0,Γ] is discretized into ς subintervals (higher
ς increases the precision of the outcome, while ν has to be divisible by ς). We let the initial
estimates of the optimal strategies uP and uR be random, e.g., initially the optimal uP is a
vector consisting of ς random values from [0,1]. The ordinary differential system (2.1)–(2.2)
is discretized on ν subintervals using the 4th order Runge-Kutta method (with constant step
Γ/ς) and subsequently the fitness functions for the predator and the prey are approximated
using the trapezoidal rule with the time step Γ/ς. As we have shown that the game has a
Stackelberg structure with the predatory mites as a leader, the constraint optimization for
the prey mites was embedded into the constraint optimization of the predatory mites. We
have solved the problem via constrained optimization, combining a trust-region algorithm
with an active-set based method. Two cases differing in assumptions on the strategies uP

and uR were considered:

(a) The optimal uP and uR are assumed to be continuous, piecewise affine functions.

(b) The optimal uP and uR are allowed to have discontinuities in the internal points.
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We will call the optimal uP and uR in (a) and (b) the continuous strategies and discontinuous
strategies, respectively. Note that the optimal strategies in the discretized problem may differ
from the optimal strategies of the original problem, however we hope that the discretization
is fine enough to get close enough to the solutions of the original problem.

Results of the numerical case studies are shown in Table 2.3, where different parameters
for the approximation of the optimal results, obtained by discretized numerical techniques,
are listed. Table 2.3 includes the cases when the optimal uP and uR are continuous and
discontinuous, respectively, where Γ = 10 and Γ = 20, respectively. With the same values of
ν and ς (in continuous and discontinuous cases), higher P (Γ) indicates a better outcome for
the predator. In Table 2.3 we can see that the discontinuous strategies lead to higher P (Γ)
than the continuous ones.

The graphs comparing the different outcomes are shown in Figures 2.2-2.3.
The numerically calculated optimal strategies show multiple switches in both predator

and prey strategies. In none of the numerical studies that we performed the predator ended
the summer season active, often the predator goes into diapause earlier than the prey, which
is consistent with the analytical calculations (Figure 2.1).

When the numerically calculated optimal strategies are discontinuous (Figure 2.3), they
vary much more frequently between “joining” and “opting out” than in the case when the
optimal strategies are continuous (Figure 2.2). Neither the analytically calculated optimal
strategies nor the numerically calculated optimal strategies match empirical observations on
the diapause behavior of the predatory mites and the fruit-tree red spider mites.

Strategy type Γ ν ς P (Γ)
Continuous 10 100 50 1.2826
Continuous 10 100 100 1.2852
Discontinuous 10 100 50 1.3216
Discontinuous 10 100 100 1.6193
Continuous 20 200 100 3.9973
Continuous 20 200 200 4.2507
Discontinuous 20 200 100 4.2500
Discontinuous 20 200 200 4.3878

Table 2.3: Different parameters for the approximation of optimization

Based on the results reported in this section, we conclude that the simple game-theoretical
model for predator-prey interactions in the system of the predatory mites (Acari: Phyto-
seiidae) and the fruit-tree red spider mites (Acari: Tetranychidae), defined by (2.1)–(2.2),
does not describe the interactions within this predator-prey system with a sufficient level of
realism. Adopting both analytical and numerical methods and comparing the strategies they
predict qualitatively with experimental data, we conclude that a more complex model of the
interactions will be needed to describe these interactions with a sufficient level of realism.
In the next section, we will study a model that was proposed for such a purpose.
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Figure 2.2: Numerical outcomes of the game on interval [0,10] with continuous strategies:
ν = 100, ς = 50 (top) and ν = 100, ς = 100 (bottom). Here P (0) =R(0) = 1.

2.3 Another way to model the problem

Considering that energy level of mites depend on on their activities, another model including
their energy dynamics was examined in Staňková et al. (2013a). This model assumes that
the population change depends also on mean internal energy levels of the predator and the
prey and that energy levels increase/decrease depending on feeding as well as on intrinsic
energy consumption. While the model was first introduced and analyzed analytically in a
very general form, some of the parameters were later fixed, based on the data from Sabelis
and Overmeer (1987); Kroon et al. (2008). The remaining parameters, which are kept free
are listed in Table 2.4. The dynamics of this model are given by:

parameter interpretation
Γ length of the summer season
R(t) fruit-tree red spider mite (prey) population density at time t ∈ [0,Γ]
P (t) predatory mite population density at time t ∈ [0,Γ]
ER(t) internal energy of the prey at time t ∈ [0,Γ]
EP (t) internal energy of the predatory mite at time t ∈ [0,Γ]
uR(t) the strategy of the prey population at time t ∈ [0,Γ]
uP (t) the strategy of the predatory population at time t ∈ [0,Γ]

Table 2.4: Notation of the game-theoretical model with internal energy variables
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Figure 2.3: Numerical outcomes of the game on the interval [0,10] with discontinuous
strategies: ν = 100, ς = 50 (top) and ν = 100, ς = 100 (bottom). Here P (0) =R(0) = 1.

dEP
dt =− 1

250(1−uP )EP +ψuPuRR−ψuPEP , (2.51)

dER
dt =− 1

250(1−uR)ER+ψuR−ψuRER, (2.52)
dP
dt =− 1

20P + 1
5κu

PEPP, (2.53)
dR
dt =− 1

20R+ 1
5u

RERR− 1
5u

PuRPR. (2.54)

The variables ER and EP represent the energy levels of the average predatory and the
average prey individual, respectively, and parameters ψ and κ are kept free within the range
[0,1].

An optimal predator strategy uP,∗(t) ∈ [0,1] for t ∈ [0,Γ] satisfies

uP,∗ = arg sup
uP (·)

P (Γ). (2.55)

An optimal prey strategy uR,∗(t) ∈ [0,1] for t ∈ [0,Γ] satisfies

uR,∗ = arg sup
uR(·)

∫ Γ

0
(1−uR(t))ER(t)R(t)d t. (2.56)

Equations (2.55) and (2.56) are the fitness functions for the predatory mites and the fruit-
tree red spider mites, respectively. The fitness function for the predatory mites (2.55) is
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P (Γ) as in the previous model, reflecting the fact that all predatory individuals being alive
at the end of the summer season (independently whether they are active or in diapause)
have a chance to survive the winter. The fitness function for the prey mites (2.56) reflects
the fact that only the prey individuals that are in diapause at the end of the summer season
have a chance to survive the winter, while the longer in diapause they are and the more
internal energy they have, the higher chance of survival they have.

In Staňková et al. (2013a), the problem of finding optimal strategies of both populations
maximizing their fitness functions defined in (2.55) and (2.56), respectively, subject to the
ODE system (2.51)-(2.54), was solved analytically for all feasible parameter values for ψ and
κ (those assuring well-posssedness of the problem (2.51)-(2.56)) were found.

For all these feasible values of ψ and κ and depending on the length of the summer season
Γ, the optimal strategy for the predatory mites is to stay active during the entire summer
season, see Figure 2.4, while typically the prey which is all active at the beginning of the
summer season starts entering diapause from a certain point in a monotonically decreasing
fashion. Once all prey enters the diapause, it never comes back, i.e., its diapause process is
irreversible. The optimal strategy for the prey is sketched in Figure 2.5. While in this figure
the decrease in strategy is depicted as linear, in Staňková et al. (2013a,b) it was proven
that the decrease in the optimal strategy to 0 is either monotonically decreasing or abrupt
(then the optimal strategy is bang-bang (Olsder, 1997)). As the optimal strategy follows
the principle of optimality (Bellman, 1957), the length of the season defines which of the
strategy profiles from Figure 2.5 applies. Moreover, it was shown in Staňková et al. (2013b)

Figure 2.4: The optimal strategy for the predatory mites is to stay active during the entire
summer season. Here uP indicates the optimal strategy (active ratio) for the predatory mites
(uP (t) ∈ [0,1] for each t ∈ [0,Γ]). This figure is taken from Staňková et al. (2013a).

that for a higher initial number of the predatory mites, the model predicts that the prey
mites will start entering the diapause earlier, which matches the data. Therefore, we believe
that a more complex model which has a higher number of state variables, including energy
levels of a mean predator and prey individual, is needed to reflect the interactions in the
predator-prey system of interest with a higher level of realism.

2.4 Conclusion & discussion

The main conclusion of our analysis is that the very simple game-theoretical model we
proposed to describe the interactions between the predatory mites and the fruit-tree red
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Figure 2.5: If the initial number of predatory mites increases, the prey mites begin to enter
diapause earlier, but more gradually, balancing between having enough energy to survive the
diapause and escaping predation. The solid line represents the strategy of the prey when
facing less predators (i.e., smaller P (t)). The dashed line represents the strategy of the prey
when facing more predators (i.e., bigger P (t)). Here uR indicates the optimal strategy (active
ratio) for the prey (uR(t)∈ [0,1] for each t∈ [0,Γ]). This sketch is taken from Staňková et al.
(2013b).

spider mites produces strikingly different results than those the biologists observe.
As individuals in diapause cannot feed, the diapause should negatively influence their

internal energy levels. Therefore, the models proposed in Staňková et al. (2013a,b) including
additional state variables defined as energy storage for a mean predatory or prey mite, were
introduced.

While the predicted optimal strategies calculated for the energy-enhanced models corres-
pond to the laboratory and field observations very well – it is expected that the prey reacts
to the presence of the predator by changing the manner and speed of its diapause induction,
while the predatory mites have no real reason to enter diapause themselves, as there are no
external threats to them present in the system, the initial model generates very different
outcomes – the diapause of both the predatory mites and the fruit-tree red spider mites
seems to be reversible, and moreover, the predators seem to react to the behavior of the
prey to a larger extent than the prey reacts to the behavior of the predator (their frequent
switches are found in our solutions), which contradicts the field observations.

In most field observations the predators indeed stay active for the entire season. However,
in rare cases it might also happen that the predators enter and leave diapause during the
season, while the diapause induction in the prey is irreversible. This is due to the fact that
the diapause in predatory mites is much more flexible than that in the prey mites. In very
recent and yet unpublished case studies, it is observed that in the laboratory conditions it
is possible to achieve a situation when predatory mites enter diapause once the fruit-tree
red spider mites do, if the predatory mites are exposed to the prey’s odors sufficiently long.
Subsequently, much less likely but possibly, the prey might become active when the predators
are in diapause, followed by the predators becoming active as well. While repeatedly entering
diapause/active state is an outcome of our game-theoretical model, the way in which the
predator and the prey mites are predicted to enter the active/diapause state is too versatile
and differs from our empirical observations. We conclude that the models including energy
dynamics match the field and laboratory observations much better than the initial model
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that we proposed. The results in this chapter suggest that including energy dynamics is
essential to the predictions of our specific case of predator-prey models and coincides with
a common belief that including variables that describe the internal states of the interacting
species is necessary to describe nontrivial predator-prey systems with a sufficient level of
realism (McNamara and Houston, 1996; McNamara, 2001).

For all models we proposed so far we still have to find parameter domains for which the
optimal strategies of the predatory and the prey populations, derived in this chapter, are
resistant against invasion by mutant strategies. Under certain assumptions, such as that a
rare mutant either minimizes the fitness of the resident population or has a similar same
fitness function but with different characteristics, we should be able to find the parameter
domains ensuring evolutionary stability of the outcomes relatively easily. Ultimately, we
hope to explain multi-seasonal dynamics of the predatory mites and the fruit-tree red spider
mites.

To calculate the optimal strategies for the model introduced in this chapter, we adopted
an analytical approach with general parameter values first, followed by numerical calcula-
tions for their specific values. While the analytical calculations helped us to show that the
predictions of the model do not coincide with laboratory and field observations, it was im-
possible for us to solve the problem by analytical means only. Numerical calculations gave
us more understanding to the range of possible optimal strategies for the model, even for the
same set of parameter values. In the following chapters, we will therefore confine ourselves to
the numerical and simulation studies as the complexity of the problems which these chapters
are dealing with is increasingly higher.
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Abstract

In spatial games it is usually assumed that individuals interact in spatially explicit struc-
tures in discrete or continuous space. Discrete and continuous models may differ in their
assumptions on individuals’ behaviors such as reproduction and dispersal and hence may
lead to different frequency and population dynamics, even when describing the same bio-
logical problems. Typically, only discrete models or continuous models are selected when
spatial extensions of (often known) nonspatial games are made. A thorough understand-
ing of the difference between the two groups of spatial models is needed in order to decide
when these two types of models can be interchanged and when only one of the two should
be chosen. As a first step to such understanding, in this chapter we select one represent-
ative from each of the two groups of spatial models as a spatial extension of a nonspatial
game. In case studies with enhanced rock-scissors-paper games, we examine and compare
the dynamics of these two games and compare them with the replicator dynamics. If the
studied nonspatial game has an ESS, its discrete-space and continuous-space frequency vari-
ants have either an attracting point or an attracting cycle. But often, in scenarios with
different assumptions on individuals’ reproduction, dispersal and lifespan, we observe that
the predictions of the discrete and continuous models differ from each other and from the
nonspatial dynamics, where the discrete-space model seems to have much higher variance in
predictions per run when compared to the continuous-space model. In particular, the two
types of spatial models generate strikingly different ecological dynamics when the space is
saturated – the continuous-space game has a very high population size at saturation, while
the discrete-space game has a much lower saturated population size, even when we impose
the same density-dependence limits in the two games. Different ecological dynamics seem
to lead to very different frequency dynamics, leading to very different predictions of the two
types of spatial models. This calls for caution when selecting a spatial variant of a known
nonspatial game.

Keywords: Spatial games, Discrete space, Continuous space, Replicator dynamics

Adapted from our article in preparation: You Li, Thuijsman Frank, Katharina Schüller, Uyttendaele
Philippe, Staňková Kateřina. Discrete-space vs. continuous-space games, 2017. In preparation.
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3.1 Introduction

Spatially explicit evolutionary games (spatial games) are often perceived as a refinement of
the nonspatial evolutionary games with more realistic assumptions on individuals’ actions.
While standard (evolutionary) game dynamics (such as replicator dynamics) assume that
the population of interacting individuals is well mixed (and that a focal individual is allowed
to interact with any individual in the population), the spatial games allow for making the
interactions among individuals more or less localized and do not require the population to
be well mixed.

However, the chosen spatial structure of the game field may be as important as players’
strategies and fitness measures in determining its frequency and population dynamics. This
structure often implies who is allowed to interact with whom. Commonly, individuals are
assumed to interact in a predefined discrete space (Killingback and Doebeli, 1996; Kerr et al.,
2002; Sysi-Aho et al., 2005) (discrete-space games) or, less commonly, in a continuous space
(Lion and Baalen, 2008; Cardillo et al., 2012) (continuous-space games). The discrete-space
games are often played over a grid composed of identical cells and individuals’ positions and
dispersal are therefore limited to this grid. Among these grid models, a square grid is the
most common structure (Nowak and May, 1992; Durrett and Levin, 1997; Nakamaru et al.,
1997; Szabó and Tőke, 1998; Durrett and Levin, 1998; Brauchli et al., 1999; Reichenbach
et al., 2007; Noailly et al., 2009; Avelino et al., 2014), as opposed to grids composed of
hexagonal or other cells (Okabe et al., 2009; Uyttendaele and Thuijsman, 2015; Abrudan
et al., 2016). In continuous games, individuals are usually allowed to reside and disperse to
at any position of the game field (Lion and Baalen, 2008; Cardillo et al., 2012; Gallaher and
Anderson, 2013; Gallaher et al., 2017). In either case, spatial games are usually played over
a predefined torus with periodic boundary conditions (also known as flat torus), to avoid
complications with boundary conditions.

As opposed to spatial games, standard game dynamics do not take into account any
type of the spatial structure. As such, standard game dynamics describe games that are
nonspatial. In the remainder of this chapter, we may use the term “nonspatial games” for
describing standard game dynamics.

While nonspatial games are usually mathematically tractable and very intuitive, the
assumptions on individuals’ interactions are often perceived as oversimplified. From that
perspective, the spatial games represent a movement into more realistic models of real biolo-
gical populations. However, there is not much research in how the frequency and population
dynamics of different spatial games differ from each other and why. Moreover, if the non-
spatial games are oversimplified, we need to understand why and when the prediction of
specific spatial models coincide with or differ from those of the nonspatial games. Whether
these predictions differ depends on the specific spatial game rules, such as local interaction13

(as opposed to a global interaction assumption in nonspatial games) (Durrett and Levin,

13Some researchers, such as Santos et al. (2012) use “structured population” to indicate that interac-
tions between individuals taking place within neighborhoods, while “unstructured” would refer to global
interactions.
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1998; Uyttendaele and Thuijsman, 2015), sequential updating (as opposed to a simultan-
eous updating rule in nonspatial games) (Nowak and May, 1993; Adami et al., 2016), birth
and death mechanism (as opposed to nonspatial games where there are no birth and death
assumptions) (Ohtsuki et al., 2007), etc.

To our best knowledge the comparison of the dynamics of discrete-space and continuous-
space games is largely lacking. As the first step to bridge this gap we will focus on comparing
two representative discrete-space and continuous-space games played over the torus with
periodic boundary conditions. We will focus on their frequency and population dynamics,
and compare both with those of the replicator dynamics (Hofbauer and Sigmund, 1998) as
a typical representative of a nonspatial game.

The two spatial games and the nonspatial game that we will compare with each other
are on purpose chosen as typical representatives of their groups: The discrete-space game
will be the one with a square grid, played over the discrete torus.14 While in the simplest
case of the grid games every cell hosts one individual and there are no empty cells in the
game (Nowak and May, 1992; Durrett and Levin, 1997; Nakamaru et al., 1997; Szabó and
Tőke, 1998; Brauchli et al., 1999; Noailly et al., 2009), we will allow for empty cells typically
introduced in more advanced discrete-space models (Reichenbach et al., 2007; Avelino et al.,
2014). These empty cells can be filled via dispersal of an individual (Kerr et al., 2002;
Reichenbach et al., 2007) or its offspring (Godfrey Smith, 2009; Zietsch et al., 2014), while
new empty cells are created when an individual moves or dies. Each focal individual in this
game can interact only with other individuals in its neighborhood, which is defined as the
cell occupied by the focal individual and its 8 neighboring cells.

Our continuous-space game is played over a torus with periodic boundary conditions
defined as a proper subset of R×R. Similarly as in the discrete game, the focal individual
can interact only with other individuals from its neighborhood, here (in continuous space)
defined as a disc around the focal individual with a prespecified radius. Unlike in the
grid models, the individuals can move and place their offspring to any place within their
neighborhood, while it follows from the continuity of the torus that the probability that two
individuals reside at exactly the same coordinate at a given time is zero.

Our nonspatial game will be the standard replicator dynamics as a very common repres-
entative of nonspatial games in evolutionary game theory (Hofbauer and Sigmund, 1998).

When comparing the resulting frequency and population dynamics of our discrete-space
and continuous-space games with each other and with those of the nonspatial game, the two
spatial games will have the same interaction rules and thus the only difference is their game
field and assumptions on the focal individuals’ reproduction if there is no empty cell in its
neighborhood – we will do experiment with 3 versions of the discrete game differing in such
assumptions on reproduction. This is to see to what extent the assumptions related to the
game field impact the resulting dynamics.

Conceptually, the continuous-space models seem to be more flexible when it comes to
defining and adjusting the neighborhood and its structure. And it is obvious that for some

14In Chapter 4 we will focus on how predictions regarding coexistence of microbial strains differ when
modeled as a game in a hexagonal and square grid.
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biological interactions, one model may be more suitable than other ones, especially if their
predicted frequency and population dynamics differ (Nowak, 2006; Rand and Nowak, 2013).
If, for example, the individuals can disperse and/or reproduce only when there is an available
free space in a grid model while there is always a free space in a continuous-space model, then
the differences in the dynamics are expected to occur especially when the space is saturated.

The reason why we include comparison of the spatial models with the replicator dynamics
is that various assumptions of the spatial and nonspatial models may generate results close
and far away from the replicator dynamics (Huang and Wu, 2012; Wang et al., 2016).

Usually, research on spatial-game models focuses either on their transient (Yearsley, 2004;
You et al., 2017) or saturated (Adami et al., 2016; You et al., 2017) phases. The transient
phase refers to a (still) growing population, whilst the saturated phase corresponds to a
situation when population size does not change anymore, i.e., the space is saturated. Most
studies focusing on spatial dynamics seek frequency and/or population equilibria which they
consider stable (Noailly et al., 2009; Adami et al., 2016). Clearly, we may observe two
types of the stable equilibria: the transient and the saturated stable equilibria where the
term transient stable equilibrium refers to a short-term stability (Yearsley, 2004), while the
saturated stable equilibrium refers to a long-term stability. In this chapter we will focus on
the saturated phase,15 with which the nonspatial equilibrium frequencies and populations
will be compared. The main goal is to understand how much and why the nonspatial,
discrete-space, and continuous-space dynamics differ.

The rest of this chapter is composed as follows. In Section 3.2 we introduce the nonspatial
dynamics. In Section 3.3 we introduce the spatial games defined in discrete and continuous
space. In Section 3.4.3 we demonstrate case studies with these spatial games regarding
individuals’ behaviors such as reproduction and dispersal. In Section 3.5 we discuss the
relations between the three kinds of dynamics, i.e., the nonspatial dynamics, the discrete-
space dynamics and the continuous-space dynamics, and finally conclude the chapter.

3.2 The nonspatial game

In this chapter, we will introduce our nonspatial game, the replicator dynamics (Hofbauer
and Sigmund, 1998).

We assume that individuals of different types interact with each other. Let T = {1, ...,n}
be the set of types. Let xi, i ∈ T , denote the frequency of the individuals of type i ∈ T in
the population. When a focal individual of type i ∈ T interacts with an individual of type
j ∈ T , the outcome is the number of offspring of type i ∈ T that the focal individual will
produce, aij . The number of offspring for all possible pairwise interactions can be organized

15In Chapter 5 we will study both transient and saturated frequency and population dynamics in a spatial
game of cancer.
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in a fitness matrix A : 
a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...
an1 an2 · · · ann

 . (3.1)

The replicator dynamics (Hofbauer and Sigmund, 1998) define the time change ẋi of
frequency xi for each type i ∈ T :

ẋi = xi(eiAx>−xAx>), (3.2)

where x= (x1, ...,xn) and ei are the frequency vector for all types and the i-th row of an n×n
identity matrix, respectively. Even with the same fitness matrix, different initial conditions
(x(0) = x0 ) may lead to different frequency (and population) dynamics. Replicator dynamics
represent one of the dynamics which may have attractors coinciding with the Evolutionarily
Stable Strategies (ESSs) of the game (3.1). An ESS is a strategy that, when used by
the entire population, is immune against invasion by a small number of mutants playing a
different strategy. An attractor corresponds to an ESS if it satisfies the evolutionary stability
conditions introduced in Chapter 1. An attractor does not need to be an ESS, here we refer
to a well-examined game (1.5) by Zeeman (1980); Bomze (1983); Hofbauer and Sigmund
(1998).

3.3 Spatial games

3.3.1 Game field

Let ΘZ = {(x,y)|(x,y)∈ [0,L)× [0,L) and (x,y)∈Z2} be a discrete-space torus with periodic
boundary conditions, which will be the game field for the discrete-space game. In ΘZ the
neighborhood of a focal individual is represented as a disc around this focal individual with a
prespecified radius, see Figure 3.1. For the individual residing in the focal cell, its neighbors
are the individuals within this neighborhood. The maximal number of individuals in a
neighborhood is fixed, i.e., a neighborhood with radius 1 can host maximally 5 individuals,
a neighborhood with radius 2 can host maximally 13 individuals, etc. (see Figure 3.1).

Figure 3.1: The neighborhood (in the discrete torus ΘZ) which is an integer disc with radius
= 1,2,3. Each black dot represents one individual occupying one cell.
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Let ΘR = {(x,y)|(x,y) ∈ [0,L)× [0,L) and (x,y) ∈R2}, be a continuous-space torus with
periodic boundary conditions, which will be the game field for the continuous-space game.
In ΘR the neighborhood of a focal individual is a disc around the position of this individual
with a prespecified radius. Theoretically the number of neighbors in a neighborhood (of any
given radius) from ΘR is infinite.

3.3.2 Spatial game rules

Let us assume that the initial field is composed of individuals of types from set T. Initially,
each type has the same number of individuals randomly distributed over the discrete-space
torus ΘZ and the continuous-space torus ΘR, respectively, so that the game field is not fully
occupied (saturated).

For the spatial games we specify rules regarding individual density-dependent interac-
tions, frequency-dependent interactions, reproduction and dispersal, which occur in genera-
tions: during one generation all individuals16 are selected as focal individuals, in a random
order, to undergo the following actions:

Density-dependent interactions The focal individual checks whether its neighborhood
is not saturated, otherwise it cannot reproduce. In the discrete-space torus ΘZ, an in-
dividual’s neighborhood always has a limit on the number of neighbors it can host, the
so-called density-dependence limit (Figure 3.1). In ΘZ only if the number of neighbors is
less than the density-dependence limit, the focal individual will proceed to further actions.
We apply the same rule of density-dependent interactions to the continuous-space model,
i.e., in a continuous neighborhood from ΘR, if the number of neighbors is equal to or bigger
than the density-dependence limit (determined by the discrete neighborhood with the same
radius), the focal individual will not take further actions.

Frequency-dependent interactions The focal individual (assuming it is of type i) chooses
a randomly selected neighbor to interact with (assuming it is of type j). If there are no neigh-
bors in the neighborhood of the focal individual, no such frequency-dependent interaction
takes place.

Reproduction After interaction with a randomly selected neighbor of type j, the focal
individual of type i will produce aij individuals of its own type. Only after all individuals
are selected as focal individuals, the offspring are placed in the game field.

Dispersal The offspring of all individuals are placed simultaneously at a randomly selected
positions in the cells’ neighborhoods after all focal individuals have completed their actions
for the current generation. It may happen that two or more individuals are dispersing into

16While it may be more realistic for specific applications to assume that only a portion of individuals
interact with others in each generation, here we assume that all living individuals are selected as focal
individuals and hereby interact with others in each generation, in order to compare the resulting spatial
dynamics with the replicator dynamics.
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the same (x,y)-coordinate in the discrete torus ΘZ. We call such a situation a dispersal
conflict. Such a conflict does not occur in the continuous-space game. Clearly, the dispersal
conflict needs to be resolved somehow. We will consider 3 discrete-space game scenarios
differing in the way how the dispersal conflict is handled:

• Scenario 1: The individuals injure each other and no one disperses into this (x,y)-
coordinate (the “no placement” scenario).

• Scenario 2: Only one individual can occupy the (x,y)-coordinate, while this individual
is selected randomly from all individuals who participate in the dispersal conflict (the
“stochastic placement” scenario).

• Scenario 3: The type which has the highest count of individuals participating in the
dispersal conflict fills this (x,y)-coordinate (the “deterministic placement” scenario).
If there are more types with the highest count, the choice among them is random.

After the offspring of all focal individuals have been placed into the game field, all focal
individuals (parents) are removed from the field. The next generation begins. Equivalently,
all focal individuals (parents) have lifespan (determining the maximal number of generations
that one individual can stay in the game field) as one generation.

The game ends after it is played for the prespecified number of generations. Clearly, we
cannot run our spatial games for infinitely many generations. In this chapter we confine to
the total of 10000 generations, as we consider this number of generations large enough to
observe trends in the frequency and population dynamics in our games.

3.4 Case studies

To test how our discrete-space, continuous-space, and nonspatial games differ in terms of
the frequency and population dynamics, we will run a number of case studies with a very
well known class of games: the generalized Rock-Scissors-Paper (RSP) games (Durrett and
Levin, 1998; Kerr et al., 2002; Czárán et al., 2002; Kirkup and Riley, 2004; Reichenbach
et al., 2007; Avelino et al., 2014). The set of types is therefore T = {R,S,P}, where R, S
and P stand for types Rock, Scissors and Paper, respectively.

3.4.1 The generalized RSP game

The generalized RSP game takes the following format (Weissing, 1991; Hofbauer and Sig-
mund, 1998):


R S P

R 0 a3 −b2
S −b3 0 a1

P a2 −b1 0

,
where a1,a2,a3, b1, b2, b3 ∈ R. We will first consider a specific case of the generalized RSP
game, Aε, described by Zeeman (1980), where a1 = a2 = a3 = 1 + ε, b1 = b2 = b3 = 1 and
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ε ∈ R. The fitness matrix Aε has then the following form:

Aε =


0 1 + ε −1
−1 0 1 + ε

1 + ε −1 0

 .

There is a mixed-strategy Nash equilibrium (1
3 ,1

3 ,1
3) for Aε. As (1

3 ,1
3 ,1

3) is a steady point of
the replicator dynamics (3.2) for every Aε, the frequency dynamics won’t change if this point
is set as an initial state. However, depending on the sign of ε, the Nash equilibrium (1

3 ,1
3 ,1

3)
has the different dynamic stability properties (Weissing, 1991; Hofbauer and Sigmund, 1998)
(see also Section 1.3 from Chapter 1):

• If ε> 0, the Nash equilibrium (1
3 ,1

3 ,1
3) is an attractor of the replicator dynamics starting

from an initial x0 close to (1
3 ,1

3 ,1
3), see Figure 3.2a.

• If ε= 0, the Nash equilibrium (1
3 ,1

3 ,1
3) is neutrally stable and the replicator dynamics,

starting from an initial x0 close to (1
3 ,1

3 ,1
3), forms a closed orbit (see Figure 3.2b).

• If ε < 0, the Nash equilibrium (1
3 ,1

3 ,1
3) is a repeller of the replicator dynamics starting

from an initial x0 close to (1
3 ,1

3 ,1
3), where its trajectory moves to one of the three

strategies R, S or P , and stays there (see Figure 3.2c).

(a) (b) (c)

Figure 3.2: Trajectories of the nonspatial dynamics shown in the unit simplex with (a) ε > 0
where the Nash equilibrium (1

3 ,1
3 ,1

3) is an attractor (represented by a full red circle), (b) ε= 0
where the Nash equilibrium (1

3 ,1
3 ,1

3) is neutrally stable (represented by a full black circle),
and (c) ε < 0 where the Nash equilibrium (1

3 ,1
3 ,1

3) is a repeller (represented by an empty
circle). Each vertice corresponds to a frequency of 1 for the corresponding type.

Further, for the case when ε > 0, the attractor is an ESS, whereas there is no ESS for the
cases when ε= 0 and ε < 0 (Weissing, 1991; Hofbauer and Sigmund, 1998).

3.4.2 Enhanced RSP game

For the case studies we will consider a game derived from the generalized RSP game by
adding a constant value to each element of its fitness matrix (enhanced RSP game). This is
because we want that the fitness matrix represents the number of offspring and, therefore,
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it cannot have negative values. Starting from an Aε game with ε= 1, ε= 0 and ε=−1, we
add 2 to each entry of the fitness matrices, which preserves the equilibrium properties of the
corresponding Aε games. The obtained fitness matrices are:

A+
1 =


2 4 1
1 2 4
4 1 2

 ,
with the Nash equilibrium (1

3 ,1
3 ,1

3) being an ESS;

A+
0 =


2 3 1
1 2 3
3 1 2

 ,
with the Nash equilibrium (1

3 ,1
3 ,1

3) being neutrally stable;

A+
−1 =


2 2 1
1 2 2
2 1 2

 ,
with the Nash equilibrium (1

3 ,1
3 ,1

3) being a repeller. We will refer to the games defined by
matrices A+

1 , A+
0 and A+

−1 as to the enhanced RSP games A+
ε .

3.4.3 Settings of the case studies

We let L = 100. Initially, 999 individuals (333 individuals per type i ∈ T = {R,S,P}) are
placed at randomly chosen (x,y)-coordinates in Z2 (without repetition) of ΘZ and ΘR,
respectively, thus we use the same initial placement of individuals, in both the discrete-
space and continuous-space games, for simulations in case studies.

Looking across all case studies within this section, we will examine the spatial dynamics
for each A+

ε (ε ∈ {1,0,−1}), for each model/scenario (i.e., the continuous-space model with
no dispersal conflict, the discrete-spatial models with “no placement”, “stochastic placement”
and “deterministic placement” scenarios, respectively), for each interaction radius from
{1,2,10,100} and for each lifespan from {1,5}. Hence there are 96 matrix, model/scenario,
radius and lifespan combinations. Due to the stochastic nature of spatial games, we repeat
the simulation for each combination 15 times, as spatial dynamics of a single run may not
demonstrate all possible outcomes of that combination. In the following case studies we
demonstrate both the single-run and average outcomes. Beforehand we should introduce
some concepts (see Section 3.4.3) that are used to examine the stability of spatial games.

Stability concepts in spatial games

To evaluate the spatial dynamics and for comparison to the nonspatial equilibria, we need
stability concepts for spatial equilibria in terms of population size and frequencies of types.
Here we need to point out that the population size at generation t refers to the total number
of individuals after including all offspring and removal of all parents once all interactions
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took place. We focus on the spatial stability at saturated population. In the following
Definition 3.4.1, we use the term maximal total population, which refers to the largest total
population of individuals reached over the run of the simulation.

Definition 3.4.1 (Saturated population). A population at generation τ is called saturated if
the total number of individuals stays within 1% of the maximal population size in generations
{τ −499, τ −498, ..., τ}.

At a saturated population, we may observe that the spatial (frequency) dynamics is
attracted to an attracting point or cycle, defined in Definitions 3.4.2 and 3.4.3, respectively:

Definition 3.4.2 (Attracting point). At saturation, we observe an attracting point x∗ =
(x∗1,x∗2,x∗3) if there exists a generation τ so that |xi(t)−xi(t+ 1)| ≤ 0.001 and |xi(t)−x∗i | ≤
0.001 for each i ∈ T and for all generations t ∈ {τ −499, τ −498, ..., τ}.

Please note that we do not discuss the convergence speed of the frequency dynamics to the
attracting point (in Definition 3.4.2) but find sufficient if we stayed very close to this point
in the past 500 generations. The 500 generations were chosen because it is considered as a
sufficiently large number of generations compared to the total number of 10000 generations
per game considered here. Due to the nature of the spatial games it may be difficult to find
the convergence speed to x∗ with a sufficient precision and as such, one may misinterpret an
attracting behavior for another one.

Definition 3.4.3 (Attracting cycle). At saturation, we observe an attracting cycle if there
exists a generation τ at least 500 generations before the last generation (i.e., the 10000th
generation) so that for each t > τ , |xi(t+ ∆)−xi(t)| ≤ 0.001 for each i ∈ T and for finite
∆> 1. We call ∆ a period of the attracting cycle.

Types of attracting points/cycles in spatial games

Here we introduce types of attracting points/cycles that can be observed in single runs of our
spatial games (including continuous-space model in every case study, discrete-space model
and its three scenarios in every case study), to be able to classify the spatial (frequency)
dynamics of the games considered in this chapter.

We categorize all our observed attracting points in spatial games as follows: The spatial
(frequency) dynamics are attracted to

• the attracting point x∗ = (1
3 ,

1
3 ,

1
3) (see Figure 3.3 and 3.4 for frequency dynamics, of

the same combination, achieved with different initial conditions);

• one of the three vertices x∗ = (1,0,0), or x∗ = (1,0,0), or x∗ = (1,0,0) (see Figure 3.5
as an example).

It is reasonable to set x0 = (1
3 ,

1
3 ,

1
3) as an initial condition for the spatial games, although x0

is a steady point for the corresponding nonspatial game (the replicator dynamics). Unlike
the nonspatial dynamics which do not change and stay at x∗ = (1

3 ,
1
3 ,

1
3) when starting from
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this initial condition, the frequency dynamics of spatial games will always deviate from x0 at
early generations, due to the stochastic nature of the game rules. When (1

3 ,
1
3 ,

1
3) is indeed an

attractor of the frequency dynamics, then after the early generations, the frequency dynamics
move back to it. This also applies for other off-boundary initial conditions. In Figure 3.4
we show an example where the frequency dynamics of the continuous-space game of A+

1 are
attracted to the point x∗ = (1

3 ,
1
3 ,

1
3) with initial condition (0.05,0.9,0.05).

It is useful to distinguish the two categories of attracting points, as they describe very
different evolutionary outcomes regarding coexistence (here coexistence means that all types
initially introduced in ΘZ and ΘR also stay in the field at saturation). For this reason, it
may not be necessary to categorize the observed attracting cycles. For any attracting cycle
we observe in these spatial games (including the continuous-space model in every case study,
the discrete-space model and its three scenarios in every case study), its period ∆ may vary
in the interval (10,500). Here, an example of an attracting cycle is shown in Figure 3.6,
where the frequency dynamics are attracted to a cycle around the center x = (1

3 ,
1
3 ,

1
3) with

period ∆ = 241.

(a) (b)

Figure 3.3: The frequency dynamics (of the continuous-space game for A+
1 with radius =

2, lifespan = 1) are attracted to the center x = (1
3 ,

1
3 ,

1
3) (a) after around 9200 generations,

and such behavior is also shown (b) in the simplex. The frequency dynamics start with
x0 = (1

3 ,
1
3 ,

1
3).

(a) (b)

Figure 3.4: The frequency dynamics (of the continuous-space game for A+
1 with radius =

2, lifespan = 1) are attracted to the center x = (1
3 ,

1
3 ,

1
3) (a) after around 8500 generations,

and such behavior is also shown (b) in the simplex. The frequency dynamics start with
x0 = (0.05,0.9,0.05).
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(a) (b)

Figure 3.5: The frequency dynamics (of the discrete-space game for A+
0 with radius = 10,

lifespan = 1, in the “no placement” scenario) are attracted to one of the three vertices
x = (1,0,0) (a) after around 3000 generations, and such behavior is also shown (b) in the
simplex. The frequency dynamics start with x0 = (1

3 ,
1
3 ,

1
3).

(a) (b)

Figure 3.6: The frequency dynamics (of the discrete-space game for A+
0 with radius = 2,

lifespan = 1, in the “stochastic placement” scenario) are attracted to a cycle (a) after around
8500 generations with ∆ = 241, and such behavior is also shown (b) in the simplex. The
frequency dynamics start with x0 = (1

3 ,
1
3 ,

1
3).

3.4.4 Case study 1: Impact of the dispersal conflict

This case study focuses on the impact of dispersal conflict, by comparing the continuous-
space dynamics (which has no dispersal conflict) and the discrete-space dynamics with “no
placement” scenario, with “stochastic placement” scenario and with “deterministic place-
ment” scenario. We let the radius be equal to 2, thus an individual can only undergo
frequency-dependence interactions and reproduction if this individual’s neighborhood cur-
rently hosts less than 13 individuals including itself. We keep the lifespan of individuals as
one generation.

We examine the continuous-space dynamics for each of the three combinations of A+
ε

(ε ∈ {1,0,−1}). We examine the discrete-space dynamics for each A+
ε and each of the three

dispersal conflict scenarios, thus for 9 matrix and scenario combinations. For each of the
total of 12 spatial game combinations, we run simulations for 10000 generations and we
repeat each of them 15 times, for the same initial field. We track both the population
and frequency dynamics in each single run and then average those over the 15 runs. We
compare the frequency dynamics generated by the spatial games to the nonspatial dynamics
introduced in Section 3.4.1.
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Population dynamics

At saturation, the population size (averaged over 15 runs) with respect to each of the 12
(spatial model, matrix, scenario) combinations is shown in Table 3.1. Here we do not report
the population size for every single run, as the variance of the 15 runs per combination is
very small (< 1% of the averaged population size of this corresponding combination shown in
Table 3.1). For the discrete-space games we measure an average number of dispersal conflicts
per generation, averaged over 15 repetitions of the game times its 10000 generations. In
Table 3.2 we show the results for each of the 9 matrix and scenario combinations. Here we do
not report the mean number of dispersal conflicts for every single run, as the variance of the
15 runs per combination is very small (< 1% of the averaged number of dispersal conflict of
this corresponding combination in Table 3.2). Looking across different models and scenarios

Discrete Discrete Discrete
# Continuous no stochastic deterministic

placement placement placement
A+

1 10493.4 2080.4 4523.7 4495.1
A+

0 10523.4 2049.8 4445.5 4435.8
A+

−1 10536.9 2077.6 4500.2 4517.0

Table 3.1: The population size at saturation (averaged over 15 runs) given the 12 (matrix
and scenario) combinations.

# No placement Stochastic placement Deterministic placement
A+

1 876.2 2837.2 2860.9
A+

0 847.8 2643.3 2646.7
A+

−1 829.7 2551.5 2554.4

Table 3.2: Average number of dispersal conflicts per generation for the 9 (matrix and scen-
ario) combinations of the discrete-space model, averaged over 15 runs of the game times its
10000 generations.

(different columns in Table 3.1), we observe very different population sizes at saturation for
each of the A+

ε matrices (ε∈{1,0,−1}): the continuous-space model allows a high population
size at saturation, i.e., its total population generally goes above 10000. The discrete-space
model allows only a low population size at saturation: its total population is around 4500
at saturation with “stochastic placement” and “deterministic placement” scenarios, while its
total population goes to only around 2000 individuals at saturation with the “no placement”
scenario. We observe that the dispersal conflict occurs in all three scenarios of the discrete-
space game (see Table 3.2). As expected, for a given A+

ε (ε ∈ {1,0,−1}), the dispersal
conflict occurs much more often with scenarios of “stochastic placement” and “deterministic
placement” (2500 to 3000 times) than with the scenario of “no placement” (800 to 900 times).
The individuals that cannot be placed in the discrete space due to the dispersal conflict (even
if the density-dependence limit permits) are just added to the field in the continuous-space
game. Moreover, we see that the frequency of the dispersal conflict is positively correlated
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with the population size at saturation in the discrete-space game, where less than 50% (x,y)-
coordinates of the discrete torus ΘZ are occupied at saturation (see Tables 3.1 and 3.2):
A relatively high population leads to higher reproduction rate, causing a more frequent
dispersal conflict.

Frequency dynamics

At saturation, the observed frequency dynamics (averaged over 15 runs) of A+
ε for ε = 1, 0

and −1 are reported in Figures 3.7, 3.8 and 3.9, respectively. For the spatial frequency

(a) (b)

(c) (d)

Figure 3.7: The frequency dynamics of A+
1 in (a) the continuous space, (b) the discrete space

with “no placement” scenario, (c) the discrete space with “stochastic placement” scenario
and (d) the discrete space with “deterministic placement” scenario. Each subfigure shows
frequency dynamics averaged over 15 runs of 10000 generations each. Radius is equal to 2.

dynamics (averaged over 15 runs) we may observe an attracting point x∗=(1
3 ,1

3 ,1
3) or an at-

tracting cycle. For A+
1 we observe its continuous-space dynamics are attracted to x∗=(1

3 ,1
3 ,1

3)
which is an ESS for the corresponding replicator dynamics, while the corresponding discrete-
space dynamics (of all three scenarios) differ from the continuous-space ones as they have
attracting cycles (see Figures 3.7b-3.7d). For matrices A+

0 and A+
−1 (which do not have

ESSs), their continuous-space dynamics are attracted to cycles (see Figures 3.8 and 3.9),
while their discrete-space dynamics (of all three scenarios) are either attracted to cycles
or to x∗=(1

3 ,1
3 ,1

3), an attracting point which is not observed in terms of single runs, see
Figures 3.8 and 3.9. If we look at dynamics averaged over 15 runs with matrices A+

0 and
A+
−1, the two spatial games lead to a more stable dynamical behavior than the nonspatial

ones: While the nonspatial dynamics starting close to (1
3 ,1

3 ,1
3) are either forming a closed

orbit (in the game of A+
0 ) or are repelled from this point (in the game of A+

−1), the spatial
dynamics have attracting cycles (which are observed in the games of A+

0 and A+
−1) or are

attracted to a point (observed in the game of A+
−1). However, this conclusion does not hold

for each single run. When we look on the discrete-space game with matrix A+
−1 and “no
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(a) (b)

(c) (d)

Figure 3.8: The frequency dynamics of A+
0 in (a) the continuous space, (b) the discrete space

with “no placement” scenario, (c) the discrete space with “stochastic placement” scenario
and (d) the discrete space with “deterministic placement” scenario. Each subfigure shows
frequency dynamics averaged over 15 runs after 10000 generations. Radius is equal to 2.

placement” scenario in each run, we observe that the discrete-space frequency dynamics per
run move away from the initial condition (1

3 ,1
3 ,1

3) to a population composed of only one of
the types from T = {R,S,P}, while it is equally likely that this type is R, S, or P . We will
call this phenomenon of only one type surviving (a different one per run) “random survival”
throughout this chapter. The discrete-space model seems to have much higher variance in
predictions per run when compared to the continuous model. Such random survival is not
observed per run of continuous-space game A+

ε for every ε.
In the remainder of this chapter, we will omit the report of averaged outcomes for any

(matrix, model/scenario, radius, lifespan) combination whose single-run spatial dynamics
show the random survival outcome, as in such case, the averaged outcomes do not report
the spatial dynamics of a spatial game.

Based on our observations on the population and frequency dynamics (see Figures 3.7, 3.8
and 3.9), the impact of dispersal conflict is summarized as follows:

• The dispersal conflict may cause the population and frequency dynamics of discrete-
space games (including all scenarios) differ from those of continuous-space games, for
every A+

ε (ε ∈ {1,0,−1}).

• In the discrete-space game, the population and frequency dynamics of the “stochastic
placement” and the “deterministic placement” scenarios after 10000 generations co-
incide with each other for every A+

ε (ε ∈ {1,0,−1}). This is to be expected as they
basically have very similar frequency-dependence rule.

• Compared to the two scenarios (“stochastic placement” and “deterministic placement”)
which allow placement of offspring, the “no placement” scenario can result in very
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(a) (b)

(c) (d)

Figure 3.9: The frequency dynamics of A+
−1 in (a) the continuous space, (b) the discrete space

with “no placement” scenario, (c) the discrete space with “stochastic placement” scenario
and (d) the discrete space with “deterministic placement” scenario. Each subfigure shows
frequency dynamics averaged over 15 runs after 10000 generations. Radius is equal to 2.

different population and frequency dynamics. The discrete frequency dynamics of the
former two scenarios correspond to the continuous ones, and to the nonspatial ones,
more often than those of the latter scenario.

3.4.5 Case study 2: Impact of the interaction radius

This case study focuses on the impact of different interaction radii on the dynamics. We set
the interaction radius to 1, 2, 10 and 100, and the density-dependent limit to 5, 13, 317 and
10000, respectively. We fix the lifespan to one generation.

We examine the discrete-space dynamics for each A+
ε (ε ∈ {1,0,−1}), each of the three

dispersal conflict scenarios, and each radius from {1,2,10,100}. There are 36 (matrix,
model/scenario and radius) combinations for the discrete-space game. We also examine the
continuous-space dynamics for each A+

ε (ε ∈ {1,0,−1}) and each radius from {1,2,10,100}.
There are 12 (matrix and radius) combinations for the continuous-space model. For each of
the 48 (matrix, model/scenario and radius) spatial games, we track the population dynamics
as well as the frequency dynamics. For each combination we run 15 simulations with 10000
generations. The resulting dynamics are compared with each other and with the nonspatial
game introduced in Section 3.4.1.

Population dynamics

At saturation, the population size (averaged over 15 runs) with respect to each of the 48
(matrix, model/scenario and radius) combinations is shown in Table 3.3. Here we do not
report the population size for every single run, as the variance of the 15 runs per combination
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is observed small (< 1% of the averaged population size of this corresponding combination
from Table 3.3). We observe that either the population goes extinct or it gets saturated.

Discrete Discrete Discrete
# Radii Continuous no stochastic deterministic

placement placement placement

A+
1

1 15710.6 - - -
2 11674.2 2649.6 4596.3 4538.7
10 10493.4 2080.4 4523.7 4495.1
100 - 2568.5 4427.7 4431.3

A+
0

1 15632.0 - - -
2 11364.1 2686.2 4456.7 4444.9
10 10523.4 2049.8 4445.5 4435.8
100 - 2575.9 4429.1 4420.7

A+
−1

1 15503.4 - - -
2 11533.2 2679.3 4503.3 4604.6
10 10536.9 2077.6 4500.2 4517.0
100 - 2578.5 4434.0 4431.0

Table 3.3: The population size at saturation (averaged over 15 runs) given 48 different
matrix, model/scenario and radius combinations. The symbol “ - ” represents extinction of
a population, hence in the particular combination no saturated population is observed.

The extinction happens (i) when the radius is very small in the discrete-space model (for all
scenarios with the radius 1), and (ii) when the interaction radius is at its largest value (=
100) in the continuous-space model. If the interaction radius is very small in the discrete-
space game and individuals are randomly scattered in the game field, individuals may not
find any neighbor to interact with and their total number may drop. In all our spatial games,
we observe that the total population experiences a decline in early generations. However,
afterwards, the total population increases and avoids extinction in the continuous-space
game, while this is not the case in the discrete-space game. To explain, let us consider
the following situation: Imagine a neighborhood (with radius = 1) hosting 4 individuals at
generation t. Let us call this neighborhood UΘZ if the game is a discrete-space game and
UΘR if it is a continuous-space game. If the density-dependence permits, one offspring is
allowed to be placed in UΘZ (as the density-dependence limit is 5 for radius equal to 1) and
multiple offspring are allowed to be placed in UΘR . The number of individuals that UΘZ and
UΘR hold would deviate from each other at generation t+ 1: After all parents are removed
from the game field, UΘZ holds zero or one individual, and this only individual may not be
able to meet a neighbor for interaction and reproduction. The situation is different in UΘR ,

which is more likely to hold more than one individuals and these individuals can interact
with each other.

When the interaction radius is 100 in the continuous-space model, the density-dependent
interactions are global. As said earlier, the total population at generation t, refers to the
population after including all offspring and removal of all parents from generation t. Hence,
the counted population at a given generation t is composed of offspring. In continuous
space, the number of offspring may go above the (global) density-dependence limit, causing
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a situation where no individual can reproduce before being removed from the field. As no
offspring are then produced, the population goes extinct at generation t+ 1.

In ecology and evolution, studying extinction is as important as studying saturation. At
saturation, the continuous-space game allows for higher population size than the discrete-
space game. Moreover, the size of the saturated population is dependent on the interaction
radius in the continuous-space game, as the standard deviation between the population
sizes at saturation with different radii (of every A+

ε ) is large (e.g., with A+
ε (ε ∈ {1,0,−1})

the standard deviation of the averaged saturated population sizes given the radii 1, 2, 10
and 100 is around 2.0× 103). However, the size of the saturated population is scenario-
dependent in the discrete-space model and the standard deviation between the population
sizes under different scenarios (of every A+

ε ) is large (e.g., for an A+
ε (ε ∈ {1,0,−1}) the

standard deviation of the averaged saturated population sizes given the three scenarios with
a given radius is 103.)

Frequency dynamics

At saturation, the observed frequency dynamics (averaged over 15 runs) are reported in
Table 3.4. In Table 3.5 we report the observed frequency dynamics for a single run per com-
bination. The results are compared to the replicator dynamics introduced in Section 3.4.1.

Discrete Discrete Discrete
# Radii Continuous no stochastic deterministic

placement placement placement

A+
1

1 AP-(1
3 ,1

3 ,1
3 ) - - -

2 AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 )
10 AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

100 - AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

A+
0

1 AC - - -
2 AC AC AC AC
10 AC RS RS RS
100 - RS RS RS

A+
−1

1 AC - - -
2 AC RS AC AC
10 AC RS RS RS
100 - RS RS RS

Table 3.4: The frequency dynamics given 48 different matrix, model/scenario and radius
combinations. Here we describe the averaged frequency dynamics (over 15 runs) as the
evolutionary outcome per combination. The symbol “-” means no spatial dynamics are
observed as the total population becomes zero. The symbols “AP-(1

3 ,1
3 ,1

3)” mean that the
frequency dynamics are attracted to (1

3 ,1
3 ,1

3), the symbol “AC” means an attracting cycle is
observed, and the symbol “RS” indicates that random survival occurs in at least one out of
15 runs.

Our observations are summarized as follows:

• (Continuous-space dynamics vs. discrete-space dynamics) The discrete-space dynamics
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Discrete Discrete Discrete
# Radii Continuous no stochastic deterministic

placement placement placement

A+
1

1 AP-(1
3 ,1

3 ,1
3 ) - - -

2 AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 )
10 AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

100 - AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

A+
0

1 AC - - -
2 AC AC AC AC

10 AC
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0) or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

100 -
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0)or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

A+
−1

1 AC - - -

2 AC
AP-(1,0,0) or

AC ACAP-(0,1,0) or
AP-(0,0,1)

10 AC
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0) or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

100 -
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0)or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

Table 3.5: The frequency dynamics for 48 combinations of different matrices, mod-
els/scenarios and radii. Here we describe the frequency dynamics for a single run as the
evolutionary outcome per combination. The symbol “-” means no spatial dynamics are ob-
served as the total population becomes zero. The symbols “AP-(1,0,0)”, “AP-(0,1,0)” and
“AP-(0,0,1)” mean that the frequency dynamics are attracted to (1,0,0), (0,1,0) and (0,0,1),
respectively. The symbol “AC” means an attracting cycle is observed.

of A+
1 (all scenarios included) correspond to their continuous variant with an increased

radius (= 10), for both the averaged and single-run outcomes (see Table 3.4 and 3.5).
For A+

0 and A+
−1 (which do not have ESSs), their averaged discrete-space dynamics (all

scenarios included) differ strongly from their continuous ones (particularly when radius
is increased to 10 and 100): The continuous dynamics are attracted to cycles, while in
discrete space the random survival often occurs. Hence the discrete-space model gives
a higher variance in its predictions per run.

• (Continuous-space dynamics vs. nonspatial dynamics) The stability properties of the
continuous-space game averaged over 15 runs coincide with those of each single run
of the corresponding case, independently of the size of radii. Therefore, here we will
discuss the average outcomes. With A+

1 , the attracting point of the continuous-space
dynamics corresponds to the ESS of the nonspatial dynamics. For the other two
matrices which do not have ESSs, the discrepancy between the continuous-space model

64



and the nonspatial one occurs: The continuous-space dynamics are attracted to a cycle
(for both A+

0 and A+
−1), while the nonspatial dynamics are either forming a closed orbit

(for A+
0 , see Figure 3.2b) or are attracted to a pure-strategy attractor. (for A+

−1 see
Figure 3.2c).

• (Discrete-space dynamics vs. nonspatial dynamics) For A+
1 its relation between the

discrete-space and nonspatial games is similar to its relation between the continuous-
space and nonspatial games. For A+

0 , neither the averaged nor the single-run discrete-
space dynamics correspond to the nonspatial ones, regardless of scenarios and radii:
the single-run ones are attracted to one of the vertices (i.e., the so-called random
survival occurs here), while the nonspatial dynamics are forming a closed orbit (see
Figure 3.2b). For A+

−1, the single-run discrete-space dynamics often do not correspond
to the nonspatial ones, regardless of scenarios and radii. The matrices A+

0 and A+
−1

do not have nonspatial ESSs, while the discrete-space games with these matrices reach
spatial equilibria.

We provide the plots of frequency dynamics over 10000 generations for every A+
ε given this

case study in Appendix B.1 (page 149).

3.4.6 Case study 3: Impact of the lifespan

In case studies 3.4.4 and 3.4.5, all focal individuals (as parents) are removed from the game
field after finishing their actions in the current generation. Hence all individuals have a
lifespan of one generation. In this case study, we increase their lifespan to 5 generations:
Individuals are not removed from the space until they reach their lifespan, and if they stay in
the game field they are selected to take their actions such as density-dependent interactions,
frequency-dependent actions, reproduction and dispersal. We examine the population and
frequency dynamics of the 48 game (matrix, model/scenario and radius) combinations, while
the lifespan of individuals is increased to 5 generations. The number of runs is kept the same
as in the case study 3.4.5.

Population dynamics

At the end of the game, where we either observe saturation or extinction, the population size
(averaged over 15 runs) for each combination of the 48 options is shown in Table 3.6. Here
we do not report the population size for every single run as its variance among the 15 runs
is very small (less than 1% of the average population size). In Table 3.6 we observe that
an increased lifespan enlarges the population size particularly for the discrete-space model
(crossing three scenarios) when compared to the results of Table 3.3 (where the lifespan is
one generation): A longer lifespan may increase one individual’s reproductive possibility, as
a result more offspring are produced overall. This is to be expected as no death process is
introduced to the system.
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Density Discrete Discrete Discrete
# Radii limit Continuous no stochastic deterministic

placement placement placement

A+
1

1 5 15910.3 - 7896 7993.4
2 13 11674.2 6303.7 8204 8089.8
10 317 10493.4 6245.1 6245.1 6245.1
100 10000 10132.7 6178.8 8289.9 8294.0

A+
0

1 5 15632.0 - 8196.5 8203.4
2 13 11364.1 6184.7 8336.4 8241.3
10 317 10523.4 5978.5 8226.6 8177.3
100 10000 10127.8 6212.8 8220.9 8394.0

A+
−1

1 5 15503.4 - 8300.6 8188.0
2 13 11533.2 6400.1 8233.7 8283.7
10 317 10536.9 6350.5 8240.6 8279.0
100 10000 10211.0 6110.8 8351.1 8234.4

Table 3.6: The population size at the end of the game (averaged over 15 runs), given 48
combinations of matrices, models/scenarios and radii. Here the lifespan is increased to 5
generations.

Frequency dynamics

At saturation, the observed frequency dynamics (averaged over 15 runs) are reported in
Table 3.7. In Table 3.8 we report the observed frequency dynamics for single run per com-
bination. For comparison to the nonspatial game, we refer to the replicator dynamics intro-
duced in Section 3.4.1. Except for the case when interactions are global (radius = 100),
the outcomes (of both averaged and single-run) of this case study (when lifespan = 5) are
similar to the case study 3.4.5 (when lifespan = 1). Therefore, below we talk only about our
observations regarding global interaction:

• (Continuous-space dynamics vs. discrete-space dynamics) The discrete-space (includ-
ing all scenarios) and continuous-space dynamics correspond to each other for A+

1 and
A+
−1, no matter whether the outcomes are averaged or not. The spatial dynamics are

all attracted to (1
3 ,1

3 ,1
3). For A+

0 , its continuous-space dynamics are attracted to a cycle
while its discrete-space dynamics (regardless of scenarios) are attracted to (1

3 ,1
3 ,1

3).

• (Continuous-space dynamics vs. nonspatial dynamics) The averaged continuous-space
dynamics (in Table 3.7) correspond to the nonspatial ones for matrices A+

1 and A+
−1,

while the single-run continuous-space dynamics (in Table 3.8) correspond to the non-
spatial dynamics only for matrices A+

1 . For A+
0 we always observe an attracting cycle

as an averaged or single-run evolutionary outcome. For A+
−1 we observe the random

survival in the continuous-space game. Please note that here the random survival
also occurs in the continuous space when interactions are global: In this case, the
probability to interact with a certain type equals to the frequency of this type in the
population, and thus the assumption regarding interactions in the continuous-space
game is equivalent to that of the nonspatial one. As a result, the continuous-space
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Discrete Discrete Discrete
# Radii Continuous no stochastic deterministic

placement placement placement

A+
1

1 AP-(1
3 ,1

3 ,1
3 ) - AC AC

2 AP-(1
3 ,1

3 ,1
3 ) AC AC AC

10 AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 )
100 AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

A+
0

1 AC - AC AC
2 AC AC AC AC
10 AC RS RS RS
100 AC RS RS RS

A+
−1

1 AC - AC AC
2 AC AC AC AC
10 AC RS RS RS
100 RS RS RS RS

Table 3.7: The frequency dynamics given 48 combinations of different matrices, mod-
els/scenarios and radii. Here we describe the averaged frequency dynamics (over 15 runs) as
the evolutionary outcome per combination. The symbol “-” indicates the total population
goes extinct. The symbol “AP-(1

3 ,1
3 ,1

3)” indicates that the frequency dynamics are attracted
to (1

3 ,1
3 ,1

3). The symbol “AC” indicates that the frequency dynamics are attracted to a cycle.
The symbol “RS” indicates random survival in at least one out of 15 runs. Here the lifespan
is 5 generations.

dynamics behave similarly to the nonspatial ones, while the nonspatial dynamics of
A+
−1 starting close to (1

3 ,1
3 ,1

3) converge to one of the three pure-strategy attractors.

• (Discrete-space dynamics vs. nonspatial dynamics) The relation between the discrete-
space dynamics and the nonspatial dynamics is similar to the relation between the
continuous-space dynamics and the nonspatial dynamics, except for A+

0 : the single-run
discrete-space dynamics show that only one type stays in the game field (independently
of scenarios) after 10000 generations, while the corresponding nonspatial dynamics stay
at (1

3 ,1
3 ,1

3).

The plots of frequency dynamics over 10000 generations for every A+
ε can be found in

Appendix B.2 (page 149). .

3.5 Conclusion & discussion

In this chapter we have compared the replicator dynamics with the dynamics of discrete-
space and continuous-space games. We have applied agent-based modeling to simulate the
spatial games and tracked the population and frequency dynamics for a class of enhanced
rock-scissors-paper games.

Our conclusions can be divided into two groups: Those relating the discrete-space dy-
namics with the continuous-space dynamics and those comparing the nonspatial dynamics
with the spatial dynamics.
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Discrete Discrete Discrete
# Radii Continuous no stochastic deterministic

placement placement placement

A+
1

1 AP-(1
3 ,1

3 ,1
3 ) - AC AC

2 AP-(1
3 ,1

3 ,1
3 ) AC AC AC

10 AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 )
100 AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 ) AP-(1

3 ,1
3 ,1

3 ) AP-(1
3 ,1

3 ,1
3 )

A+
0

1 AC - AC AC
2 AC AC AC AC

10 AC
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0) or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

100 AC
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0)or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

A+
−1

1 AC - AC AC
2 AC AC AC AC

10 AC
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0) or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

100
AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or AP-(1,0,0) or
AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0) or AP-(0,1,0)or
AP-(0,0,1) AP-(0,0,1) AP-(0,0,1) AP-(0,0,1)

Table 3.8: The frequency dynamics given 48 combinations of matrices, scenarios and radii.
Here we describe the frequency dynamics for a single run as the evolutionary outcome per
combination. The symbol “-” means no spatial dynamics are observed as the total population
becomes zero. The symbols “AP-(1,0,0)”, “AP-(0,1,0)” and “AP-(0,0,1)” mean that the
frequency dynamics are attracted to (1,0,0), (0,1,0) and (0,0,1), respectively. The symbol
“AC” means the frequency dynamics are attracted to a cycle. Here the lifespan is increased
to 5 generations.

The major difference between dynamics of the discrete-space game and the continuous-
space game is their different population size at saturation: While the continuous-space game
has a high population size of at least 10000 individuals, the discrete-space model allows
for only about 4000 individuals with “stochastic placement” and “deterministic placement”
scenarios and for about 2000 individuals with the “no placement” scenario. This difference is
caused by the dispersal conflict happening when more individuals try to place their offspring
into the same position in the discrete space. The dispersal conflict sometimes leads the
discrete-space dynamics to extinction, especially when the interaction radius is very small.

These different ecological dynamics at saturation may lead to very different frequency
dynamics, for example some of the interacting types may go extinct in a discrete space while
staying around in a continuous space. Particularly, when the lifespan is short, over 50% of
the case studies with the discrete-space game show the saturated population composed of
only one type, while this is not observed in the continuous-space model. We observe that
the random survival arising in the discrete space model causes much higher variance in the
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discrete-space dynamics when compared to the continuous-space dynamics. When lifespan
is increased, the population size at saturation increases in both types of spatial games and
more stable dynamics (attracting points or cycles) are observed. If the individuals stay
in the game field and engage in the game for more generations, they may increase their
reproductive possibilities and hence increase the survival of their types at saturation. In line
with earlier studies (Kerr et al., 2002; Uyttendaele and Thuijsman, 2015), our observation
for A+

−1 from Table 3.8 (where we report the single-run result and compare the discrete-space
frequency dynamics of A+

−1 when radius is 2 and 100, respectively) matches the well-examined
statement that local interactions promote coexistence of all three types in a RSP game.

Whether we observe discrepancies between the continuous-space model and the discrete-
space model, seems to depend on the nonspatial game stability properties. When the non-
spatial game has an ESS (i.e., A+

1 ), the discrete-space and continuous-space models give very
similar results, and further when the interaction is global (i.e., radius is 100), the two types
of spatial dynamics give similar frequency results as the nonspatial ones, if the lifespan is
not too small. When the nonspatial game has no ESS (i.e., A+

0 and A+
−1), the spatial models

still converge to an attractor or an attracting cycle.
Another major difference between the discrete-space and continuous-space models is their

different simulation efficiency (i.e., average time used per run). Throughout all simulations
(in Sections 3.4.4, 3.4.5 and 3.4.6), we observe that the discrete-space model (including the
“no placement”, “stochastic placement” and “deterministic placement” scenarios) is much
more efficient than that of the continuous-space one. For example, in Figure 3.10 we report
the simulation time used in both spatial models, when we examine the population and
frequency dynamics in Section 3.4.6 (the case study with an increased lifespan). For every
model (continuous-space model, discrete-space model with “no placement” scenario, with
“stochastic placement” scenario or with “deterministic placement” scenario) and every radius
(= 1, 2, 10 or 100), we calculate the average time used per run (out of 15× 3 runs)17 for
simulating dynamics up to 10000 generations. Figure 3.10 shows that the average time used
per run of discrete-space model (independently of scenarios) is much lower than that of the
continuous-space model, regardless of the size of the interaction radius (= 1, 2, 10 and 100).

So far, our spatial models do not address the issue of stability against mutations. Ex-
amining stability properties in that aspect should certainly be part of future explorations.

Future work is required if we want a more general understanding of the relation between
the spatial models, as here we confined ourselves to only one class of matrix games and we
did not go into very complex extensions of our models (with stochastic death process, natural
disasters, etc.). However, based on our results, we consider that when the interactions are
global, spatial models are not at all necessary, while if the interactions are local, a spatial
model would provide a more realistic setting. However, one has to think very carefully

17Here we average all runs used for the three matrices A+
1 , A+

0 and A+
−1. For each matrix in every model

(continuous-space model, discrete-space model with “no placement” scenario, with “stochastic placement”
scenario or with “deterministic placement” scenario) and every radius (= 1, 2, 10 or 100), there are 15 runs,
hence in total there are 15×3 runs for all matrices.

69



CHAPTER 3. DISCRETE-SPACE VS. CONTINUOUS-SPACE GAMES

1 2 10 100
0

2000

4000

6000

8000

10000

Radius

T
im

e 
(s

ec
on

ds
)

Computational time (average) per run in the spatial games

 

 

Continuous−space game
Discrete−space game + no placement
Discrete−space game + stochastic placement
Discrete−space game + deterministic placement

Figure 3.10: Comparing the average time (seconds) per run of discrete-space model to that
of continuous-space model

whether the discrete-space or continuous-space game is a better modeling choice as their
predictions generally differ.
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CHAPTER 4. A GAME-THEORETICAL APPROACH TO MICROBIAL COEXISTENCE

Abstract

Huge numbers of microbes coexist in almost all habitats of our planet. Their interactions
are governed by complex mechanisms, where both competition for resources and toxin pro-
duction play important roles. Our goal is to understand the key mechanisms that lead to
microbial coexistence. In this chapter we study several possible scenarios of microbial inter-
actions and we analyze whether or not they can lead to coexistence of different microbial
species. To achieve this, we model microbial interactions as a discrete-space game on a regu-
lar grid that mimics some of the key features of the local interactions of microbes, assuming
that microbes of different species have a more or less identical morphology and are initially
well mixed. Aside of the game field, the interactions of the microbes of different species
are governed by the so-called interaction matrix, which defines whether or not a microbial
individual of a particular species kills an individual in its neighborhood and by the so-called
quorum sensing threshold, which defines how many individuals of a particular species need
to be present in the neighborhood of a focal cell in order to be able to kill it. We observe that
the order in which focal cells are selected to be interacted with may have a minor impact on
the coexistence rate. More importantly, the coexistence rate is negatively correlated with the
number of neighbors of each cell in the grid and with the density of the interaction matrix,
while it is positively correlated with the quorum sensing limit.

Keywords: Discrete-space game, Local interactions, Microbial species, Bacterial strains,
Quorum sensing, Agent-based models, Game theory

Adapted from: Abrudan Monica, You Li, Staňková Kateřina, Thuijsman Frank, 2016. A game theoretical
approach to microbial coexistence. In Thuijsman Frank and Wagener Florian, editors, Advances in Dynamic
and Evolutionary Games. Annals of the International Society of Dynamic Games, volume 14, chapter 13,
pages 267–282. Springer.
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4.1 Introduction

Microbes outnumber by far any other living organisms on Earth (Dykhuizen, 1998). There
are more microbes on Earth than stars in the universe and it is thought that 90% of the cells
associated with a human body are not ours, but belong to microorganisms. With the help
of new sequencing techniques, such as pyrosequencing, even environments considered sterile
until a short time ago, like the uterus (Funkhouser and Bordenstein, 2013) and mother milk
(Hunt et al., 2011), were found to host microbes. Our faces are not clean either: recent
research found that Demodex mites might be colonizing all of us (Thoemmes et al., 2014).

What is fascinating about microbes is not just their astronomically high numbers, but
also their very high species diversity. It was reported that 242 healthy individuals were found
to host more than 1200 different microbes (Consortium, 2012) and a gram of soil can contain
up to 8000 different operational taxonomic units (OTUs) (Delmont et al., 2011).

These amazing numbers raise an obvious question: How is the diversity maintained?
Understanding the mechanisms that maintain microbial diversity could prove to be very
beneficial to humans as microbial diversity plays a vital role in necessary human functions
such as digestion (Ley et al., 2008): Well-balanced commensal species in a human body could
prevent invasion of pathogens, keeping the human-body ecosystem healthy (Sonnenberg
et al., 2012).

Studying interactions between microbes of different species is thought to be a good
approach for understanding the mechanisms that drive diversity. That is why ecologists
have been studying diverse microbial communities and their competition networks, net-
works of mutuality, and food webs (Verhoef and Morin, 2010). Topology of the interaction
matrices/networks is a key indicator of the species’ dynamics in a given environment (Dunne
et al., 2002; Bascompte et al., 2006; Montoya et al., 2006).

Microbial interactions often take place within communities in versatile environments
where microbes are exposed to each other, even when observed in Petri dishes or incubators.
These observations have led us to modeling local microbial interactions as a spatial game, in
an attempt to understand the processes leading to microbial coexistence. Before we define
this spatial game, several concepts regarding microbes shall be introduced.

Microbial interaction matrices The so-called microbial interaction matrices, built on
the basis of diverse experimental parameters (e.g. growth rates or amount of produced toxins)
are built by biologists to measure microbes’ ability to eliminate each other. In the laboratory,
the ability of one microbial species to inhibit another one is analyzed by (i) inoculating the
products (i.e., molecules) of this species into an incubator with the other species colony and
(ii) recording and observing the development of the species in the incubator. A classical
experiment with two species of E. coli (Chao and Levin, 1981) showed that competition is
regulated by the ability of the species to produce toxins, as well as by their initial densities.
Kerr et al. (2002) showed that three species of E. coli can interact in rock-scissors-paper
(RSP) fashion if their growth rates as well as sensitivity to toxins are externally controlled.

Taking this line of reasoning further, we assume that interactions inside a community of
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different microbial species can be described through an n×n binary matrix A= (aij) (where
n is the number of species and i, j ∈ {1, ...,n}), which describes the outcomes of pairwise
interactions between individuals belonging to all species present. If entry aij is 1, then an
individual of species i kills species j, if it is 0, it does not. Please note here that the matrix
A is referred to as an interaction matrix, which is different from a payoff matrix (or a fitness
matrix) introduced in Chapters 1, 3 and 5.

While one can argue that in reality the entries of the interaction matrix should be ex-
pressed by the probabilities pij ∈ [0,1] at which species i can kill species j, it would be very
difficult to derive these probabilities in laboratory measurements and, therefore, experiment-
alists confine themselves to discrete 0/1 values. In this chapter, we will confine ourselves to
this simplification as well, bearing in mind that the situation considered is a special case of
the real-world situation.

Diversity of interaction matrices In our case studies, we will classify different interac-
tion matrices according to their density, where the matrix density is the proportion of 1’s
among all its entries. The density of the matrix may be a good proxy of how aggressively
microbes interact, for example via secretion of killing toxins observed in the bacterial world,
where one bacterial strain inhibits another one. Vetsigian et al. (2011) characterized a set
of 59 strains of Streptomyces and found that 43% of the interactions assessed were cases of
inhibition. Kinkel et al. (2014) reported that in seven communities of Streptomyces collected
from seven different geographic locations, frequencies of inhibitions between sympatric isol-
ates varied between 10% and 33%. In two different communities of Streptomyces collected
from Leidse Hout in the Netherlands rates of inhibition of 33% and 43%, respectively, were
found. In communities of E. coli the inhibition is less common, with 30% of E. coli strains
producing colicin in natural environment (Riley and Gordon, 1999). 70% of the E. coli
strains assessed were resistant to at least one colicin, while 30% were resistant to all colicin
produced. In a community of 25 strains of Streptococcus pneumoniae 22% of the interactions
were cases of inhibition, where all strains were capable of producing toxins and all species
were vulnerable to at least one toxin. Interaction matrices corresponding to these different
experiments differ in their densities, see Table 4.1. In all studies presented, the interaction
matrices were constructed based on pairwise interactions: In every community, each strain
was tested whether it can secrete toxins that kill the other strains.

Species Number of
strains

Density of the interac-
tion matrix

Streptomyces 59 0.43

7 communities of Streptomyces 69 0.1 – 0.33

Streptomyces (unpublished data) 23 0.33

Streptomyces (unpublished data) 20 0.42

Streptomyces (unpublished data) 13 0.25

E. coli 0.07 – 0.21

E. coli ECOR collection 72 0.022

74



Streptococcus pneumoniae (unpublished data) 25 0.22

Table 4.1: Densities of different microbial interaction matrices. Results were determined
experimentally.

Quorum sensing It is important to notice that bacteria are able to communicate with
one another via a mechanism, where bacteria produce chemical signal molecules (that accu-
mulate in the environment) and interpret the density of accumulated chemicals as a proxy
of (bacterial) population density. Via this communication, bacteria can assess the popula-
tion density of their strains and respond to this assessment by coordinating their behavior.
This form of regulation in behavior as a response to (bacterial) population density is termed
quorum sensing (Miller and Bassler, 2001; Waters and Bassler, 2005). Such response may
be adaptation to the amount of nutrients, defense against other microorganisms which may
compete for the same nutrients, and the avoidance of toxic compounds potentially danger-
ous for the bacteria. As a result, bacteria are able to monitor the environment including
other bacteria and to alter their behavior in response to changes in the density of the strains
present in a community (Williams et al., 2007). Quorum sensing is a common aspect of mi-
crobial interactions, and, therefore, in this study, we implemented a quorum sensing model
(see Section 4.3.3).

The remainder of this chapter is composed as follows. In Section 4.2 the game models
and their implementation are explained. In Section 4.3 we discuss three case studies using
different simulation setups to investigate key factors leading to the microbial coexistence.
We end the chapter with conclusions, discussions and ideas for future work (Section 4.4).

4.2 The game model

We assume that microbes interact with each other in a discrete-space game. It is appro-
priate to consider local spatial interactions as often bacteria produce toxins and can only
influence individuals who are close to them. It is reasonable to confine the space to a grid,
as we assume, similarly to Kerr et al. (2002), that microbes (even if they are of different
species/strains/types) have more or less identical morphology.

Let T = {1, ...,n} denote the set of microbial species/type labels. For our simulations,
initially there are equal numbers of individuals of each type, well mixed on a fully occupied
grid. We consider two different grids:

• a square grid in which each cell has 8 neighbors (Figure 4.1, left);

• a hexagonal grid in which each cell has 6 neighbors (Figure 4.1, right).

For the sake of simplicity, we assume that each type of grid from Figure 4.1 forms a torus
with periodic boundary conditions.

Two different variants of the interactions will be considered. The initial model, in which
only simple interactions between cells will be considered, is introduced in Section 4.2.1, while
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Figure 4.1: An illustration of a square grid, in which each cell has eight neighbors (left)
and a hexagonal grid, in which each cell has six neighbors (right). Cells with the same color
belong to the same type. In each figure only one focal cell (the central one) and its neighbors
(those adjacent to the focal cell) are depicted.

a more advanced model, in which quorum sensing takes place, is introduced in Section 4.2.2.
We will assume that no cells are empty, and in the remainder of this chapter, we sometimes
use the term “cell” to describe an “individual” who is residing in this cell.

4.2.1 The basic model

We assume that the game of microbial interactions proceeds in time steps: At one time step,
one cell (the so-called focal cell) and one cell from its neighborhood (where the neighborhood
contains six or eight cells, depending on the grid type, see Figure 4.1) are randomly selected.
If the neighbor is of the type that can kill the focal cell, it will immediately replace it by one
of its own type, otherwise not. Note that the concept of time steps is different from what
we call generations in Chapters 3 & 5, while in this chapter, one generation consists of η
time steps, where η is the total number of cells of a grid (we confine the total number of
cells of a square grid to be the same as that of a hexagonal grid). Being killed and replaced
by a cell of the neighbor type represents a simple form of reproduction of that neighbor
where individuals that do not kill are assumed to not reproduce. No individual can kill
itself or an individual of its own type. Although suicidal behavior even on the individual
level may be occasionally observed in the microbial world (e.g. the colicin producing E. coli
(Engelberg-Kulka et al., 2006)), this behavior is highly rare. Moreover, we will not consider
the matrices consisting of only zeros. Therefore, an interaction matrix A = (aij) has the
following structure:



type1 type2 . . . typen

type1 0 a12 . . . a1n

type2 a21 0 . . . a2n
... ... ... . . . ...
typen an1 . . . an(n−1) 0

, (4.1)

with

aij =
 1, if type i can kill type j

0, otherwise,
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where i 6= j. The interactions given by matrix (4.1) can be equivalently illustrated with a
directed graph with n vertices, in which a directed link from i to j corresponds to aij = 1,
while there is no directed link from i to j when aij = 0. Note that aij = 1 does not imply
that aji = 0, for when type i may be able to kill type j, type j may also be able to kill type
i. We examine only one matrix from each equivalence class, e.g., we will consider matrices

0 0 0
1 0 1
0 1 0

 ,


0 1 0
1 0 1
0 0 0

 ,


0 0 1
0 0 0
1 1 0

 ,


0 0 0
0 0 1
1 1 0

 ,


0 1 1
1 0 0
0 0 0

 ,


0 1 1
0 0 0
1 0 0

 ,
(4.2)

as equivalent, as they correspond to isomorphic graphs.
In the remainder of the chapter, we will refer to entire equivalence classes of matrices by

their single elements.
The number of distinct interaction matrices increases rapidly with n : There are 15, 217,

and 9608 nontrivial equivalence classes of matrices for n= 3, n= 4, and n= 5. respectively.
These matrices can be also generated using the software Nauty (McKay and Piperno, 2014).

For a given n (we consider n= 3, 4, or 5) and a given type of grid (hexagonal or square),
simulations are always using the same initial 90×90 torus, while this initial torus is randomly
generated, where cells of different strains are placed randomly in all cells of the torus with
equal proportions.

4.2.2 Quorum sensing model

Our quorum sensing model focuses on a specific type of quorum sensing mechanism, where
neighbors can kill a focal cell via their toxin secretion, if their density is above the certain
threshold, called the quorum sensing threshold. Such a quorum sensing mechanism is encoded
in the blp locus in Streptococcus pneumoniae (De Saizieu et al., 2000) and other microbes.
The quorum sensing model extends the basic model introduced in Section 4.2.1. In this new
model, the interactions follow three steps, with a prespecified quorum sensing threshold φ:

1. Selection of a focal cell (say of type j).

2. Random selection of a neighbor (say of type i) of the focal cell.

3. If aij = 1, then the focal cell (of type j) is killed by the neighbor cell (of type i) and
replaced by another cell (of type i), provided that there are at least φ cells of type i
in the neighborhood of the focal cell. Otherwise, the focal cell (of type j) stays alive.

In the following, we will show an example of this quorum sensing model.

Example 4.2.1. Consider a system of microbes of three types, with the interaction matrix
0 0 0
1 0 1
0 1 0

 (4.3)
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and the quorum sensing threshold φ set to 2.
Imagine a neighborhood with focal cell of type 2, as depicted in Figure 4.2a. If a neighbor

of type 1 or 2 is selected, the focal cells would not be replaced as a12 = a22 = 0. However, if
a neighbor of type 3 is selected and there are at least φ= 2 type 3 neighbors of the focal cell,
then the focal cell is replaced by a cell of type 3, as a32 = 1. Such a replacement is illustrated
in Figure 4.2b.

(a) A focal cell of type 2 and its neighbors (b) Changing the focal cell type when a
neighbor of type 3 was selected

Figure 4.2: An illustration of the quorum sensing model

4.3 Case studies on coexistence

In this section we examine several conditions which may influence coexistence of cells of
different types. By coexistence we mean that each type which was initially in the field is
still represented by at least one cell at the end of the simulation. For each equivalence class
of interaction matrices of sizes 3×3 and 4×4, respectively, we ran 100 simulations (15×100
and 217×100 simulations with 3×3 and 4×4 matrices in total, respectively) starting from
the same, but randomly generated, initial field. For each interaction matrix of size 5×5 we
ran 10 simulations (thus 9608×10 simulations in total). We only ran 10 simulations in the
latter case because of its high computational time for the 90× 90 torus. Our main focus
is the coexistence rate, defined as the portion of all runs per matrix where coexistence is
observed.

As an interaction matrix defines which cell types are able to kill other types, and as the
density of an interaction matrix can be seen as a measure of how likely cells will kill each
other, in the case studies we will cluster our results with respect to interaction matrices of
the same densities. For example, there are in total four 3×3 matrices with density 4

9 :


0 1 0
1 0 0
1 1 0

 ,


0 1 1
1 0 0
1 0 0

 ,


0 0 1
1 0 0
1 1 0

 ,


0 1 1
0 0 0
1 1 0

 . (4.4)

and those matrices will therefore belong to the same group of interaction matrices, identified
by the same matrix density 4

9 .
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For a given n (=3, 4 and 5), we then analyze the coexistence rate per (group with the
same) density, i.e. the proportion of runs in this group in which coexistence occurs.

Next we examine the dependence of the coexistence rate on the order of selecting focal
cells, interaction matrix density, and quorum sensing threshold.

4.3.1 Case study 1: Impact of the interaction matrix density

This case study analyzes the coexistence properties of the model introduced in Section 4.2.1,
in relation to the interaction matrix density. Case studies with three, four, and five types
will be carried out. For this case study, the game torus consists of 8100 square cells and one
generation therefore involves 8100 time steps. Moreover, two different ways of how the focal
cells are selected in each generation are considered in the case studies:

• Partially random: In each generation all 8100 cells are selected as focal cells, one by one,
in a random order. The basic interactions introduced in Section 4.2.1 are performed
for each of them and the field is updated immediately after each time step (i.e., each
interaction takes place for one selected focal cell). The total number of generations is
set to 12000.

• Random: We randomly select 8100 cells as focal cells and at each time step we perform
the basic interactions introduced in Section 4.2.1. As in the previous case, the field is
updated immediately per time step. We call these simulations random, because after
each interaction a new focal cell is selected randomly from all the field. Therefore, some
cells may be selected as focal cells more than once, while some may not be updated at
all.

In Figure 4.3 we report the coexistence rates obtained in the simulations with both
partially randomly and randomly selected focal cells. Figures 4.3a-4.3c show the results
when n = 3, 4 and 5, respectively. In Figure 4.3d we show the results including all 3× 3,
4× 4 and 5× 5 interaction matrices. We observe that, independently of the manner how
focal cells are selected (i.e., partially random or random), a higher matrix density leads to
less coexistence, and this observation holds when n= 3, 4, 5 or when we look across all 3×3,
4× 4 and 5× 5 matrices. This is to be expected as a cell is more likely to be killed by its
neighbors with an interaction matrix with higher density. Moreover, the coexistence rates
decrease with the matrix density, independently of a manner how focal cells are selected.

4.3.2 Case study 2: The number of neighbors

In this case study we experiment again with the basic model described in Section 4.2.1. We
examine how the coexistence rate differs for two types of grids: one where each cell has six
neighbors and one where each cell has eight neighbors, as introduced in Section 4.2.1. As
before, interactions with three, four, and five types are studied. For each interaction matrix
of size 3×3 and 4×4, respectively, we ran 100 simulations, while for each interaction matrix
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Figure 4.3: Coexistence rates for different densities of interaction matrices, for the two
manners of selecting focal cells. Results for (a) 3×3 matrices, (b) 4×4 matrices, (c) 5× 5
matrices and (d) all matrices.

80



of size 5× 5 we ran 10 simulations. The initial conditions are as before. We assume that
focal cells are selected randomly.

Results are summarized in Figure 4.4. We observe that, independently of the neigh-
borhood size, a higher matrix density leads to less coexistence, and this observation holds
when n = 3, 4, 5 and therefore also when we look across all 3×3, 4×4 and 5×5 matrices.
Moreover, Figure 4.4 indicates that, independently of the density (of the matrices), the coex-
istence rate, achieved for the hexagonal grid, is larger than or at least equal to that achieved
for the square grid. The results (Figure 4.4) confirm that increase of the neighborhood size
decreases the coexistence rate. Intuitively, this seems natural, as more neighbors increase
chances that a focal cell meets its predator and is killed.

4.3.3 Case study 3: Basic model vs. quorum sensing model

We compare the simulation outcomes of the basic model (described in Section 4.2.1) with
the simulation outcomes of the quorum sensing model (described in Section 4.2.2).

Both models were ran 100 times for all interaction matrices of size 3× 3 and 4× 4,
respectively, and 10 times for interaction matrices of size 5×5, on a hexagonal grid and with
a random selection of focal cells. The initial conditions are the same as before.

In the quorum sensing model we considered the situations where the quorum sensing
threshold φ is set to 1, 2, 3 and 4, respectively. Figure 4.5 shows our results.

Note that as φ increases, each neighborhood has to have more cells of the same type in
order to be able to kill its focal cell, which is harder to come across. Therefore, increasing
φ increases the coexistence rate. When the quorum sensing threshold is very high (4 in our
case) the matrix density does not visibly influence coexistence, probably because with such
a high quorum sensing threshold focal cells are rarely killed for any interaction matrix and
all types coexist, as can be seen in Figure 4.5.

4.4 Conclusion & discussion

In this chapter we investigated how microbial coexistence depends on various assumptions re-
garding microbial interactions, using simple models. We observed that increasing the quorum
sensing threshold, decreasing the interaction matrix density, and reducing the neighborhood
size all lead to increase of the coexistence rate, while we also observed that the order of
selecting focal cells for interactions with others impact the microbial coexistence as well, but
to a much lower magnitude.

The interaction matrices used in our simulations play a very different role from the fitness
matrices frequently used in evolutionary game theory. While the fitness matrices specify the
reproductive success of the interacting individuals, the interaction matrices define whether
or not a focal individual may be killed and replaced by one of its neighbors. Therefore,
the interactions in our models are not those of the replicator dynamics. However, as the
mechanism of interaction, i.e., being killed and replaced by a cell of the neighbor type,
simulates one particular way of reproduction of that neighbor, it is interesting to see how
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Figure 4.4: Coexistence rates for different matrix densities, obtained under two sets of
simulations with a square grid (neighborhood size is 8) and a hexagonal grid (neighborhood
size is 6). Results of (a) 3× 3 matrices, (b) 4× 4 matrices, (c) 5× 5 matrices and (d) all
matrices.
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Figure 4.5: Coexistence rate with respect to different matrix densities and φ. Results of (a)
3× 3 matrices, (b) 4× 4 matrices, (c) 5× 5 matrices and (d) all matrices, respectively, are
shown.
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interaction matrices and fitness matrices relate to each other, and whether the same results
can be achieved using replicator dynamics. Such a study has not been carried out yet and
is a natural step for our future research.

In our simulations we observed something that one could call “coexistence by small
numbers”. This means that quite frequently we observed that a specific species, having less
than 10 cells in our 90×90 torus, would not go extinct simply because of being completely
surrounded and protected by neighbors which cannot kill it. Consider for example the
following interaction matrix: 

0 0 0
1 0 0
0 0 0

 (4.5)

The first species is killed by the second species (position (2,1) in the matrix), but it is
immune to the third one (position (3,1) in the matrix). Few individuals of the first species
can survive 12000 generations, by hiding inside islands formed by the third strain. Figure 4.6
shows a snapshot of the grid at the last generation (from one of the 100 simulations). This

Figure 4.6: An example of coexistence by small numbers. This is a snapshot of field at the
last generation of a simulation where strains follow the rules described in the interaction
matrix (4.5).

result is consistent with experimental studies where it was found that few strains dominate
one habitat (McGill et al., 2007) and many others are present in low numbers. While Ren
et al. (2015) demonstrated that the presence of the rare species is vital for the equilibrium of
the microbial community, more work is needed to understand how this relates to “coexistence
by small numbers”. Moreover, this coexistence by small numbers may be a mere artifact of
the tight and uniform neighborhood structures we examined, and therefore we would like to
examine models with more diverse neighborhood structures, such as those in a continuous
space.

Our approach has several limitations, which will be addressed in our future research.
Firstly, the models presented assume that the interactions of n microbial species can be
reduced to a binary matrix of size n×n. Although this may seem very simplistic, the design
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of the model was motivated by previous experimental studies that characterized communities
of coexisting microbes in a similar fashion (the results of those experimental studies are
summarized in Table 4.1). Nevertheless, with the advance of experimental techniques, we
expect that future experimental characterizations of microbial communities will become
more comprehensive and thus will allow us to improve on our models, by including new
parameters, e.g. the probability at which one type can kill another type. Secondly, the
study investigated the potential coexistence of three, four and five different microbial species.
While this is informative, a future study should discuss coexistence of a higher number of
strains. Thirdly, our models assume that all individual population members remain at fixed
positions in space, while in reality the individuals move. We therefore wish to explore the
effects of different mobility rules on coexistence and relate our models to other studies on this
aspect (Reichenbach et al., 2007). Finally, in this work we defined coexistence as presence
of all types initially introduced to the game, while it may be very useful to focus also on the
so-called partial coexistence, where some of the types coexist and others do not.
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Abstract

Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT).
However, resistance typically develops in about 1 year – a clinical condition termed metastatic
castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game
(agent-based continuous space) of mCRPC that considers three distinct cancer cell types:
(i) those dependent on exogenous testosterone (T+), (ii) those with increased CYP17A
expression that produce testosterone and provide it to the environment as a public good
(TP ), and (ii) those independent of testosterone (T−). The interactions within and between
cancer cell types can be represented by a 3×3 matrix. Based on the known biology of this
cancer there are 22 potential matrices that give roughly three major outcomes depending
upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T−

cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial
game faithfully reproduces the ESS of the corresponding matrix game. With three cell types
divergences occur, in some cases just two strategies coexist in the spatial game even as a
nonspatial matrix game supports all three. Discrepancies between the spatial game and
nonspatial ESS happen because different cell types become more or less clumped in the
spatial game – leading to non-random assortative interactions between cell types. Three key
spatial scales influence the distribution and abundance of cell types in the spatial game: (i)
Increasing the radius at which cells interact with each other, can lead to higher clumping of
each type, (ii) Increasing the radius at which cells experience limits to population growth, can
cause densely packed tumor clusters in space, (iii) Increasing the dispersal radius of daughter
cells, promotes increased mixing of cell types. To our knowledge the effects of these spatial
scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that
cancer interactions are spatially explicit and that our spatial game of mCRPC provides in
general different outcomes than the nonspatial game might suggest that nonspatial models
are insufficient for capturing key elements of tumorigenesis.

Keywords: Evolutionary game theory, Spatial game, Nonspatial game, Prostate cancer

Adapted from: You Li, Brown Joel. S., Thuijsman Frank, Cunningham Jessica. J., Gatenby Robert.
A., Zhang Jingsong., Staňková Kateřina, (2017). Spatial vs. non-spatial eco-evolutionary dynamics in a
tumor growth model. Journal of Theoretical Biology, 435: 78-97. This work is sponsored by the European
Union’s Horizon 2020 research and innovation program under the Marie Sk lodowska-Curie grant agreement
No 690817, National Institute of Health grants U54CA143970-1 and RO1CA170595, and a grant from the
James S. McDonnell Foundation.
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5.1 Introduction

In cancer biology, tumors are viewed as complex ecosystems consisting of cancer cells, normal
cells, blood vasculature, inter-cellular spaces, and various nutrients such as oxygen and gluc-
ose (Gatenby et al., 2014; Merlo et al., 2006; Orlando et al., 2012). Within this ecosystem,
cancer cells, often of distinct types, compete for space and nutrients, and engage in direct
interactions. Cancer cells both contribute towards and are affected by their neighborhoods
(known as microenvironments) within which they consume available resources, survive and
proliferate (Egeblad et al., 2010). Within these neighborhoods there are eco-evolutionary
feedbacks where limiting resources influence the total abundance of cancer cells and inter-
actions between tumor cells influence the frequency of cell types. While often modeled non-
spatially, several features of tumors invite spatially-explicit models. For instance, biopsies,
histological samples and MRI imaging all provide spatial information on tumor characterist-
ics (Sottoriva et al., 2013; Waclaw et al., 2015). Pathologists often measure and score spatial
distributions of cancer cell types, vasculature, immune cells, and other tumor properties
(Zhang et al., 2014; Patel et al., 2014). Finally, increasingly cancer biologists recognize the
ubiquity of spatial heterogeneity within tumors (Swanton, 2012; Bedard et al., 2013). This
heterogeneity likely has significance for tumor progression, metastases and patient outcome
(Marusyk et al., 2012).

Mathematical models of cancer have been employed to understand tumor initiation, pro-
gression and metastases (Altrock et al., 2015). Such models can be used to fit existing data,
evaluate key factors relevant to cancer progression, or provide qualitative and quantitative
predictions that can be experimentally validated (Altrock and Traulsen, 2009; Werner et al.,
2011). Nonspatial models of cancer can be deterministic or stochastic. They can take the
form of ordinary differential equations that track the dynamics of the cancer cells (often seen
as growing logistically or according to a Gompertz equation (Kozusko and Bajzer, 2003)) and
perhaps that of normal cells and/or immune cells. Spatially explicit models may take the
form of diffusion processes framed as partial differential equations (Tomasetti et al., 2013),
or the models may be agent based (Macklin and Edgerton, 2010). As agent-based models,
the cancer cells or other features of the tumor may be represented on vertices of a lattice
or network. Or, individual cells may occupy a space on a spatial grid described as squares
or hexagons (Thalhauser et al., 2010; Perfahl et al., 2011). Finally, agent-based models can
consider continuous space where the cancer cells are represented by continuously varying
spatial coordinates in one, two or three dimensions (Gallaher and Anderson, 2013).

Mathematical models can consider the eco-evolutionary dynamics that occur in tumors.
Here we define a cancer cell “type” as cells that share the same heritable phenotype relevant
to the cancer under study. Ecological dynamics represent changes in the population size
or density of cancer cells. The evolutionary dynamics consider how the heritable traits of
cancer cell lineages change with time, or how the frequencies of different cancer cell types
change with time. When a cancer cell’s survival or proliferation probabilities are influenced
by its type and the types of other cancer cells, the dynamics are frequency-dependent and
therefore can be described using game theory. Evolutionary game theory (EGT) provides
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an excellent modeling tool for considering complex tumors that include several interacting
cancer cell types.

EGT deals with interactions between players (Tomlinson, 1997; Beerenwinkel et al., 2015).
As a game, cancer cells represent the players, their types or heritable phenotypes represent
the different strategies, and survival and proliferation rates represent the payoffs. A cell’s
payoff will be influenced by its strategy and the strategies of others. EGT includes tools for
modeling population dynamics and the evolutionary dynamics of changes in the frequency
of different cancer cell types. EGT can be used to find eco-evolutionary equilibria and
to evaluate their stability. When there are a finite number of different possible strategies
among the cancer cells, then the evolutionary dynamics can be modeled using replicator
dynamics (RD) (Hofbauer and Sigmund, 1998). RD are frequency dynamics of nonspatial
evolutionary games and apply when an individual interacts with the population via “play-
ing the field” (meaning an individual engages in a global interaction among all individuals
of this population). Recent research has focused on extending RD into spatially explicit
scenarios (Nowak, 2006; Ohtsuki et al., 2006; Uyttendaele and Thuijsman, 2015). Both the
evolutionary dynamics and subsequent equilibria may change when space is made explicit
(Hauert and Doebeli, 2004; Kerr et al., 2002; Ohtsuki and Nowak, 2006; Számadó et al.,
2008; Uyttendaele et al., 2012).

Currently both RDs (Dingli et al., 2009; Basanta et al., 2012; Mateo et al., 2014) and their
spatial variants (e.g., being spatially defined as occurring on a fixed lattice of a graph (Bas-
anta et al., 2008)) are being applied to cancer. Here we use a spatially explicit agent-based
approach to model cancer as an evolutionary game. First, we describe metastatic castrate-
resistant prostate cancer that provides the motivation for our modeling work. The biology
of this cancer suggests three important cancer cell types (strategies) whose interactions and
payoffs can be described with a 3× 3 matrix game. We can analyze this matrix game as a
nonspatial model using RD, and we develop a spatial version of the prostate cancer model
where the space is continuous. Second, we find the evolutionarily stable strategies (ESS) for
the nonspatial game, and the stable equilibria that arise in the spatial variant of the model.
Finally, using the spatial model, we explore three relevant processes and scale dependencies
that must occur in actual tumors. To our knowledge these processes and their interactions
have not been collectively explored in cancer models.

The first of these processes relates to the density-dependence radius. A given tumor cell
will be negatively affected by the density of other cancer cells within some neighborhood that
represents the local depletion of resources or buildup of toxins. The second process relates
to the frequency-dependence radius, that describes the distance at which cancer cells play
the game. Up to what distance does the strategy of neighbors matter in terms of influencing
the payoff to an individual tumor cell? The third process relates to the dispersal radius.
Cancer cells exhibit motility and the resulting movement of cells determines the distance
between two daughter cells. Prior models have not made the distinction between the three
scale dependent processes of density-dependence, frequency-dependence, and dispersal. By
considering continuous space, our model lends itself to examining the effects of these three
scale-dependent processes on the eco-evolutionary equilibrium and on the dispersion of cancer
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cells and strategies in space.
In what follows we introduce the metastatic castrate-resistant prostate cancer models

used in this paper (Section 5.2); we compare the eco-evolutionary outcomes of the nonspatial
and spatial models (Section 5.3); we examine the effects of varying the three scale-dependent
processes on spatial equilibria (Sections 5.4); and we discuss our results and highlight some
directions for future research (Section 5.5).

5.2 Models: Replicator dynamics and its spatial vari-
ant

5.2.1 Background: Metastatic castrate-resistant prostate cancer

Prostate cancer most commonly metastasizes to the bone, and several to a dozen or more
secondary tumors can arise across bones of a single patient (Basanta et al., 2012; Fizazi
et al., 2013). Despite no longer residing within the primary tumor of the prostate (in
fact for many of these patients the prostate may have been removed), these cancer cells
still retain androgen receptors and rely on testosterone produced by normal cells of the
patient and distributed through the blood (Hamilton et al., 2016). We shall refer to this
cancer cell type as having strategy T+. To target these cancer cells’ need for testosterone,
androgen deprivation therapy (ADT) stops normal production of testosterone in the patient
– a treatment termed “chemical castration” (Yao et al., 2008; Hussain et al., 2013; Tsai
et al., 2013). Virtually all patients initially respond to ADT. But, metastatic prostate
cancer remains an almost uniformly fatal disease because the cancer cells are able to evolve
resistance. In ADT, resistance typically results in a few months or years and the disease
progresses to metastatic castrate-resistant prostate cancer (mCRPC). Resistance to ADT
typically occurs through two different strategies. One of these involves the upregulation of
CYP17A whereby the cancer cell produces its own testosterone (Cai et al., 2011; Mostaghel
et al., 2011). These we shall refer to as TP cells. They retain androgen receptors. The TP

cells have the side effect of providing testosterone to their external environment where it
becomes available to T+ cells. Finally, resistance to androgen deprivation can take the form
of cancer cells becoming wholly independent of testosterone: T−. Treatment of mCRPC
depends on the dominant resistance strategy. When TP cells are that largest intratumoral
population, abiraterone, a CYP17A inhibitor, is typically effective. However, even in patients
who respond to abiraterone, the disease progresses usually within 1-2 years.

Here we investigate the eco-evolutionary dynamics of mCRPC by modeling the compos-
ition and dispersion patterns of the three cell types (T+, TP and T−) within a tumor. The
resulting eco-evolutionary equilibria become important in that a tumor with primarily T+

and TP cells can be effectively treated with drugs such as abiraterone that target androgen
receptors (Ryan et al., 2013). However, tumors with high frequencies of T− cells will be
unresponsive to abiraterone and require chemotherapy.
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5.2.2 Model basics

Let T = {T+, TP , T−} be the set of cell types from Section 5.2.1. Let xi, i ∈ T, denote
the frequency of the cells of type i ∈ T in the population. We assume that the cancer cells
interact with each other as a game. When a focal cell of type i ∈ T interacts with a cell of
type j ∈ T , the outcome is the probability that the focal cell divides and creates an offspring
of type i. These division probabilities for interaction between all types form a payoff (fitness)
matrix A depicted in Table 5.1. Please consult Appendix C.1 (page 153) for details about

T+ TP T−

T+ 0 a b

TP c 0 d

T− e f 0

Table 5.1: The fitness matrix for T+, TP and T− cell populations. The diagonal values have
been set to 0.

the nonspatial model corresponding to this payoff matrix.

5.2.3 Replicator dynamics in metastatic castrate-resistant pro-
state cancer

For each type i ∈ T, the replicator dynamics (Hofbauer and Sigmund, 1998) define the time
change ẋi of its cell frequency xi:

ẋi = xi(eiAx>−xAx>), i ∈ T (5.1)

where x = (xT+ ,xTP ,xT−), and ei is the i-th row of a 3×3 identity matrix. Even with the
same initial conditions (x(0) = x0), the frequency dynamics (5.1) will vary with the payoff
matrix A. For the 22 cases, we can map the frequency trajectories and the evolutionarily
stable strategies (ESSs) on a simplex (Figure 5.1). When starting from positive initial
frequencies, i.e., x(0) =

(
1
3 ,

1
3 ,

1
3

)
, each case of our model results in a single ESS, which is the

attractor for the dynamics given by (5.1). In the notation of Bomze (1983), the games we
consider fall into the following two groups: (i) “no fixed point in the interior simplex” and
“no edge pointwise fixed”; and (ii) they will exhibit “one fixed point in interior simplex” and
“three non-corner fixed points on edges”.

Based on the frequency of the T− cells at the ESS, we can divide the 22 cases for replicator
dynamics into three different groups (Table 5.2):

I. (positive) The ESS frequency of T− cells is 0 – such tumors should respond strongly
to abiraterone

II. (neutral) The ESS frequency of T− cells is between 0 and 0.15 – such tumors may
respond to abiraterone

III. (negative) The ESS frequency of T− cells is greater than 0.15 – such tumors may
correspond to non-responders
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Figure 5.1: The trajectories of cell type frequencies for each matrix from Table 5.2, ordered
by group. The vertices of the simplex correspond to a frequency of 1 for the corresponding
cell type. The red (full) circles represent the ESSs and the black (full) circles represent the
saddle points.

93



CHAPTER 5. SPATIAL AND NONSPATIAL GAMES OF TUMORIGENESIS

# (a,b,c,d,e,f) ESS Group

1 (0.6,0.3,0.5,0.4,0.2,0.1) ( 6
11 , 5

11 ,0)

I (positive)

2 (0.6,0.2,0.5,0.3,0.4,0.1) ( 6
11 , 5

11 ,0)

3 (0.6,0.2,0.5,0.4,0.3,0.1) ( 6
11 , 5

11 ,0)

4 (0.5,0.3,0.6,0.4,0.2,0.1) ( 5
11 , 6

11 ,0)

5 (0.5,0.2,0.6,0.3,0.4,0.1) ( 5
11 , 6

11 ,0)

6 (0.5,0.2,0.6,0.4,0.3,0.1) ( 5
11 , 6

11 ,0)

7 (0.4,0.3,0.6,0.5,0.2,0.1) (2
5 ,3

5 ,0)

9 (0.4,0.2,0.6,0.5,0.3,0.1) (2
5 ,3

5 ,0)

11 (0.3,0.2,0.6,0.5,0.4,0.1) (1
3 ,2

3 ,0)

14 (0.6,0.1,0.5,0.4,0.3,0.2) ( 6
11 , 5

11 ,0)

17 (0.5,0.1,0.6,0.4,0.3,0.2) ( 5
11 , 6

11 ,0)

20 (0.4,0.1,0.6,0.5,0.3,0.2) (2
5 ,3

5 ,0)

8 (0.4,0.2,0.6,0.3,0.5,0.1) (11
30 ,17

30 , 2
30 )

II (neutral)
10 (0.3,0.2,0.6,0.4,0.5,0.1) (10

35 ,22
35 , 3

35 )

12 (0.6,0.1,0.5,0.3,0.4,0.2) (14
31 ,13

31 , 4
31 )

15 (0.5,0.1,0.6,0.3,0.4,0.2) (11
27 ,14

27 , 2
27 )

13 (0.6,0.1,0.5,0.2,0.4,0.3) (1
3 ,1

3 ,1
3 )

III (negative)

16 (0.5,0.1,0.6,0.2,0.4,0.3) ( 7
25 ,10

25 , 8
25 )

18 (0.4,0.1,0.6,0.3,0.5,0.2) (1
4 ,2

4 ,1
4 )

19 (0.4,0.1,0.6,0.2,0.5,0.3) ( 5
30 ,11

30 ,14
30 )

21 (0.3,0.1,0.6,0.4,0.5,0.2) ( 2
12 , 7

12 , 3
12 )

22 (0.3,0.1,0.6,0.5,0.4,0.2) ( 7
35 ,22

35 , 6
35 )

Table 5.2: Division of the 22 cases for replicator dynamics (5.1) into 3 groups according to
the ESS frequencies of T− cells. No T− cells (group I) indicates a highly treatable tumor,
a low frequency of T− cells indicates a moderately treatable tumor (group II), while a high
frequency of T− cells (group III) indicates an untreatable tumor (the non-responder).

5.2.4 Spatial replicator dynamics in metastatic castrate-resistant
prostate cancer

In this section, we model the population and frequency dynamics of the prostate cancer cells
as a spatial game on a continuous space. We think continuous-space models are appropriate
for modeling tumor progression because the cancer cells (i) may disperse into any direction
from their original positions and (ii) may have a heterogeneous and time-varying morphology
even within the same tumor. Moreover, we aim to seek for ecological and evolutionary
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dynamics at both the transient and saturated phases (as introduced in Chapter 3) in a tumor.
In the sense the cancer cells shall reproduce and place their daughter cells in the free space, so
that the tumor grows to its saturation. It is realistic to consider a spatial model that allows
a high saturated population for the tumor and, as discussed in Chapter 3, the continuous-
space models handle saturation much better than the discrete-space ones. In the remainder
of this chapter, whenever we use the terms “spatial game” and “spatial dynamics”, what we
mean are the “continuous-space game” and “continuous-space dynamics”, respectively.

We imagine the cancer cells as players on a continuous torus ΘR = [0,50)× [0,50) with
periodic boundary conditions. Rather than having a fixed grid or lattice, cells can exist at
any point on this surface. Initially, there are 99 cancer cells (33 of each type), scattered
randomly within the central zone CR = [20,30]× [20,30] of the flat torus ΘR.18

For the spatial game we specify rules regarding cell death, density-dependent interactions,
frequency-dependent interactions and cell proliferation, which occur in generations. During
a generation all living cells are selected in a random order to undergo the following actions:

Cell death We imagine that cell death can be either stochastic or deterministic. A cancer
cell dies with either a fixed probability (stochastic) or after a fixed number of generations
(deterministic). If the focal cell dies, it does not undergo any further actions. Following
death, the cell either stays in the field permanently or is removed after a prespecified number
of generations. The combinations of deterministic or stochastic cell death and the rate at
which dead cells stay in the field (5 generations, 30 generations, or permanently) generate
six possible mortality regimes. (see Table 5.3). If the focal cell remains alive, it undergoes

Scenario
Mortality regime

Cell death Dead cells staying in field
1 Stochastic (probability 5%) Short (5 generations)
2 Deterministic (20 generations) Permanently
3 Stochastic (probability 5%) Permanently
4 Deterministic (20 generations) Long (30 generations)
5 Deterministic (20 generations) Short (5 generations)
6 Stochastic (probability 5%) Long (30 generations)

Table 5.3: Six scenarios corresponding to six mortality regimes

the next action.

Density-dependent cell interactions We imagine that available space and resources are
necessary for successful cell proliferation. We define the density-dependence neighborhood as
a disc around the focal cell with a prespecified radius, called the density-dependence radius
(Figure 5.2a). If the number of cells (itself and dead cells included) within this density-
dependence neighborhood is greater than or equal to 10 cells per unit area, then the focal

18While for modeling tumorigenesis in real patients it may be more realistic to start simulations with other
initial proportions of T +, TP and T −, for the purpose of this research the initial condition (1

3 , 1
3 , 1

3 ) seems
appropriate. Moreover, in local neighborhoods the proportions will differ anyway.
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cell cannot proliferate and it does not move onto additional actions in the current generation.
If the density of cells within the density-dependence neighborhood is less than 10 cells per
unit area then the focal cell moves onto the next action.

Frequency-dependent cell interactions We imagine the cells also have a frequency-
dependence neighborhood, which is a disc around the focal cell with a prespecified radius,
called the frequency-dependence radius (Figure 5.2b). The focal cell randomly selects a
neighbor cell from the living cells occurring within this frequency-dependence neighborhood.
Having selected the focal cell’s “opponent” for the game we move to the last action.

Cell proliferation The probability of the focal cell undergoing cell division and producing
a daughter cell is determined by the payoff from the matrix A if we let the type of the focal
cell be the row strategy and the type of the opponent be the column strategy (Table 5.1).
If the focal cell reproduces, it generates a daughter cell of its own type. This daughter cell
is not placed in the field immediately, but only after all living cells have completed their
actions for the current generation. A given daughter cell is placed at a random location in
the focal cell’s dispersal neighborhood (Figure 5.2c). The dispersal neighborhood is a disc
around the focal cell with prespecified radius, called the dispersal radius.

(a) (b) (c)

Figure 5.2: A focal cell and its three neighborhoods. (a) Density-dependence neighborhood.
A focal cell might proliferate if the density of cells within the disc defined by the density-
dependence radius is below a threshold. (b) Frequency-dependence neighborhood. The focal
cell’s likelihood of proliferating will be determined from an interaction between it and a
randomly selected cell from within the disc defined by the frequency-dependence radius.
(c) Dispersal neighborhood. If a focal cell proliferates, its daughter cell is placed randomly
within the disc defined by the dispersal radius.

5.3 Tumor growth and composition

In this section we simulate tumor growth under the six different mortality regimes (Table 5.3).
We compare the tumor composition of the six scenarios with the ESS of the nonspatial models
for the 22 payoff matrices. In the simulations we track changes in

1. the total number of cancer cells (population dynamics)
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2. the frequencies of cell types (frequency dynamics)

3. the dispersion pattern of each cell type

Each simulation begins with 99 cells (33 per cell type), placed randomly in the central
10×10 zone of the flat torus ΘR = [0,50)× [0,50). We ran simulations for 2000 generations.
For each combination of the mortality regime (Table 5.3) and payoff matrix, we repeated
the simulation five times, in order to check whether or not the standard deviation between
the five simulations is high. If the standard deviation is low, the spatial dynamics of this
combination may be represented by a single run. There are 660 simulations. For these
simulations, we set the density-dependence, frequency-dependence and dispersal radii to
one. The density-dependent threshold for reproduction was set to 10 cells per unit area
within the focal cell’s density-dependence neighborhood. Without cell death, the maximum
population size is 25000 as the torus has size 50×50 and 10 is the density-dependence limit
per unit area.

To evaluate the spatial dynamics and for comparisons to the ESS of the nonspatial
model, we need stability concepts for spatial equilibria in terms of the population densities
and frequencies of the three cell types. Here, we will consider a spatial equilibrium stable if
the frequencies in each two consecutive generations have a difference less than 0.001 in the
50 past generations, as stated formally in Definitions 5.3.1 and 5.3.2:

Definition 5.3.1 (Stable frequency in the spatial game). Frequency xi of type i∈ T is stable
in generation τ if |xi(t+ 1)−xi(t)| ≤ 0.001 for all generations t ∈ {τ −49, τ −48, ..., τ}.

Definition 5.3.2 (Stable spatial equilibrium). A spatial equilibrium is stable in generation
τ if the frequencies of all three types (T+, TP , T−) are stable in this generation.

In the remainder of the paper, whenever we refer to “equilibria”, what we mean is “stable
equilibria”, just to simplify the notation.

We might be able to observe two different types of (stable) equilibria: The transient
(stable) equilibrium and saturated (stable) equilibrium. The former might occur when the
total number of tumor cells is still growing, while the latter occurs once the space is saturated,
i.e., once the total population of living cells as well as populations per type in the tumor
do not change (due to the finite size of field ΘR). In order to quantify when such equilibria
occur, we define the transient and saturated equilibria in Definitions 5.3.3 and 5.3.4.

Definition 5.3.3 (Transient stable spatial equilibrium). A stable spatial equilibrium is called
transient in generation τ if the sum of populations of T+, TP , and T− cells keeps growing
in generations {τ −49, τ −48, ..., τ}.

In the following definition, we use term maximal total population, which refers to the
largest total population of cells reached over the run of the simulation, including both dead
and living cells to this count.

Definition 5.3.4 (Saturated stable spatial equilibrium). A stable spatial equilibrium in
generation τ is called saturated if the total cell population stays within 1% of its maximal
population size in generations {τ −49, τ −48, ..., τ}.
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5.3.1 The effects of the mortality regime on tumor growth

Whether death is stochastic or deterministic and how long dead cells remain in the tumor
strongly influence both the transient and saturated spatial equilibria. Figure 5.3 shows
the spatial dynamics of a single run for matrix #19 per scenario from Table 5.3. The
results achieved from a single run can be representative for this matrix #19, as we observe
that the standard deviation over five runs for matrix #19 is very small (see Appendix C.3,
page 155 for details). By generation 200 for matrix #19, the frequencies of cell types have

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Transient and saturated equilibria corresponding to the six different mortality
regimes (Table 5.3). This example uses payoff matrix #19. The generations depicting stable
transient/saturated equilibria are marked in gray. Scenarios 2 and 3 have no stable saturated
equilibria as all cells die when saturation is reached. Each panel shows the frequencies of
the three cell types over the course of 2000 generations of a single run.

reached transient equilibria in all scenarios even as the entire space has yet to be filled
(Figure 5.4). In scenario 1 (mortality regime: stochastic death and removal of dead cells
after 5 generations) we observe that T+, TP , and T− cells are rather well mixed with dead
cells and the tumor is tightly packed throughout. A similar tumor is observed in scenario 5
(mortality regime: deterministic death after 20 generations and removal of dead cells after 5
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generations) and scenario 6 (mortality regime: 5% stochastic death and removal of dead cells
after 30 generations), while more dead cells are observed in the field in scenario 6 (with ≈
60% cells dead) than in scenario 1 (with ≈ 20% cells dead) and scenario 5 (with ≈ 22% cells
dead). In scenario 2 (mortality regime: deterministic death and no removal of dead cells) we
see the formation of a necrotic core densely packed with dead cells. Scenario 3 (mortality
regime: 5% stochastic death rate and no removal of dead cells) is similar to scenario 2, except
that a small number of living cells remain appearing in the necrotic core. Eventually, each
cell will die. In scenario 4 (mortality regime: deterministic death and removal of dead cells
after 30 generations) the tumor becomes a ring with an outer surface of living cells, an inner
surface of dead cells and bulges of living cells recolonizing an otherwise empty center.

Figure 5.5 illustrates the tumors at their saturated equilibria for the six scenarios using
payoff matrix #19. In scenarios 1 and 4 the living cells of the three types are relatively well
mixed. In scenario 1 the entire space is filled. Dead cells are mixed with the living ones and
the appearance is similar to the transient equilibrium. In scenario 4 the ring shape of the
tumor progresses to a more patchy distribution of living and dead cells surrounding patches
of empty space. Scenarios 2 and 3 (no removal of dead cells) result in the filling of the space
with dead cells.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Tumors in space at the point where cell type frequencies achieve a stable transient
equilibria. Subfigures (a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 4, 5 and 6
in Table 5.3, respectively, with payoff matrix #19. T+, TP , T− and dead cells are denoted
by blue, red, green and black color, respectively.

Tables C.1, C.2 and C.3 (see Appendix C.3, page 155) record the transient and saturated
equilibrium frequencies of the three cell types, averaged over five simulations, for each of the
six scenarios and for each of the 22 payoff matrices, respectively.

Based on the six scenarios and the twenty-two possible arrangements of payoff matrices,
we observe the following:
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Tumors in space at the point where cell type frequencies achieve stable saturated
equilibria. Subfigures (a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 4, 5 and 6
in Table 5.3, respectively, with payoff matrix #19. T+, TP , T− and dead cells are denoted
by blue, red, green and black color, respectively.

• In scenario 1 (mortality regime: 5% stochastic death rate and removal of dead cells
after 5 generations), the transient and saturated equilibrium frequencies for matrices
from group I (positive) are very close to the matrix game ESS, while their equilibrium
frequencies for matrices from group II (neutral) and III (negative) deviate from the
matrix game ESS. In conclusion, when the ESS for the matrix game contains just two
cell types (T+ and TP ), the spatial model yields cell type frequencies near identical to
this ESS. When the ESS of the matrix game contains all three cell types, the spatial
game results in equilibrium cell type frequencies quite different than the nonspatial
ESS.

• In scenario 2 (mortality regime: deterministic death after 20 generations and no re-
moval of dead cells), the transient equilibrium frequencies for matrices from group I
(positive) are close to the ESS while the transient equilibrium frequencies for matrices
from group II (neutral) and III (negative) deviate substantially from the nonspatial
ESS. For matrices in group II, T− cells die out during the transient equilibrium, and
the frequencies of T+ and TP cells converge on the 2-strategy nonspatial equilibrium
if only T+ and TP exist. For the matrices in group III, the transient equilibrium fre-
quency of T− is much lower, and the frequencies of T+ and TP cells are higher than
the nonspatial ESS. There is no stable saturated equilibrium as all cells die when the
space is filled no matter which matrix is examined. This is due to the existence of the
necrotic core, which keeps spreading and eventually takes over the entire field.

• In scenario 3 (mortality regime: 5% stochastic death rate and no removal of dead
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cells), the equilibrium frequencies are quite similar to those in scenario 2. The necrotic
core eventually takes over the space. While some living cells do survive for many
generations, they eventually fail to proliferate as they become surrounded by dead
cells. Eventually, all cells die.

• In scenario 4 (mortality regime: deterministic death after 20 generations and removal of
dead cells after 30 generations), the transient equilibrium frequencies are quite similar
to these in scenarios 2 and 3. For matrices from group I (positive) the frequencies
of T+ and TP cells are close to the ESS (T− are absent from the ESS); for matrices
from group II (neutral) T− cells die off leaving a transient equilibrium with just T+

and TP cells close to their 2-strategy ESS. For matrices in group III, T− cells persist
but have much lower frequencies than predicted by the ESS. For all matrices and
mortality regimes the transient phase sees a tumor that grows as an expanding ring.
Living cells inhabit the outer edge of the ring and dead cells the inner edge. At the
saturated equilibrium the thickness of the dead cells on the ring influences the spatial
dynamics and cell type frequencies. A thinner ring of dead cells during the transient
phase permits live cells to recolonize the empty space inside the ring, giving rise to a
saturated equilibrium as shown in Figure 5.5d. A thicker band of dead cells results
in a tumor at saturation that has large empty spaces and a relatively low number
of living cells. The frequencies of cell types at the saturated equilibria for matrices
from group I (positive) and matrices #8, #12 and #15 deviate substantially from
the nonspatial ESS as clumps of living cells become separated and patchy due to the
large empty spaces within the tumor. The saturated equilibrium frequencies for the
remaining matrices are close to a 2-strategy ESS, as either T+ or T− dies out; TP

cells occur at higher frequencies than expected by the ESS for all matrices in groups II
and III.

• In scenario 5 (mortality regime: deterministic death after 20 generations and removal
of dead cells after 5 generations), the transient equilibrium frequencies as well as the
saturated equilibrium frequencies are very close to those generated from scenario 1.

• In scenario 6 (mortality regime: 5% stochastic death rate and removal of dead cells
after 30 generations), the transient and saturated equilibrium frequencies for matrices
from group I (positive) are close to the ESS, while their equilibrium frequencies for
matrices from group II (neutral) and III (negative) deviate from the ESS.

The mortality regime is paramount in determining tumor architecture. With no removal of
dead cells (scenarios 2 & 3), the space becomes filled with dead cells only and the ultimate
survival of the tumor would require unbounded space for living cancer cells to invade. When
dead cells take a long time to disappear, the tumor exhibits rings of living cells surrounding
necrotic regions, the tumor dies off (scenario 4), or dead cells represent over half of those
visible in the tumor (scenario 6). The arrangement of these empty patches within the tumor
becomes dynamic as some patches become colonized by living cells and new empty patches
form. Regardless, the overall abundance of live cancer cells is much reduced because of
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the empty spaces and the long persistence of dead cells. If dead cells persist for only a
short number of generations (scenario 1 & 5) the tumor grows and fills the entire space as
a contiguous population of living cells. The living cells both expand along the margin of
the tumor and continually repopulate the core of the tumor as cells die and disappear. The
saturated equilibria in scenario 1 result in high and persistent populations of cancer cells;
though the mosaic of cell types changes constantly at small spatial scales.

5.3.2 Spatial vs. nonspatial dynamics

To compare in more detail the dynamics and equilibria of the spatial versus nonspatial
models, we consider the saturated equilibria for the 22 payoff matrices under just the first
scenario (stochastic mortality and short duration before removing dead cells). This scenario
produces a highly dynamic tumor that saturates at dense populations of living cells. We
focus on the three important themes in tumorigenesis:

1. the population size of live cancer cells at the saturated equilibrium

2. the frequencies of cell types at the saturated equilibrium

3. the dispersion patterns of cell types within the tumor

To measure the dispersion pattern of a given cell type within the saturated tumor, we use
the variance-to-mean ratio (Upton and Cook, 2014). The variance-to-mean ratio of type
i ∈ T is defined as

ρi =

Ω∑
j=1

(ωji − ω̄i)2

(Ω−1)ω̄i
(5.2)

where the space is evenly divided into Ω = 900 subsquares. Varying the number of sub-
squares a bit gives us qualitatively similar results, therefore we consider Ω = 900 as being
representative. Quantity ωji is the number of type i cells in the j-th subsquare and ω̄i is
the average number of type i cells per subsquare. The variance-to-mean ratio provides a
quantitative measure of spatial dispersion or clumpiness (i.e., degree of aggregation of cells
within certain regions of the field) (Tilman and Kareiva, 1997): A variance-to-mean ratio
ρi = 1 indicates that cells of type i are randomly dispersed in space, a ρi > 1 indicates a
clumped dispersion, and a ρi < 1 indicates an over-dispersed or more uniform dispersion in
space.

For the 22 payoff matrices at saturated equilibria, Table 5.4 depicts the living population
size, cell type frequencies, the variance-to-mean ratio for each cell type, and the ESSs for the
nonspatial model. Results show the mean value for 5 runs. Standard deviations were very
low and so we omit them from the table. In all runs, population sizes rose rapidly until the
space was completely filled, usually after about 500 generations.

In terms of population size, there are only small differences between the 22 payoff
matrices; though two subtle patterns are evident (Table 5.4). Matrix 2 of group I had
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Group # Saturated ESS Saturated equilibrium Variance-to-mean
equilibrium frequencies ratio
population size (T +,T P ,T −) (T +,T P ,T −) (T +,T P ,T −)

I (positive)

1 17746.4 (0.5455,0.4545,0) (0.5474,0.4526,0) (0.9559,1.0370,-)
2 17837 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9867,1.0673,-)
3 17772.4 (0.5455,0.4545,0) (0.5469,0.4531,0) (0.9709,0.9536,-)
4 17754.6 (0.4545,0.5455,0) (0.4515,0.5449,0) (0.9615,0.9557,-)
5 17763.4 (0.4545,0.5455,0) (0.4505,0.5495,0) (1.0550,0.9706,-)
6 17773.2 (0.4545,0.5455,0) (0.4512,0.5488,0) (1.0489,0.9667,-)
7 17778.8 (0.4000,0.6000,0) (0.3987,0.6013,0) (1.1149,0.9115,-)
9 17718.4 (0.4000,0.6000,0) (0.3992,0.6008,0) (1.1116,0.9147,-)

11 17809.2 (0.3333,0.6667,0) (0.3287,0.6713,0) (1.1676,0.8946,-)
14 17788 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9586,1.0608,-)
17 17790.4 (0.4545,0.5455,0) (0.4561,0.5439,0) (1.0111,0.9879,-)
20 17817.6 (0.4000,0.6000,0) (0.3991,0.6009,0) (1.0572,0.8402,-)

II (neutral)

8 17636.6 (0.3659,0.5659,0.0682) (0.3926,0.6069,0.0025) (1.1422,0.7932,7.8522)
10 17779.2 (0.2856,0.6287,0.0857) (0.3280,0.6691,0.0029) (1.1337,0.8275,9.3954)
12 17730 (0.4516,0.4149,0.1290) (0.5419,0.4532,0.0050) (1.0083,1.1209,8.6381)
15 17747.4 (0.4074,0.5185,0.0741) (0.4494,0.5453,0.0053) (1.0836,0.9507,9.2382)

III (negative)

13 17547.4 (0.3333,0.3333,0.3333) (0.3324,0.3368,0.3308) (2.0569,1.6380,2.2931)
16 17596.6 (0.2800,0.4000,0.3200) (0.2506,0.4123,0.3371) (2.9114,1.5339,2.5050)
18 17524.8 (0.2500,0.5000,0.2500) (0.2518,0.5151,0.2327) (2.5338,1.1878,3.0966)
19 17427 (0.1667,0.3667,0.4667) (0.1342,0.3638,0.5021) (3.1905,1.3738,1.3250)
21 17451 (0.1667,0.5834,0.2500) (0.1525,0.6020,0.2455) (3.4840,0.9954,2.4489)
22 17484.4 (0.2016,0.6285,0.1699) (0.2218,0.6469,0.1313) (2.7141,0.7627,4.4589)

Table 5.4: Saturated equilibrium population sizes (averaged over five runs), ESSs, saturated
equilibrium frequencies (averaged over five runs) and variance-to-mean ratios (averaged over
five runs) for each of the 22 matrices

the highest mean of 17837 living cells, and matrix 19 of group III had the lowest mean of
17427; a mere 2.3% difference.

We observe the following:

• Tumors from group III (negative) reach slightly smaller population size when the fre-
quency of T− is greater than 0.1. There is also a small and negative correlation between
the clumping of cell types (high variance-to-mean ratios) and their population size. We
conclude that a smaller population size results because tumors with high T− frequen-
cies exhibit a clumped dispersion. This clumping of all cell types reduces proliferation
rates from like cell types interacting.

• Population sizes are relatively large for matrices from group I where only T+ and
TP coexist. These tumors have near random dispersion patterns by cell type; thus
eliminating non-random, positive assortative interactions by cell type. Matrices from
group II (low frequency of T−) have population sizes close to those of group I. In
group II, only T− cells exhibit substantial clumping; but they are too few to impact
the tumor’s overall population size.

Many of the payoff matrices result in large differences between the cell type frequencies in
the spatial model as compared to the nonspatial ESS (Table 5.4) We highlight 2 results:

• Spatial dynamics converge to the ESS for all of the matrices in group I. With these
matrices only T+ and TP persist in both replicator and spatial dynamics.
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• For matrices in groups II and III, the rarest cell type in the ESS suffers and equilibrates
at a lower frequency than predicted by the ESS. For matrices in group II (neutral),
T− does much worse than at the ESS. Also, a highly clumped dispersion occurs for
T− cells for these matrices. For matrices #16, #19 and #21 of group III, T+ cells do
much worse than predicted by ESS. In these cases, the T+ cells have a highly clumped
dispersion.

Figure 5.6 shows examples of different saturated equilibria with different levels of clump-
ing. For matrix #7 (group I), we see the spatial population converging to the ESS with a
random dispersion of both T+ and TP cells (Figure 5.6a). The tumors become quite well
mixed for all saturated equilibria from group I payoff matrices. For matrices #19 and #22,
respectively, the cell type that does worst relative to the ESS has the highest variance-to-
mean ratio at the saturated spatial equilibria (Figures 5.6b and 5.6c). This result holds for
all matrices in groups II (neutral) and III (negative).

(a) (b) (c)

Figure 5.6: Snapshots of the field at saturated equilibria when (a) spatial dynamics converge
to the ESS, (b) T+ does worse in space than it does at the ESS, and (c) T− does worse in
space than it does at the ESS. T+, TP , T− and dead cells are denoted by blue, red, green
and black color, respectively.

Whether cell clumping is observed or not seems to depend on the particular payoff matrix.
No cell clumping happens for the matrices in group I, in which ESSs have no T− cells. In
the spatial model, when T− cells die out, T+ and TP cells can only proliferate by interacting
with each other, because the diagonal of each payoff matrix is 0. We conclude that the
inter-cell type facilitation leads to the two cell types becoming well mixed with each other.
Cell clumping (either T+ or T− cell clumping) is observed for matrices in groups II and
III, for which ESSs have three types present. Interestingly, across all matrices, TP always
shows low levels of clumping. Its dispersion is always near random, or for some matrices,
over-dispersed. In the first 10 generations, all cell types exhibit a clumped dispersion, due to
the small dispersal radius. However, TP cells always grow fast and spread rapidly across the
field, because TP cells enjoy an initially high average payoff when compared to other types,
i.e., 1

3(c+d) ≥ 1
3(a+ b) ≥ 1

3(e+f) or 1
3(c+d) ≥ 1

3(e+f) ≥ 1
3(a+ b). The spread of TP cells

provides a higher probability of interacting with the other two cell types. As a result, TP

cells keep growing and spreading. Eventually, TP cells become randomly or over-dispersed
throughout the tumor.
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5.4 Effects of the frequency-dependence radius, the
dispersal radius and the density-dependence radius
on spatial equilibria

In this section we investigate the effects of independently varying the frequency-dependence,
dispersal and density-dependence radius on the eco-evolutionary dynamics of the spatial
model. The spatial game will be analyzed with matrices #7 (group I; no T− cells in the
ESS), #8 (group II; low frequency of T− cells in the ESS), and #22 (group III; high frequency
of T− cells in the ESS) as these are typical representatives of their groups. The results are
averaged over five runs for each of these matrices. However, the variance in these runs is
very small.

5.4.1 Effect of the frequency-dependence radius

We compared the outcomes of the spatial game when the frequency-dependence radius was
set to 0.5, 1, 10, and 50, while holding the dispersal and density-dependence radii to 1.
Regardless of the frequency-dependence radius, T− cells die out for the group I matrix #7
(Figure 5.7b). For group II matrix #8 and group III matrix #22 the frequencies of T−

approach their nonspatial ESS values as the frequency-dependence radius increases (Fig-
ure 5.7b).

(a) Frequency of T − (b) Variance-to-mean ratios

Figure 5.7: Effect of the frequency-dependence radius. (a) Saturated equilibrium frequency
of T− cells for matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios
of all types for matrices #7, #8 and #22.

Interactions become random with respect to cell type once the frequency-dependence
radius encompasses the entire field. When this happens the equilibrium of the spatial model
must converge on the ESS of the nonspatial model: the probability of a focal cell interact-
ing with a neighbor of type j ∈ T equals the overall frequency of type j. The saturated
equilibrium frequencies are very close to the ESS (with maximal difference ±0.001). As
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the frequency-dependence radius increases all cell types exhibit an increasingly clumped
dispersion (Figures 5.7 and 5.13). The variance-to-mean ratio increases with the frequency-
dependence radius because the game now involves distant cells even as daughter cells remain
close together.

5.4.2 Effect of the dispersal radius

We compared the outcomes of the spatial game when the dispersal radius was set to 0.5,
1, 10, and 50, while holding the frequency-dependence and density-dependence radii at 1.
Like increasing the frequency-dependence radius, increasing the dispersal radius results in
a convergence of the cell type frequencies on the ESS (Figure 5.8b). Moreover, when the
dispersal neighborhood covers the entire field (dispersal radius of 50), the spatial equilibrium
frequencies are nearly identical to their ESS (with difference±0.001). Increasing the dispersal
radius reduces the variance-to-mean ratio for all cell types. A high dispersal radius disperses
daughter cells widely and creates a within cell type dispersion pattern that is random or
even over-dispersed (Figures 5.8b and 5.13).

(a) Frequency of T − (b) Variance-to-mean ratios

Figure 5.8: Effect of the dispersal radius. (a) Saturated equilibrium frequency of T− for
matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios of all types
for matrices #7, #8 and #22.

5.4.3 Effect of the density-dependence radius

We compared the outcome of the spatial game when the density-dependence radius is set
to 0.5, 1, 10, and 50, while holding the frequency-dependence and dispersal radii at 1. The
frequencies of cell types in the saturated community converge to the ESS as the density-
dependence radius increases. Group I matrix #7 leads to no T− cells in the field. For group
II matrix #8 and group III matrix #22 the frequencies of T− approach their nonspatial
ESS values as the density-dependence radius increases (Figure 5.9b). We observe very high
levels of clumping by cell type when the density-dependence radius is 10 and 50. Curiously,
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a density-dependence radius of 10 results in a higher variance-to-mean ratio than a density-
dependence radius of 50 (Figure 5.9b). When the density-dependence radius is low the tumor

(a) Frequency of T − (b) Variance-to-mean ratios

Figure 5.9: Effect of the density-dependence radius. (a) Saturated equilibrium frequency of
T− for matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios of all
types for matrices #7, #8 and #22.

expands to fill the entire space (Figure 5.11a). At a high density-dependence radius of 10
the tumor becomes a number of densely packed clusters with empty spaces between these
clusters (Figure 5.10b). Each cluster has a very high density in the interior and a much lower
density at its exterior. With a density-dependence radius that encompasses the entire space
(= 50), we observed one large cluster of cells (Figure 5.10c). A large density-dependence
radius permits cells to proliferate rapidly and for prolonged periods. It takes longer for
density limitations to be reached. Yet, the low dispersal radius causes cells to bunch up as
clusters (= 10; Figure 5.10b) or as a single cluster (= 50; Figures 5.11c and 5.13).

(a) (b) (c)

Figure 5.10: The appearance of the simulated tumors for matrix #22 when the density-
dependence radius is set to: (a) 1, (b) 10, and (c) 50. Each figure is at saturated equilibrium
following 2000 generations.
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Figure 5.11: Cell numbers per subsquare of the simulated tumors for matrix #22 when the
density-dependence radius is set to: (a) 1, (b) 10, and (c) 50. These cell density distributions
correspond to the panels of Figure 5.10.

(a) (b) (c)

Figure 5.12: Simulated tumors after 2000 generations for matrices (a) #7, (b) #8, and (c)
#22. The density-dependence radius has been set to 50, thus resulting in densely packed
tumors. Furthermore, there are varied levels of clumping by cell type and by matrix as
shown by the variance-to-mean ratios. For matrix #8 and #22, the T− cells are strongly
clumped and over-dispersed, respectively.

5.5 Conclusion & discussion

We used an agent-based, spatially explicit model to study tumor dynamics as an evolution-
ary game. The individual cancer cells represent the players, three cell types represent their
strategies, and interactions between cells result in payoffs that influence a given cell’s prolif-
eration rate. We used a continuous space model meaning that cancer cells can occupy any
point in the space. We included density-dependent effects where limited space and resources
place upper bounds on the number and density of cancer cells inhabiting the resulting tumor.
We included frequency-dependent effects by having three cell types. The proliferation rate
of a given cancer cell is influenced by its type and the cell types around it. The tumor itself
grows as daughter cells disperse some distance from proliferating cells.

The model is intended for metastatic castrate-resistant prostate cancer where up to three
different cell types may coexist within the tumor: T+ (cells with androgen receptors and re-
quiring an external source of testosterone), TP (cells capable of producing their own testoster-
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Figure 5.13: Simulated tumors resulting from setting either the frequency-dependence, dis-
persal, or density-dependence radius to the highest level (shown as the rows) while holding
the other two at 1. The columns represent different payoff matrices, and the simulations were
run for 2000 generations insuring a saturated equilibrium.

one, some of this becomes publicly available to other cells), and T− (cells that lack androgen
receptors, and neither synthesize nor require testosterone). We extend a matrix game model
based upon these three cancer cell types and their known biology (Zhang et al., 2017). Of
interest in the modeling is the resulting success and frequency of the T− cells as this likely
relates to the success of subsequent therapy.

Advanced prostate cancer generally metastasizes to the bone and may eventually form
tumors in one to over a dozen locations within the patient’s skeleton. Such tumors seem to be
largely composed of T+ cells that respond well to anti-androgen therapy. But, therapy may
fail and the tumor progresses to metastatic androgen resistance. This may occur through
the emergence of TP cells and/or T− cells. By producing testosterone, TP cells “rescue” the
T+ cells and may promote their resurgence within the progressing cancer. The next line of
therapy (e.g., abiraterone) targets the mechanisms used to create testosterone. If T− cells
are absent to rare then such therapy should show success, but if T− cells form a sizeable
portion of the tumor, then such patients will be non-responders and the targeted therapy
may fail immediately. The underlying matrix game can take on 22 distinct forms based on
the rank-ordering of payoffs within the matrix. Interestingly, 12 of these show an absence of
T− at the ESS, 4 show a low frequency of T− cells coexisting with T+ and TP cells, while
6 show a high frequency of T− cells at the ESS.
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Our model is intended to make several advances and contributions to spatially expli-
cit models of tumor growth. First, we consider different mortality regimes that result in
substantially different patterns of tumor growth. In comparing scenarios corresponding to
different mortality regimes we see distinctive transient and saturated equilibria. Second, we
compare the saturated equilibria frequencies of cell types in the spatial game with the ESS
of the nonspatial matrix game. Third, we vary the neighborhood size over which density-
dependent and frequency-dependent effects can occur – such a case study had not yet been
performed with spatial models. Fourth, we can vary the dispersal distance of daughter cells
— this is an important component of what have been termed “grow-or-go” spatial models
of tumor growth where cancer cells are presumed to have a trade-off between proliferation
rate and dispersal ability (Gallaher and Anderson, 2013).

We ran six scenarios corresponding to mortality regimes representing extremes of stochastic
mortality rates versus fixed cell lifespans, and rapid decomposition versus no decomposition
of dead cells. With a fixed lifespan, the tumor grows outwards as a ring leaving behind a
core of dead cells that eventually decompose to leave an empty interior. This mimics the
formation of a necrotic core as seen in many tumors. A ring of dead cells forms a barrier
that retards the proliferation of nearby living cells. But, eventually some daughter cells
cross into the space left by the now decomposed dead cells. The living cells that cross the
barrier create their own smaller rings of proliferation and mortality that maintain various
empty “necrotic” spaces. These successive generations of proliferation and death create an
ever changing mosaic of rings of living cells, dead cells and empty spaces. While we did not
explore this in detail, it presents an intriguing simulation applicable to real tumors where
the necrotic regions are not static but subject to recolonization. When dead cells never
decompose and simply accumulate the simulated tumor at first grows outwards even as a
necrotic core forms. In this case the necrotic region becomes crowded with dead cells and
can never be recolonized by living cancer cells. In the absence of continued expansion, the
tumor would eventually run out of space and becomes a mass of dead cells. What of actual
tumors? A fairly regular turnover of cells within the tumor via cell births and deaths and a
rapid decomposition of dead cells are likely the norm (Gordon, 2003; Nathan, 2006). Nec-
rotic regions likely occur not because of fixed life spans of cancer cells, but because of tumor
heterogeneity in other properties such as blood flow, oxygen and pH.

With respect to the frequency of cancer cell types, we examined the transient and satur-
ated equilibria of the model tumors. We observe an interesting difference between these two
equilibria, which corresponds to actual tumors. Prostate cancer at an early stage, i.e., in
our case in a transient phase, is likely more treatable as the number of T− cells remains low.
Ideally, treatment should start at this early stage and this makes studying spatial dynamics
at a transient phase important. Yet, diagnosis or therapy may not occur until a saturated
equilibrium has occurred where a given tumor has reached a large size and become less
treatable.

In our spatial model, the saturated equilibrium frequencies of cell types frequently de-
viated from the nonspatial ESS, and such discrepancies vary with the 22 possible payoff
matrices. Matrices with an ESS of just two cell types show no discrepancies between the
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spatial and nonspatial models. When the ESS includes all three cell types, the rarest strategy
at the ESS (generally the T+ or T− cell type) tends to suffer in the spatial game and exhibit a
lower steady-state frequency than predicted by the nonspatial ESS. In fact, for some matrices
with very low T− frequency at the nonspatial ESS, T− goes extinct for most replicates of
the simulations. Clumping or kin effects explain this property of the spatial model. With a
relatively small dispersal radius, cell types become clumped and hence a cell type interacts
with its own type more than would be expected by chance. This is a standard property of
many spatial models, and in fact can promote the evolution of cooperation (Ohtsuki et al.,
2006). But here, this matrix model of prostate cancer “punishes” like interacting with like,
and so positive assortative interactions reduce proliferation rates. The more clumped a cell
type, the greater this disadvantage. With just two cell types, there is little clumping. With
three cell types, all else equal, the rarer cell types become more clumped, and T− seems to
become more clumped than either TP or T+.

The clumping of cell types observed in our spatial model has significance for drawing
inferences from the distribution of different cell types within actual tumors. The spatial
segregation of cell types sometimes observed in actual tumor biopsies may indicate underlying
heterogeneity in blood vasculature, pH, or position with respect to the edge or interior of the
tumor (Mansury et al., 2002; Friedl and Wolf, 2003). But, as in our model, it may not indicate
any underlying habitat structure within the tumor. The clumped distribution of cancer cells
by type may simply reflect limited dispersal of daughter cells following proliferation. As
expected, increasing the dispersal radius eliminates clumping and results in a convergence
of the spatial model’s cell-type frequencies with those of the nonspatial ESS. Complete
convergence occurs when the dispersal radius encompasses the entire space as well.

While a small dispersal radius promotes clumping, a small frequency-dependence radius
acts against clumping as like interacting with like suppresses proliferation. The emergent
level of clumping reflects these opposing forces. Like the dispersal radius, increasing the
frequency-dependence radius results in convergence of the spatial model’s cell type frequen-
cies to those of the nonspatial ESS – but with an important caveat. Increasing the frequency-
dependence radius actually results in extensive clumping by cell type, sometimes resulting
in the near perfect segregation of cell types in space. When the frequency-dependence ra-
dius encompasses the entire tumor, then cell-cell interactions occur at random, regardless
of clumping. Hence, frequency interactions no longer counterbalance the clumping caused
by a limited dispersal radius. Our results highlight to the need to pay more attention to
the interplay between the distance over which cells disperse and the neighborhood size over
which frequency-dependent interactions take place. For instance, in grow-or-go models dis-
persal occurs at a larger scale than cell-cell interactions. The converse happens in models
where a cell experiences the collective or diffuse actions of a large number of perhaps distant
neighbors. Measuring or inferring the spatial scale of dispersal versus cell-cell interactions
within actual tumors from biopsies presents both an opportunity and a challenge.

In our spatial model, we could independently vary the radius at which tumor cells ex-
perience the negative effects of competition from neighbors and the radius at which cells
interact in a frequency dependent manner based on their type. Whereas increasing the dis-
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persal radius and the frequency-dependence radius causes the cell type frequencies of the
spatial model to converge to those of the nonspatial ESS, increasing the density-dependence
radius merely causes incomplete convergence. Increasing the density-dependence radius rel-
ative to the dispersal radius results in different dispersion patterns of cells regardless of type.
When smaller than the dispersal radius, the cancer cells become almost uniformly dispersed
in space. When the density-dependence and dispersal radii are equal, the cancer cells are es-
sentially randomly dispersed. When the density-dependence radius is ten times the dispersal
radius, the model no longer produces a continuous tumor spread across the space. Instead,
the space is occupied by clusters of smaller tumors. The small dispersal radius promotes
clumping. The empty spaces between the micro-tumors remain because of the long-distance
suppression of proliferation by the densely packed cells of the clusters. Finally, when the
suppressive effects of the cancer cells on each other’s proliferation rates span the entire space,
then the tumor becomes a very dense single mass that does not expand to fully fill the space.
The dispersal radius keeps cells clumped while the space-wide suppression of proliferation
prevents expansion beyond the boundaries of the tumor mass into the empty space.

Spatial models that have been introduced in the context of evolutionary game theory
are usually confined to spatially explicit structures, such as graphs or lattices, including
fields composed of identical hexagonal or square cells. In these models, individuals are
represented as vertices of the graph or cells in a regular field. Individuals usually interact
with their immediate neighbors and their payoffs and strategies depend on and evolve with
these interactions. The simplest forms of such models were originally adopted to study
evolution of social behaviors (Nowak and May, 1993). Early models had no births and deaths.
Later ones included additional interactions, reproduction, and death rules to study evolution
(Gerlee and Anderson, 2007; Simpson et al., 2007; Reichenbach et al., 2007). Empty vertices,
created when cells die or move and limitations on cells growth were included in these models
as well. While such models are more general than the original ones, they are still limited
by assumptions on the structure of the field and definitions of the neighborhood. In this
paper we went beyond rigid spatial models, by putting forward a continuous-space model of
tumorigenesis. The advantage of using such a model is the flexibility of the continuous space
and of the action rules. In our previous work we have shown how varying a fixed number of
neighbors majorly impacts the predictions of grid models (Abrudan et al., 2016). Moreover,
the continuous-space models seem to be more appropriate for modeling cancer where tumor
cells may occur throughout a space and at very different local densities. Even though
more rigid spatial models can be computationally efficient, this efficiency decreases rapidly
when population sizes become large or when the radii of density-dependence, frequency-
dependence, and dispersal increase. Our implementation of the continuous-space model is
efficient. A simulation running on a standard computer cloud takes a matter of minutes,
independent of population or interaction radii size.

In summary, we have shown that spatially explicit evolutionary models often provide
outcomes that differ from those in nonspatial ones. This, together with the spatial character
of real tumors, suggests that space is a key element of tumorigenesis. Moreover, we have
shown that continuous-space models are appropriate for modeling tumor growth, as they
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allow for flexibility of interaction rules and the spatial scales crucial to cell proliferation. In
this work, we show how the scale at which cancer cells disperse and experience frequency-
and density-dependent processes strongly influences the frequencies and dispersion patterns
of cell types within the tumor. As a result, we have discovered various distinct cell dispersion
patterns in space, such as near complete cell segregation, random cell dispersion, and over-
dispersion. Furthermore, the scale at which density-dependent processes operate can alter
tumor architecture and create continuous masses of cells, separate clusters of cancer cells,
and dense tumor masses surrounded by empty space. Some of our results accord with
clinical and laboratory observations and others may help in the further development of
spatial evolutionary models of cancer.

Our model and results invite future research. First, the scenario in which rings of dead
cells form needs further and more detailed analysis, as results from such scenarios resemble
real tumors for many cancer types. Second, the spatial model can be expanded to include
blood vasculature and the immune system to determine tumor growth and heterogeneity.
Third, the model can be used to test various regimes of cancer treatment. Of particular
interest are therapies such as adaptive or double-bind therapies (Gatenby et al., 2009a,b).
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CHAPTER6
Conclusions

In this thesis we have proposed several game-theoretical spatial and nonspatial models for
studying biological interactions in three diverse areas: predator-prey interactions among
mites, competition among microbial species, and tumorigenesis in prostrate cancer involving
three types of cancer cells (Chapters 2–5). For each of these three problems, we selected a
different model which we felt described the problem best, we analyzed their dynamics with
respect to several settings and provided reasons for differences in their predictions.

This chapter concludes the thesis. In Section 6.1 we will briefly present our results as
answers to the research questions posed in Section 1. In Section 6.2 we will discuss limitations
of the research of this thesis and possibilities for future research steps.

6.1 Answers to research questions

Chapter 2 focused on modeling summer-season interactions between the predatory mites
(Acari: Phytoseiidae) and the fruit-tree red spider mites (Acari: Tetranychidae) as a nonspa-
tial game, to answer Research question 1: “ Can a straightforward game-theoretical exten-
sion of a predator-prey Lotka-Volterra model capture summer-season interactions between
the predatory mites (Acari: Phytoseiidae) and the fruit-tree red spider mites (Acari: Tetra-
nychidae) with a sufficient level of realism?”

In the game we designed, the time-dependent decisions for the predator and the prey
represent the proportion of their populations being active, as opposed to those who are in
diapause, which is a state of physiological rest. Here, the fitness functions are different
from those known from classical evolutionary game theory: For the prey, its integral fitness

115



CHAPTER 6. CONCLUSIONS

is a function of the number of individuals entering the diapause during the entire summer
season, while for the predator, its fitness depends only on the number of individuals at the
end of the summer season, independently of which strategies they have played. We found
the time-varying strategies maximizing the predator and the prey fitness via combination of
analytical methods (Hamilton-Jacobi-Bellman approach and method of switching surfaces)
and accurate constrained-optimization techniques for the discretized version of the problem.
As the optimal strategies that we found do not match laboratory and field observations, we
answer our research question 1 negatively.

However, if we go beyond this straightforward extension and include internal properties
of the individuals involved, as it is done in Staňková et al. (2013a), we can find optimal
strategies that match the observations very well. Arguable, such a model is more complex
as it involves two more dimensions, however it is still tractable. Another option would be to
model predator and prey individuals that are active or in diapause via separate differential
equations. Also here the complexity of the model would be increased, however we may get
model predictions closer to reality.

In Chapter 2 we did not focus on a spatial version of the predator-prey game, because
we considered the nonspatial model sufficient for capturing the critical elements of the inter-
action at hand. This is partially due to the fact that the laboratory and field observations
were carried out in a relatively homogeneous environment where the predatory mites and
the fruit-tree red spider mites are well mixed with each other when active. If the field be-
comes heterogeneous and/or the interacting parties are not well mixed, a spatial model may
be needed. Another lesson that we learned when finding optimal strategies for our game-
theoretical model, was that even relatively simple models may be analytically intractable
and, in such situations, we may do better with numerical computations and/or agent-based
simulations.

To understand better what spatial model is more suitable for a specific spatial problem, in
Chapter 3 we carried out a study comparing eco-evolutionary (population and frequency)
dynamics of models with the same assumptions except of their game field. This chapter
was motivated by the observation that there is much more effort invested into researching
the difference between eco-evolutionary predictions of very specific spatial and very specific
nonspatial models than into understanding how a specific spatial structure influences the
prediction of spatial models (Ohtsuki et al., 2007; Roca et al., 2009). We believe that full
understanding of the effect of a selected spatial structure on the game dynamics is a key to
understand which spatial models are more suited for certain biological problems than others.

The main question that we wanted to answer was Research question 2: “To what ex-
tent do the eco-evolutionary dynamics of the continuous-space model, discrete-space model,
and replicator dynamics differ from each other and why?”

Our answer to the first part of the question is very clear: The spatial models produce
very different eco-evolutionary dynamics, which are still quite different from those of the non-
spatial model. When analyzing various scenarios with different assumptions on individual
reproduction, dispersal, lifespan and interaction scales, the two types of spatial models gen-
erated strikingly different population sizes especially when the space was saturated. We hy-
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pothesized that this difference is caused by the so-called dispersal conflict in a discrete-space
model, which occurs when more individuals try to disperse into exactly the same position
in the discrete space. We observed that the continuous-space model generally allows a high
population size at saturation, while the discrete-space model usually allows only a low pop-
ulation size at saturation, even with the same density-dependence limit. This answers the
second part of the research question on why their dynamics differ. The different population
sizes at saturation, that are caused by a difficulty to find an empty cell in a discrete-space
model while the probability to find an empty spot in a continuous two-dimensional space
is 1, explain why the eco-evolutionary outcomes of the discrete-space and continuous-space
models often differ. Sometimes, interacting types may go extinct in a discrete space, but they
survive in a continuous space at saturation. Moreover, in our case studies the discrete-space
model is much more volatile in predictions per run when compared to the continuous-space
model and, therefore, less robust to the variations per run caused by the stochastic manner
of interactions in our model. When it comes to the stability properties of the outcomes,
the continuous-space model shows a more stable behavior than the discrete-space one and
concerning the stability of the steady points, the continuous-space model is closer to the
dynamics of the nonspatial model. However, so far the discrete-space models are much more
computationally efficient than the continuous-space models.

The dispersal conflict stood out as the main cause of the difference in the eco-evolutionary
dynamics of the discrete-space and continuous-space games and we found the predictions of
the continuous-space model to be more reliable.

There may be other reasons why a certain type of spatial model is more appropriate
than another. In our continuous-space model, the players occupy no area as opposed to the
discrete model. In microbial interactions, which are the main focus of Chapter 4, the cells
are assumed to have almost the same fixed size which does not even vary from strain to
strain (Kerr et al., 2002). Therefore, a discrete-space game played over a field composed of
equal cells seems appropriate to describe the problem. A microbial individual is reproducing
clonally into an empty neighboring cell, while this empty cell is made available when the
individual residing at this empty cell dies. This reproduction process is very similar to the
death-birth process (Nowak, 2006; Ohtsuki and Nowak, 2006) discussed in Chapter 1 and in
such a process the dispersal conflict is not expected. Another reason for selecting the discrete-
space model is that varying the spatial structure throughout the game was not required,
because the interactions took place only among adjacent cells. The main aim of Chapter 4
was to answer Research question 3: “When modeling microbial interaction by means of a
discrete-space model, what impact do the so-called interaction matrix (determining whether
or not a microbial individual of a particular species kills its neighbor by toxin secretion),
the neighborhood size and the interaction rules have on the rate of coexistence for different
types of players?”

To answer this question, we carried out a number of case studies to analyze the impact of
these factors on coexistence. Comparing discrete-space models with square and hexagonal
grids, we concluded that the coexistence rate is negatively correlated with the neighborhood
size. This seems intuitive as a higher number of neighbors implies that a focal cell may meet
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its predator more likely. Comparing a partially random selection rule (where each individual
in the game field was selected in a random sequence) with a random selection rule (where
some individuals may be selected while others not at all), we concluded that the choice of
selection rule has only a minor impact on the coexistence rate. Also, we often observed a
so-called “coexistence by small numbers” (see Figure 4.6): very few individuals of a certain
type can survive until the last generation of simulations, by hiding inside islands formed by
harmless neighbors, while no other individuals of this type survive.

We think continuous-space models are most appropriate for modeling tumorigenesis dis-
cussed in Chapter 5. This is because in reality cancer cells (i) may disperse into any
direction from their original positions and (ii) may have a heterogeneous and time-varying
morphology even within the same tumor. Therefore, we believe that modeling cancer requires
spatially explicit structures that are less rigid than imposed by discrete-space game fields,
in order to capture this flexibility of movement and morphology. In our model, we focused
on the impact of the fitness matrices and the three radii that influence the eco-evolutionary
(population and frequency) dynamics. These radii are (i) the frequency-dependence radius
within which cells interact with each other, (ii) the density-dependence radius within which
cells experience limits to population growth, and (iii) the dispersal radius which determines
the region in which daughter cells are being put in the field.

The goal of Chapter 5 was to answer Research question 4: “What is the impact of the
choice of fitness matrix on the observed processes and in how far do these processes depend
on the three radii mentioned before?” Our answer to this question can be summarized as
follows: (i) when just two cell types coexist in the nonspatial ESS, then the spatial game
leads to stable frequencies equivalent to the ESS of the nonspatial game, (ii) with three
cell types coexisting in ESS, discrepancies between the spatial and nonspatial dynamics
occur. Such discrepancies happen because cell types become more or less clumped in space,
leading to non-random assortative interactions between cell types. Case studies with various
spatial scales (i.e., represented as parameters) indicated the following: (i) Increasing the
frequency-dependence radius leads to a higher clumping of each cell type, (ii) increasing
the density-dependence radius leads to the formation of densely packed tumor clusters in
space, (iii) increasing the dispersal radius promotes increased mixing of all cell types. To
our knowledge, the effects of these spatial scales on eco-evolutionary dynamics have not
been explored in cancer models. The fact that our continuous-space game of metastatic
castrate-resistant prostate cancer provides outcomes differing from those of the nonspatial
game, supports our claim that classical nonspatial models are insufficient for capturing the
key elements of tumorigenesis.

6.2 Extensions and limitations

Our spatial and nonspatial models were based on simplified assumptions on real-world biolo-
gical behaviors and as such could be extended and have certain limitations. We will discuss
these extensions and limitations below.

Chapter 2 – Our models can be extended into several directions. First, the introduced
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nonspatial game-theoretical models could be extended into spatial models to describe the
predator-prey interactions taking place between individuals that are not well mixed, for
example by including diffusion terms into our system of equations. Second, we still need
to analyze for what parameter domains the optimal strategies of the predator and prey
populations are evolutionary stable. Ultimately, the model with energy dynamics could be
also describing a long-term dynamics over multiple seasons. Alternatively, populations of the
active and diapaused mites could be modeled as separate state variables, or we could adopt an
agent-based approach to model behavior of individual mites. Comparing the predictions of
these alternative models with the ones developed in this thesis may lead to a more thorough
understanding of the mechanisms influencing the optimal behaviors of the predatory mites
and the fruit-tree red spider mites.

Chapter 3 – For the comparison between the two types of spatial dynamics, in
this chapter we studied three specific cases of the generalized Rock-Scissors-Paper game.
Moreover, we confined ourselves to three different numerical settings for this specific matrix
game and we did not go into very complex extensions of our spatial models (with stochastic
death/birth process, individual stochastic/deterministic movement, density-dependent pay-
offs, only portion of individuals interacting, etc). Compared to ESS, a more advanced concept
of evolutionary stability seems to be needed to describe stability properties for the spatial
models of finite populations more appropriately.

Chapter 4 – There are several possible directions for future research. First, our models
assumed that all individual population members remained at fixed positions in space, while
in reality the individuals move. We therefore wish to explore the effects of different mobility
rules on coexistence and relate our models to other studies on this aspect (Reichenbach et al.,
2007). Second, we focused on only two neighborhood sizes and this may be perceived as an
insufficient support for our claims. However, considering the stochasticity of the models,
theoretical proof of our claim may be impossible to obtain as one would need an accurate
population dynamics approximation of the model with a neighborhood of size n in order to
be able to use mathematical induction with respect to the neighborhood size to prove our
claim. Therefore, a less elegant but certainly feasible option is to carry out case studies
with many different neighborhood sizes to confirm our findings. Third, while we observed
that a varying neighborhood size may influence the predictions of the spatial models, we
would like to compare our predictions to those of the continuous-space model of the same
interactions, as in such a continuous-space model, the variance of every individual’s number
of neighbors may be high. Fourth, it would be interesting to examine what happens if the
rates at which one type is killing another type were to be taken into account. Finally, an
interesting direction would be to study partial coexistence of types instead of coexistence of
all types, as explored in this thesis.

Chapter 5 – There are several future directions. First, tumor development in the
transient phase needs to be further investigated, as the main part of this chapter focused
on the saturated tumor. Treatment should start at an early stage and this makes studying
spatial dynamics in the transient phase important, although sometimes, diagnosis or therapy
may not occur until a saturated equilibrium has occurred where a given tumor has reached
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a large size and has become less treatable. Second, the scenario in which rings of dead
cells are formed, remains to be further examined, as tumors in such a scenario resemble real
tumors for many cancer types. Third, the spatial model can be expanded to include blood
vasculature to determine tumor growth and heterogeneity, especially when we want to test
various regimes of cancer treatment. This in fact is a topic of our current research efforts,
which we believe will make the models more realistic. Also, for some types of cancer a 3-
dimensional model may represent the tumorigenesis more realistically than a 2-dimensional
model (Chitcholtan et al., 2012). It would be interesting to see in how far an extension of our
model from 2-dimensional space into 3-dimensional space still provides comparable results.

Moreover, in our spatial model the proliferation probabilities present in the fitness matrices
satisfy inequalities representing a tumor after androgen deprivation therapy, while the spe-
cific values for these probabilities were selected more or less randomly. The main reason
for this is that at the moment it is impossible to measure the proliferation probabilities of
cancer cells in vivo. With advancement of the techniques for measuring tumorigenesis we
should be able to validate our model with the real data. As our model is spatial, it could
be additionally validated using MRI imaging once such imaging becomes more frequent and
once we overcome difficulties with imaging of metastases present in the bone, which is very
typical for metastatic castrate-resistant prostate cancer. Finally, our models can help with
designing the so-called evolutionary enlightened cancer treatment. This treatment focuses
on controlling the evolution of resistant cancer phenotypes as opposed to a more traditional
“treat to kill” regimen, which tries to kill all cancer cells and usually fails due to evolution
of resistance in cancer cells.

6.3 Research avenues more far ahead

This thesis opens up several new promising research avenues. It allows for studying some
spatio-temporal characteristics of human population. For example, our spatial models can
be adopted for studying rural-urban migration and for modeling and predicting (human)
population growth. These proposed research avenues are explained in more detail below.

Studying rural-urban migration via spatial evolutionary games – In many coun-
tries, rates of rural-urban migration (i.e. movement of people from rural areas to urban areas
within a country, often the metropolitan cities of a country; also known as urbanization) are
increasing (Zhang and Shunfeng, 2003; Lucas and Robert, 2004) and more than half of the
world’s population now lives in cities (World Health Organization, 2016). While there are
many causes for rural-urban migration, the economic reasons outweigh the non-economic
ones (Lucas and Robert, 2004; Williamson, 1988). In general, increase in rural-urban migra-
tion may lead to problems such as transport congestion, lack of sufficient housing, environ-
mental degradation, over-crowdedness and higher chances for outbreak of disease/epidemics
in the metropolitan areas. Lucas and Robert (2004) reports that for example in Mexico or
Philippines high portions of immigrants to the metropolitan cities are worse off than they
were in the rural areas they came from, as metropolitan cities display severe inequalities in
housing provision, healthcare and employment. Some people want to escape these problems
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by moving away from the cities. This process is referred to as counter-urbanization (Nefe-
dova et al., 2016). While the data regarding rural-urban migration accumulates and some
researchers have tried to analyze and predict the rural-urban migration using mathematical
or simulation models (Liu et al., 2005; Li et al., 2012), just few of these models are spatially
explicit (O’sullivan and Torrens, 2001; Dabbaghian et al., 2010). In these spatial models,
cellular automata (CA) have been used in studying rural-urban migration. These models
considered local interactions between cells representing households and included (positive or
negative) local events (such as job opportunities, job loss, crime, marriages, etc.) to match
census data, while eco-evolutionary equilibria of these models were not discussed. To our best
knowledge, no game-theoretical model which focuses on long-term effects of spatio-temporal
individual choices on the rural-urban migration exists. To bridge this gap, we can adjust the
spatially explicit game-theoretical models introduced in this thesis to examine this process,
with fitness payoffs varying in both space and time (as environmental conditions, educational
opportunities, unemployment do), and player types relating to different migration decisions.

Modeling (human) population growth – Studying (human) population growth
has always attracted much interest (Meyer and II, 1992; Ehrlich and Holdren, 1971; Ger-
land et al., 2014), as only good understanding of the population growth can lead to useful
decisions regarding some population-related issues, such as population migration manage-
ment policy, land use planning, educational resources configuration. The rapid population
growth is without doubt one of the critical societal issues nowadays (Gerland et al., 2014).
The world’s population has doubled in the past 50 years, and is still increasing at a rapid
pace (Bongaarts, 2009). This rapid population growth, particularly observed in developing
countries, is not only a demographic problem, but also influences social, economic and envir-
onment development. According to Gerland et al. (2014); Lam and Duryea (1999); Malhotra
and Schüler (2005); Lan and Kuang (2016), there are multiple determinants that can slow
down population growth. For example, women’s increasing educational attainment stands
out as contributing to population decline in most developing countries. Not only because
women’s improved education exposes them to modern values and ideas that emphasize in-
dividualism, but also because women’s economic independence enables them to decide for
themselves on the number of children they desire. Another example may be the Chinese state
birth control policy, as the country’s fertility decline (since the 1970’s) is directly related to
such a birth control policy, but is perceived as a very controversial (and often unethical)
measure (Coale, 1984). Except of these determinants, there are other factors that might
impact population growth, such as immigration or gender-bias policies, or individual beha-
viors regarding selecting jobs or partners (Bongaarts, 2009). These individual behaviors can
be interpreted as interactions in the “game of living”. Just as how we specified the rules
of generalized Rock-Scissors-Paper games (Chapter 3), microbial interactions (Chapter 4)
and tumorigenesis (Chapter 5), the rules of a game of living regarding individuals’ status
(such as an employment or marriage status, fertility, retirement age, or expected life length)
can be incorporated into the models that we have developed. For example, age is a factor
that affects someone’s education, marital status, giving birth to a child, death, etc. The
education level of an individual can be estimated based on simple rules and probabilities,
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e.g., a child starts attending a primary school at the age of 6 or 7 years with a certain prob-
ability; he or she will spend 6 years in primary school with a certain probability, after that
he or she goes to a junior high school with a certain probability, etc. Fertility of both men
and women is age-dependent, education-dependent and policy-dependent. By varying these
factors in our models, we can examine the sensitivity of population growth with respect to
these determinants. Understanding their impact on population growth and decline is very
meaningful for finding proper solutions to the rapid population growth.
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Summary

This thesis focuses on modeling and understanding biological interactions through spatial
and nonspatial evolutionary game theory (EGT). In these interactions, one’s well-being often
depends on how the others are doing, making EGT an appropriate tool for understanding
biological problems.

In this thesis we apply three different game-theoretical (spatial and nonspatial) mod-
els for studying three different kinds of biological interactions, respectively: a nonspatial
model for the predator-prey interactions among mites (Chapter 2), a discrete-space model
for competition among microbial strains (Chapter 4) and a continuous-space model for tumor
growth involving three distinct types of cancer cells (Chapter 5). In Chapter 3 we investigate
properties of spatial structures which may influence the eco-evolutionary (population and
frequency) dynamics dramatically. Each of the Chapters 2 to 5 deals with a specific research
question, and how we apply spatial/nonspatial game-theoretical models for addressing these
research questions shapes this thesis.

In Chapter 2 we implement a nonspatial game for modeling the summer-season interac-
tions between the predatory mites (Acari: Phytoseiidae) and the fruit-tree red spider mites
(Acari: Tetranychidae). Based on biological observations, we design a nonspatial game which
expands the classical Lotka-Volterra two dimensional system of ordinary differential equa-
tions. In this nonspatial game, player decisions (“joining” or “opting out”) are time-varying,
fitness of the prey is an integral function with respect to the number of individuals playing
“opting out” during the entire summer season, and fitness of the predator is only depend-
ent on the number of individuals (regardless of which strategy is played) at the end of the
summer season. Combining analytical and numerical methods, we seek time-varying optimal
decisions for the predator and prey which maximize their fitnesses. Our results do not match
empirical observations. Our nonspatial model may be oversimplified and overlooking internal
properties of the predator and the prey. A more complex game-theoretical model, proposed
in Staňková et al. (2013a), suggests that one should include energy levels of predator and
prey individuals to reflect the studied predator-prey interactions more realistically.
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Chapter 3 focuses on a comparison of dynamics of discrete-space, continuous-space and
nonspatial games. We propose discrete-space and continuous-space dynamics as spatial
extensions of the (nonspatial) replicator dynamics. We use agent-based simulations to track
the eco-evolutionary dynamics of the spatial models. We observe that the two types of spatial
models generate strikingly different eco-evolutionary dynamics, which are also different from
those of the nonspatial ones. We hypothesize that this difference between discrete-space
and continuous-space games is caused by the so-called dispersal conflict (i.e., when more
individuals try to disperse simultaneously into exactly the same position in the discrete
space). When compared to the discrete-space model, we find the continuous-space model to
be more robust to variations per run, due to the stochastic nature of game rules, but much
less computationally efficient. To our best knowledge, this chapter is the first work that
devotes itself to understanding how different types of specific spatial structures influence the
predictions of spatial models.

Chapter 4 demonstrates an application of discrete-space games in studying scenarios
that lead to coexistence of microbial species. In this chapter we use discrete-space models
to mimic scenarios which examine the impact of the interaction matrix, of a varying fixed
neighborhood size and of different manners how the microbes are selected for interaction.
Here the interaction matrix is a binary matrix indicating whether cells of a specific type
can or cannot kill cells of a certain other type. Through case studies we observe that a
more dense interaction matrix leads to a lower coexistence rate. We also observe that a
higher coexistence rate is achieved with a relatively low neighborhood size when square and
hexagonal grids are compared. The exact manner of selecting a focal cell seems to have only
a minor influence on the coexistence.

Chapter 5 demonstrates an application of continuous-space games in modeling tumorigen-
esis of metastatic castrate-resistant prostate cancer involving three distinct types of cancer
cells. It is possible to achieve different levels of local saturation in a continuous-space model
and this feature makes the continuous-space model more appropriate for modeling cancer,
whose cells can grow throughout space and form very variable local densities. Based on the
state of the art cancer biology for these types, 22 potential fitness matrices are examined.
Further, we study the impact of three radii (i.e., frequency-dependence, density-dependence
and dispersal radii) on the eco-evolutionary dynamics of a tumor. We use agent-based simu-
lations to track the eco-evolutionary dynamics. Some of the predictions of our spatial models
nicely match observations on the development of real tumors. Moreover, we see that the
spatial dynamics are very different from the nonspatial ones, unless we make one of the three
radii very large. This supports our claim that nonspatial models are insufficient for modeling
tumorigenesis.

Finally in Chapter 6 we conclude the results of this thesis through a global perspective
and pose several directions for future research.
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Addendum: Valorization

Valorization is “the process of value creation from knowledge, by making it applicable and
available for economic or societal utilization, and by translating it in the form of new busi-
ness, products, services, or processes”. Examples of valorization include publications in
(academic or non-academic) journals, software programs, patents, ready-to-use models and
systems, suggestions to society, organizations or companies, etc. In this addendum we de-
scribe the valorization opportunities that result from this thesis. Through the following three
perspectives we demonstrate how this thesis can be of value for societal development.

Social relevance of the research Applying three different game-theoretical models, we
addressed three specific biological problems that are of a societal and economic relevance.

The model of the predator-prey game (Chapter 2) relates to the use of the predatory
mites (Acari: Phytoseiidae) for biological pest control of the fruit-tree red spider mites
(Acari: Tetranychidae) which feed on and damage apple trees. Traditionally chemicals are
used to control pest directly (Uboh et al., 2011), but it is shown that these chemicals have
many side effects. For example, chemicals that reside in the agricultural ecosystems not only
contaminate the environment, but may also cause human diseases like cancer (Mostafalou
and Abdollahi, 2013). Instead, using biological pest control (in agriculture) meets the societal
demand for healthy environmental conditions. Moreover, understanding the predator-prey
interactions (for problems at hand) helps to develop effective biological pest-control tech-
niques, which may also bring economic benefits. For example, better understanding of the
interactions between the predatory mites (Acari: Phytoseiidae) and the fruit-tree red spider
mites (Acari: Tetranychidae) may help farmers to use the predatory mites as a biological
pest management. Alternatively, one can intervene in the behavior of the prey/pest by
artificially changing the factors like temperature or light, such that the apple trees remain
undamaged.

The model describing interaction/competition among microbial species (Chapter 4) ad-
dresses mechanisms of microbial diversity. There is no doubt that microbial diversity proves
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to be very important to humans. Besides, this model also includes one type of the quorum
sensing mechanism that relates to virulence, i.e., the ability of a pathogen to infect a host.
The understanding of how bacteria coordinate and turn on their group behavior (as attack-
ing the host) can be very useful for developing new techniques that prevent pathogenicity
(Jayaraman and Wood, 2008). Antibiotics are what we use now to kill bacteria. However,
these are becoming less effective (World Health Organization, 2017) because killing bacteria
with (traditional) antibiotics selects for resistant mutants. Novel treatment strategies may
focus on interfering the bacterial quorum sensing mechanisms such that the bacteria become
less virulent. Such a treatment strategy may be more effective in controlling infectious dis-
eases and would be beneficial to the society. Our model mimics a simple case of quorum
sensing, but more complex mechanisms of quorum sensing can be studied as well.

The chapter on tumorigenesis (Chapter 5) addresses the eco-evolutionary dynamics of
metastatic castrate-resistant prostate cancer. Understanding these dynamics will be very
helpful in designing effective cancer treatment. The standard metastatic cancer therapy is
to kill as many cancer cells as possible by applying the maximum tolerable dose (MTD)
of drugs. Initially, this approach is often successful in reducing the tumor burden, but it
inevitably fails due to evolution of resistant cancer phenotypes. The MTD focuses only on
decreasing the tumor mass but it ignores the evolution of the tumor composition. However,
an effective treatment should also take into account how the cancer responds both in terms of
tumor mass and its composition. Moreover, such an effective treatment requires lower doses
of drugs (than the standard treatment does) and as such treatment becomes less expensive.
This more adaptive treatment is expected to lengthen patients’ lives and therefore has a
high potential of being beneficial for society.

Target groups of the research results The results of this research, as summarized in
Chapter 6, can be of interest to various target groups, but mainly to oncologists, cancer
biologists, microbiologists and those working in pest control. For game theorists the models
developed in this thesis are interesting from the application perspective.

Products that the research holds promise to The main products that resulted from
this thesis are software toolboxes for modeling biological interactions which can be applied
to a wide range of domains. We expect that the availability of more and more data on for
example pest control or tumorigenesis will allow us to tune and validate our models as the
codes in the toolboxes can be flexibly adjusted. So far, these toolboxes are still in a testing
phase but we expect that in due time these can be utilized commercially for making accurate
predictions.
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Melikyan, A. A. and Olsder, G. J. (2010). Boundary singularities and characteristics of
Hamilton-Jacobi equation. Journal of Dynamical and Control Systems, 16(1):77–99. 30

Merlo, L. M., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006). Cancer as an evolutionary
and ecological process. Nature Reviews Cancer, 6(12):924–935. 89
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Staňková, K., Abate, A., and Sabelis, M. W. (2013b). Irreversible prey diapause as an
optimal strategy of a physiologically extended Lotka-Volterra model. Journal of Mathem-
atical Biology, 66(4):767–794. 41, 42

Swanton, C. (2012). Intratumor heterogeneity: evolution through space and time. Cancer
Research, 72(19):4875–4882. 89
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Szabó, G. and Tőke, C. (1998). Evolutionary prisoner’s dilemma game on a square lattice.
Physical Review E, 58(1). paper nr. 69. 17, 47, 48
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Staňková, K. (2017). Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth
model. Journal of Theoretical Biology, 435:78–97. 15, 49

Zeeman, E. C. (1980). Population dynamics from game theory. In Nitecki, Z. and Robinson,
C., editors, Global Theory of Dynamical Systems, pages 471–497. Springer. 13, 50, 52

Zhang, J., Cunningham, J. J., Brown, J. S., and Gatenby, R. A. (2017). Integrating evolu-
tionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nature
Communications, 8(1). paper nr. 1816. 109, 153, 154, 155

Zhang, J., Fujimoto, J., Zhang, J., Wedge, D. C., Song, X., Zhang, J., Seth, S., Chow, C. W.,
Cao, Y., and Gumbs, C. (2014). Intratumor heterogeneity in localized lung adenocarcino-
mas delineated by multiregion sequencing. Science, 346(6206):256–259. 89

Zhang, K. H. and Shunfeng, S. (2003). Rural-urban migration and urbanization in china:
Evidence from time-series and cross-section analyses. China Economic Review, 14(4):386–
400. 120

Zietsch, B. P., Kuja-Halkola, R., Walum, H., and Verweij, K. J. (2014). Perfect genetic
correlation between number of offspring and grandoffspring in an industrialized human
population. Proceedings of the National Academy of Sciences, 111(3):1032–1036. 7, 48

141



142



APPENDIXA
Supplement of Chapter 1

This appendix shows the mathematical equivalence between replicator dynamics over n types
and Lotka-Volterra dynamics over n−1 types. Here our calculations are based on Hofbauer
(1981).

Lotka-Volterra dynamics ⇒ replicator dynamics The general form of the Lotka-
Volterra dynamics over n−1 types is given as

ẏi = yi(ri+
n−1∑
j=1

aijyj), i= 1, ...,n−1, (A.1)

where ri denotes the intrinsic growth rate (a constant) of type i, y(t) = (y1(t), ...,yn−1(t)) ∈
Rn−1 denotes the vector of population sizes of types at a given time t ∈ [0,+∞). We write
y= (y1, ...,yn−1) instead by omitting writing time variable t in the equations to follow. Every
entry of A = (aij) represents the effect of type j ∈ {1,2, ...,n− 1} on type i (i.e., type j is
enhancing, neutral to, or inhibiting the density growth of type i if aij is positive, zero, or
negative, respectively). Here every aij is a constant.

If we agree to increase the dimension of matrix A to n×n by including the intrinsic
growth rate r1, ..., rn−1, we obtain the matrix

A′ =


a11 · · · a1(n−1) r1
... . . . ... ...

a(n−1)1 · · · a(n−1)(n−1) rn−1

0 · · · 0 0

 .
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Notice that matrix A is part of A′, i.e., aij = a′ij for every i, j ∈ {1, ...,n−1}, and ani = 0 for
i ∈ {1, ...,n}.

Let us compactify the space of (A.1) – We introduce homogeneous coordinates by setting
yn = 1 (the same approach as Hofbauer (1981)). Now we can write equation (A.1) as

ẏi = yi(a′in+
n−1∑
j=1

aijyj),

= yi
n∑
j=1

a′ijyj , i= 1, ...,n. (A.2)

To obtain replicator dynamics we need to convert population sizes of types into frequen-
cies of types. Let us define the frequency distribution of types as x(t) = (x1(t), ...,xn(t))∈Rn

where xi(t) denotes the frequency of type i within the total population (of all types) at time
t and where

n∑
i=1

xi(t) = 1. We will write x= (x1, ...,xn) ∈ Rn instead. We move to

xi = yi
n∑
j=1

yj

, i= 1, ...,n, (A.3)

and here we assume the total population of all types is non-zero at any given moment, i.e.,
n∑
j=1

yj > 0 for t ∈ [0,+∞).

Further, equation (A.3) indicates

xn = 1
n∑
j=1

yj

, (A.4)

and

yi = xi
xn
, i= 1, ...,n. (A.5)

We write the derivative of xi from equation (A.3) as follows:

ẋi =
ẏi

n∑
j=1

yj−yi
n∑
j=1

ẏj

(
n∑
j=1

yj)2
,

= ẏi
n∑
j=1

yj

−
yi

n∑
j=1

ẏj

(
n∑
j=1

yj)2
. (A.6)
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Using equations (A.4) and (A.2), we continue calculating the derivative of xi:

ẋi = xnẏi−x2
nyi

n∑
j=1

ẏj ,

= xnyi
n∑
j=1

a′ijyj−x2
nyi

n∑
j=1

n∑
k=1

yja
′
jkyk,

= xnyi
n∑
j=1

a′ij
xj
xn
−x2

nyi
n∑
j=1

n∑
k=1

xj
xn
a′jk

xk
xn
,

= xi
xn

(
n∑
j=1

a′ijxj−
n∑
j=1

n∑
k=1

xja
′
jkxk),

= xi
xn

(eiA′x>−xA′x>), for i= 1, ...,n, (A.7)

where ei is the i-th row of an n×n identity matrix. Notice that in (A.7) the term 1
xn

is
positive (i.e., 1

xn
=

n∑
j=1

yj while we assume total population of all types is always positive).

If we assume the positive factor 1
xn

means a change in velocity with which the solution of
the system (A.7) moves, we can remove the term 1

xn
. In other words the trajectory in x is

given by

ẋi = xi(eiA′x>−xA′x>), for i= 1, ...,n.

Hence, we have converted the Lotka-Volterra model (1.7) over n−1 types into the replicator
dynamics (1.4) over n types.

Replicator dynamics⇒ Lotka-Volterra dynamics Suppose a population is composed
of n types. The general form of replicator dynamics is given by

ẋi = xi(fi(x)− f̄(x)) i= 1, ...,n, (A.8)

where x = (x1, ...,xn) ∈ Rn with xi ≥ 0 is the frequency of type i and
n∑
i=1

xi = 1, the fitness

of type i is fi(x) and the average fitness per type is f̄(x) =
n∑
i=1

xifi(x).
Next we introduce two preliminaries that are useful for our converting calculations:

• If we add a function h = h(xi) to all the fi(x)’s, this has the effect of replacing f̄(x)
by f̄(x) + h since h =

n∑
i=1

xih. Thus the right-hand side of equation (A.8) does not

change, i.e., ẋi = xi(fi(x)+h− f̄(x)−h) = xi(fi(x)− f̄(x)) for i= 1, ...,n. Now assume
the game is described by an n×n fitness matrix A, then

fi = eiAx
>, for i= 1, ...,n. (A.9)

If we add a constant c to all the entries in the j-th column of A (where j = 1, ...,n), this
has the effect of adding the function cxj to all the fi’s, so replicator dynamics (A.8)
do not change in this way. In particular, this means that, by subtracting the entry in
the last row (n-th row) from each column, we can assume that the payoff matrix A has
all entries in the bottom row as 0’s, without changing the replicator dynamics (A.8).
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• Equations (A.8) can be used for calculating d
dt

(
xi
xj

)
:

d

dt

(xi
xj

)
= ẋixj−xiẋj

x2
j

,

= xi(fi(x)− f̄(x))xj−xixj(fj(x)− f̄(x))
x2
j

,

= xi
xj

(fi(x)−fj(x)), for i, j = 1, ...,n.
(A.10)

To obtain Lotka-Volterra dynamics we need population sizes of types: Let y= (y1, ...,yn)∈Rn

denote the vector of population sizes of types and yi the population size of type i (and it
can either be a non-negative ratio or number), then

xi = yi
n∑
j=1

yj

.

where we assume the total population size including all types is always positive.
Let yn = 1 then

xn = 1
n∑
j=1

yj

(A.11)

and
yi = xi

n∑
j=1

yj = xi
xn
. (A.12)

Lending this equality (A.10) we can write equation (A.12) as

ẏi = yi(fi(x)−fn(x)). (A.13)

Suppose further we have chosen A to have its bottom row all 0’s (i.e., which we can do
without changing the equations). Then fn ≡ 0. Equation (A.13) becomes

ẏi = yifi(x),
= yieiAx

>,

= yi
n∑
j=1

aijxj ,

= yi(
n−1∑
j=1

aijxj +ainxn),

= yi(
n−1∑
j=1

aijyjxn+ainxn),

= xnyi(ain+
n−1∑
j=1

aijyj). (A.14)

If we assume the positive factor xn means a change in velocity with which the solution of
the system (A.14) moves, we can remove the term xn. In other words, the trajectory in y is
given by

ẏi = yi(ri+
n−1∑
j=1

aijyj), for i= 1, ...,n−1,
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where ri = ain. Hence, we have converted the replicator dynamics (1.4) over n types into
the Lotka-Volterra dynamics (1.7) over n−1 types.
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APPENDIXB
Supplement of Chapter 3

In this appendix we show plots of frequency dynamics, produced by continuous-space and
discrete-space models in two different case studies.

B.1 Results with respect to varying radii

This section relates to Chapter 3 and Case study 2, where we examined the impact of
varying interaction radius on frequency dynamics, which are achieved in the following spatial
models: the continuous-space model and the discrete-space models (with the “no placement”,
“stochastic placement” and “deterministic placement” scenarios, respectively).

Figures B.1, B.2 and B.3 show the frequency dynamics of matrices A+
1 , A+

0 and A+
−1,

respectively. Each subfigure shows the frequency dynamics for a different spatial game and a
different interaction radius (1, 2, 10 and 100). For this case study, individuals have a lifespan
of one generation.

B.2 Results with respect to increased lifespan

This section relates to Chapter 3 and Case study 3, where we examined the impact of
increased lifespan on frequency dynamics, which are achieved in the following spatial mod-
els: the continuous-space model and the discrete-space models (with the “no placement”,
“stochastic placement” and “deterministic placement” scenarios, respectively).

Figures B.4, B.5 and B.6 show the frequency dynamics of matrices A+
1 , A+

0 and A+
−1,
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Figure B.1: The frequency dynamics for the game with matrix A+
1 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 1 generation.

Figure B.2: The frequency dynamics for the game with matrix A+
0 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 1 generation.

respectively. Each subfigure shows the frequency dynamics for a different spatial game and a
different interaction radius (1, 2, 10 and 100). For this case study, individuals have a lifespan
of five generations.
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Figure B.3: The frequency dynamics for the game with matrix A+
−1 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 1 generation.

Figure B.4: The frequency dynamics for the game with matrix A+
1 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 5 generations.
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Figure B.5: The frequency dynamics for the game with matrix A+
0 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 5 generations.

Figure B.6: The frequency dynamics for the game with matrix A+
−1 for different interaction

radii (rows) and different spatial models (columns). Each subfigure shows the frequency
dynamics averaged over 15 runs while the frequency dynamics were achieved after 10000
generations per run. Here lifespan is 5 generations.
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APPENDIXC
Supplement of Chapter 5

This appendix provides supplementary materials for Chapter 5 listed as follows.

C.1 The nonspatial model

In this section we introduce a nonspatial model of metastatic castrate-resistant prostate
cancer (mCRPC) from Zhang et al. (2017) that we compare our spatial model to. When
individuals interact randomly with others over the entire field, the saturated equilibrium
strategy frequencies of our spatial game match those of the nonspatial ESS. In general, the
replicator dynamics (Hofbauer and Sigmund, 1998) represent one of the dynamics which,
under certain conditions, converge to the ESS.

For each cell type i∈ T, the replicator dynamics define the time change ẋi of cell frequency
xi:

ẋi = xi(eiAx>−xAx>), i ∈ T, (C.1)

with x(0) = (1/3,1/3,1/3) .Here matrixA is the fitness (or payoff) matrix, x= (xT+ ,xTP ,xT−)
is a vector of cell type frequencies, and ei is the i-th row of a 3× 3 identity matrix. Each
element aij of the fitness matrix A = (aij) defines a probability that a cell of type i will
produce a daughter cell of the same type when interacting with a cell of type j ∈ T. The
nonspatial model (C.1) assumes that the population of cells is well mixed and, therefore, a
probability that a cell of type i meets a cell of type j at time t is given by the frequency of
the j cells in the entire population at time t.
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We assume that each cell type competes most with its own type. Intra-type interactions
do not increase proliferation rates. For this reason, we have set the diagonal elements of
A equal to 0 to reflect this lack of effect. The off-diagonal elements are positive (but less
than 1) to reflect the lower competition between cell types and the gains that can accrue
to a cell type from interactions with an alternative cell type. Standardizing the elements
so that the off-diagonal elements are 0 may introduce a possible artifact. In the spatial
model these elements are the probability of proliferating when two cells interact, and hence
no proliferation can occur when two cells of the same type interact. Thus, at least two
cell types must be present for the tumor to grow. Frequency-dependent processes favor the
coexistence of the diverse cell types even as density-dependence limits the overall population
size of cancer cells within the space. In Section C.4 we show that having 0 elements on the
diagonal of the matrix does not influence any of the conclusions qualitatively.

Therefore, A has the form

T+ TP T−

T+ 0 a b

TP c 0 d

T− e f 0

.

The rest of the elements of matrix A are assumed to be distinct from each other and
from the interval (0,1).

From pairwise experiments in vitro and from the properties of the individual types of
cancer cells we derive the following inequalities regarding the coefficients a–f (Zhang et al.,
2017): a > f, c > e, b < d, a > b, c > d, and e > f.

The first three inequalities are based on observations regarding which cell type receives
the greater benefit when interacting with a particular cell type:

• a > f : A T+ cell profits more than a T− cell from interacting with a TP cell, because
a TP cell produces a systematic testosterone that a T+ cell needs for proliferation.
When testosterone is available a T+ cell is expected to have a higher proliferation rate
than a T− cell.

• c> e: A T+ cell creates a cellular infrastructure that a TP cell benefits from. Therefore,
we expect that a TP cell is more fit than a T− cell when interacting with a T+ cell.

• b < d: When interacting with a T− cell, a T+ cell receives no testosterone to proliferate,
while a TP cell may profit from less competition for resources.

The rest of the inequalities are based on observations regarding which cancer cell type
provides more benefit to a particular cell type:

• a > b: A T+ cell has a higher chance to proliferate when interacting with a TP cell
than when interacting with a T− cell, because a TP cell produces testosterone which
a T+ cell needs.
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• c > d: A TP cell will be more fit when interacting with a T+ cell than compared to its
interaction with a T− cell, as a TP cell gains extra resources from cellular infrastructure
that a T+ cell builds.

• e > f : A T− cell profits more from interacting with a T+ cell than from interacting
with a TP cell, because a T− cell may profit from the cellular infrastructure the T+

cell produces, while it cannot utilize a systematic testosterone produced by a TP cell.

While we know well which of the coefficients in the fitness matrix A are bigger than oth-
ers, it is currently impossible to measure their precise values. Therefore, as it was done
in Zhang et al. (2017), we assume that parameters a–f have distinct values from the set
{0.1,0.2,0.3,0.4,0.5,0.6}. There are 22 different orderings of such coefficients a–f satisfying
the six inequalities (Table 5.2), defining 22 distinct payoff matrices. We show how the non-
spatial model varies with respect to different a–f matrix coefficients. We provide a sensitivity
analysis of the nonspatial model regarding the matrix coefficients in Section C.2.

C.2 Sensitivity analysis

This section provides sensitivity analysis on nonspatial metastatic castrate-resistant prostate
cancer (mCRPC) model with respect to the individual matrix coefficient a–f . The protocol
is as follows: For each of the values from the set {0.1,0.2,0.3,0.4,0.5,0.6}, vary the element of
matrix A corresponding to this value by adding and subtracting 0.01, 0.02, . . . , 0.09, for all
22 matrices from Table 5.2, while keeping all other values the same. Note that the position
of the element with a particular value in matrix A may vary. For each of these 18 variations,
we report how many matrices belong to each of the groups, i.e., group I (positive), group
II (neutral) and group III (negative), and mean and variance of the difference of the ESS
frequencies obtained with respect to the base case with original values of the parameter.
Positive, neutral and negative refer to therapeutic prognosis based on the frequency of T-
cells that are unresponsive to abiraterone. The results are summarized in Figure C.1. For
all parameter variations the 3 groups of matrices are maintained, which means that our
observations are not sensitive to the magnitude of the matrix elements but rather their rank
ordering.

C.3 Tables of transient and saturated equilibria

This section includes tables C.1–C.3 with detailed information regarding the transient and
saturated equilibria for all scenarios introduced in Chapter 5.

C.4 Effects of zero diagonal

Here, we explore the consequences of having 0’s along the diagonal of our matrix model. To
do so we added 0.2 to all elements of payoff matrix A. We shall refer to this matrix with
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Scenario
1

Scenario
2

Scenario
3

G
roup

#
Transient

equilibrium
Standard

Transient
equilibrium

Standard
Transient

equilibrium
Standard

frequencies
deviation

frequencies
deviation

frequencies
deviation

(T
+

,
T

P
,

T
−

)
(T

+
,

T
P

,
T

−
)

(T
+

,
T

P
,

T
−

)
(T

+
,

T
P

,
T

−
)

T
+

,
T

P
,

T
−

T
+

,
T

P
,

T
−

I
(positive)

1
(0.5455,0.4543,0.0002)

(0.0039,0.0040,0.0001)
(0.5468,0.4532,0)

(0.0042,0.0042,0)
(0.5557,0.4443,0)

(0.0028,0.0028,0)
2

(0.5428,0.4564,0.0008)
(0.0035,0.0041,0.0004)

(0.5474,0.4528,0)
(0.0035,0.0035,0)

(0.5463,0.4537,0)
(0.0042,0.0042,0)

3
(0.5468,0.4523,0.0009)

(0.0044,0.0041,0.0007)
(0.5479,0.4521,0)

(0.0039,0.0039,0)
(0.5471,0.4529,0)

(0.0035,0.0035,0)
4

(0.4543,0.5455,0.0002)
(0.0030,0.0031,0.0002)

(0.4509,0.5491,0)
(0.0038.0.0038,0)

(0.4557,0.5443,0)
(0.0027,0.0027,0)

5
(0.4545,0.5446,0.0009)

(0.0048,0.0041,0.0011)
(0.4492,0.5508,0)

(0.0027,0.0027,0)
(0.4509,0.5491,0)

(0.0057,0.0057,0)
6

(0.4560,0.5435,0.0005)
(0.0035,0.0035,0.0005)

(0.4519,0.5481,0)
(0.0044,0.0044,0)

(0.4518,0.5485,0)
(0.0032,0.0032,0)

7
(0.3902,0.6095,0.0003)

(0.0025,0.0023,0.0004)
(0.3986,0.6014,0)

(0.0056,0.0056,0)
(0.3903,0.6097,0)

(0.0045,0.0045,0)
9

(0.3922,0.6070,0.0008)
(0.0044,0.0042,0.0005)

(0.3995,0.6005,0)
(0.0021,0.0021,0)

(0.3924,0.6076,0)
(0.0040,0.0040,0)

11
(0.3320,0.6670,0.0010)

(0.0036,0.0028,0.0010)
(0.3323,0.6677,0)

(0.0037,0.0037,0)
(0.3349,0.6751,0)

(0.0036,0.0036,0)
14

(0.5411,0.4583,0.0006)
(0.0031,0.0034,0.0008)

(0.5466,0.4534,0)
(0.0049,0.0049,0)

(0.5522,0.4478,0)
(0.0044,0.0044,0)

17
(0.4502,0.5491,0.0007)

(0.0034,0.0038,0.0013)
(0.4500,0.5500,0)

(0.0074,0.0074,0)
(0.4482,0.5518,0)

(0.0022,0.0022,0)
20

(0.3914,0.6081,0.0005)
(0.0045,0.0039,0.0009)

(0.3943,0.6057,0)
(0.0025,0.0025,0)

(0.3923.0.6067,0)
(0.0049,0.0049,0)

II
(neutral)

8
(0.3846,0.5970,0.0184)

(0.0046,0.0053,0.0052)
(0.3951,0.6049,0)

(0.0074,0.0047,0)
(0.3946,0.6054,0)

(0.0053,0.0053,0)
10

(0.3144,0.6655,0.0211)
(0.0057,0.0042,0.0061)

(0.3282,0.6718,0)
(0.0036,0.0036,0)

(0.3254,0.6746,0)
(0.0036,0.0036,0)

12
(0.5282,0.4251,0.0467)

(0.0060,0.0057,0.0020)
(0.5594,0.4406,0)

(0.0058,0.0058,0)
(0.5536,0.4464,0)

(0.0048,0.0048,0)
15

(0.4371,0.5391,0.0238)
(0.0024,0.0063,0.0048)

(0.4453,0.5547,0)
(0.0033,0.0033,0)

(0.4534,0.5466,0)
(0.0048,0.0048,0)

III
(negative)

13
(0.4208,0.4362,0.1430)

(0.0073,0.0044,0.0064)
(0.4220,0.4381,0.1399)

(0.0049,0.0059,0.0067)
(0.4301,0.4306,0.1393)

(0.0051,0.0044,0.0052)
16

(0.3745,0.4887,0.1368)
(0.0056,0.0055,0.0067)

(0.3824,0.4943,0.1233)
(0.0064,0.0078,0.0077)

(0.3759,0.4808,0.1333)
(0.0059,0.0026,0.0047)

18
(0.3341,0.5609,0.1149)

(0.0060,0.0041,0.0059)
(0.3421,0.5549,0.1030)

(0.0058,0.0047,0.0031)
(0.3186,0.5811,0.1003)

(0.0043,0.0071,0.0048)
19

(0.2008,0.3801,0.4191)
(0.0055,0.0047,0.0069)

(0.2084,0.4548,0.3108)
(0.0034,0.0035,0.0047)

(0.1931,0.5098,0.3071)
(0.0043,0.0052,0.0028)

21
(0.2323,0.6414,0.1263)

(0.0086,0.0065,0.0082)
(0.2096,0.6653,0.1251)

(0.0051,0.0040,0.0050)
(0.2112,0.6596,0.1292)

(0.0067,0.0055,0.0070)
22

(0.2157,0.6639,0.1204)
(0.0054,0.0055,0.0062)

(0.3307,0.6693,0)
(0.0057,0.0057,0)

(0.3284,0.6716,0)
(0.0022,0.0022,0)

Table
C

.1:
Transient

equilibrium
frequencies

ofspatialdynam
ics

for
each

fitness
m

atrix
for

scenario
1,

2
and

3.
T

he
frequencies

per
m

atrix
are

averaged
over

5
runs,the

standard
deviation

is
calculated

over
the

5
runs

as
well.
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Scenario
1

Scenario
4

Scenario
5

Scenario
6

G
#

Saturated
Standard

Saturated
Standard

Saturated
Standard

Saturated
Standard

r
equilibrium

deviation
equilibrium

deviation
equilibrium

equilibrium
deviation

o
frequencies

frequencies
frequencies

deviation
frequencies

u
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+
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T
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P
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T
−
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T
P
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T

−
)

(T
+

,
T

P
,

T
−

)
pI

1
(0.5474,0.4526,0)

(0.0028,0.0028,0)
-

-
(0.5511,0.4489,0)

(0.0035,0.0035,0)
(0.5481,0.4519,0)

(0.0048,0.0048,0)
2

(0.5482,0.4518,0)
(0.0037,0.0037,0)

-
-

(0.5464,0.4536,0)
(0.0023,0.0023,0)

(0.5494,0.4506,0)
(0.0046,0.0046,0)

3
(0.5469,0.4531,0)

(0.0045,0.0045,0)
-

-
(0.5502,0.4498,0)

(0.0029,0.0029,0)
(0.5517,0.4483,0)

(0.0035,0.0035,0)
4

(0.4515,0.5449,0)
(0.0038,0.0038,0)

-
-

(0.4509,0.5491,0)
(0.0027,0.0027,0)

(0.4502,0.5498,0)
(0.0014,0.0014,0)

5
(0.4505,0.5495,0)

(0.0032,0.0032,0)
-

-
(0.4511,0.5489,0)

(0.0038,0.0038,0)
(0.4457,0.5543,0)

(0.0024,0.0024,0)
6

(0.4512,0.5488,0)
(0.0041,0.0041,0)

-
-

(0.4524,0.5476,0)
(0.0039,0.0039,0)

(0.4497,0.5503,0)
(0.0017,0.0017,0)

7
(0.3987,0.6013,0)

(0.0036,0.0036,0)
-

-
(0.3964,0.6036,0)

(0.0008,0.0008,0)
(0.3952,0.6048,0)

(0.0038,0.0038,0)
9

(0.3992,0.6018,0)
(0.0024,0.0024,0)

-
-

(0.4000,0.6000,0)
(0.0009,0.0009,0)

(0.3977,0.6023,0)
(0.0028,0.0028,0)

11
(0.3287,0.6713,0)

(0.0019,0.0019,0)
-

-
(0.3290,0.6710,0)

(0.0034,0.0034,0)
(0.3273,0.6727,0)

(0.0037,0.0037,0)
14

(0.5482,0.4510,0)
(0.0019,0.0019,0)

-
-

(0.5456,0.4544,0)
(0.0050,0.0050,0)

(0.5451,0.4549,0)
(0.0061,0.0061,0)

17
(0.4561,0.5439,0)

(0.0039,0.0039,0)
-

-
(0.4521,0.5479,0)

(0.0037,0.0037,0)
(0.4530,0.5470,0)

(0.0057,0.0057,0)
20

(0.3991,0.6009,0)
(0.0014,0.0014,0)

-
-

(0.3972,0.6028,0)
(0.0046,0.0046,0)

(0.4006,0.5994,0)
(0.0018,0.0018,0)

II

8
(0.3916,0.6059,0.0025)

(0.0039,0.0033,0.0010)
-

-
(0.3925,0.6045,0.0030)

(0.0042,0.0039,0.0044)
(0.4006,0.5994,0)

(0.0042,0.0042,0)
10

(0.3280,0.6691,0.0029)
(0.0023,0.0024,0.0008)

(0.3318,0.6682,0)
(0.0020,0.0020,0)

(0.3270,0.6688,0.0048)
(0.0046,0.0039,0.0033)

(0.3280,0.6720,0)
(0.0031,0.0031,0)

12
(0.5419,0.4531,0.0050)

(0.0032,0.0034,0.0009)
-

-
(0.5470,0.4489,0.0041)

(0.0034,0.0041,0.0032)
(0.5526,0.4474,0)

(0.0044,0.0044,0)
15

(0.4494,0.5453,0.0053)
(0.0017,0.0016,0.0008)

-
-

(0.4490,0.5454,0.0056)
(0.0029,0.0020,0.0036)

(0.4527,0.5473,0)
(0.0026,0.0026,0)

III

13
(0.3324,0.3368,0.3308)

(0.0035,0.0027,0.0016)
(0.5543,0.4457,0)

(0.0021,0.0021,0)
(0.3327,0.3366,0.3307)

(0.0028,0.0031,0.0021)
(0.3263,0.3401,0.3336)

(0.0056,0.0038,0.0063)
16

(0.2506,0.4123,0.3371)
(0.0015,0.0018,0.0013)

(0,0.3961,0.6039)
(0,0.0037,0.0037)

(0.2513,0.4109,0.3378)
(0.0051,0.0052,0.0057)

(0.2070,0.4004,0.3927)
(0.0059,0.0066,0.0071)

18
(0.2518,0.5151,0.2327)

(0.0039,0.0030,0.0037)
(0.4011,0.5989,0)

(0.0033,0.0033,0)
(0.2446,0.5203,0.2351)

(0.0046,0.0058,0.0035)
(0.2557,0.5363,0.2080)

(0.0058,0.0060,0.0052)
19

(0.1342,0.3638,0.5021)
(0.0029,0.0039,0.0042)

(0,0.4049,0.5951)
(0,0.0031,0.0031)

(0.1301,0.3663,0.5036)
(0.0049,0.0037,0.0059)

(0.0097,0.3915,0.5988)
(0.0046,0.0022,0.0031)

21
(0.1525,0.6020,0.2455)

(0.0035,0.0036,0.0042)
(0.3275,0.6725,0)

(0.0059,0.0059,0)
(0.1537,0.5988,0.2475)

(0.0044,0.0039,0.0038)
(0.1579,0.6393,0.2028)

(0.0057,0.0043,0.0061)
22

(0.2218,0.6469,0.1313)
(0.0031,0.0028,0.0032)

(0.3294,0.6706,0)
(0.0023,0.0023,0)

(0.2203,0.6612,0.1184)
(0.0044,0.0048,0.0052)

(0.2745,0.6752,0.0503)
(0.0020,0.0028,0.0048)
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Figure C.1: Division of the matrices into groups per variation of the value from the set
{0.1,0.2,0.3,0.4,0.5,0.6}

increased elements as the enhanced matrix as opposed to the original matrix. By adding a
constant amount to each element, the nonspatial ESSs remain the same (Table 5.2).

We focused on Scenario 1 (mortality regime: 5 % stochastic death rate and removal
of dead cells after 5 generations). We examined three representative matrices, enhanced
matrices #7, #8 and #22 from groups I, II and III, respectively, under all combinations
of the three frequency-dependence radii (= 1, 10, 50), the three density-dependence radii
(= 1, 10, 50), and the three dispersal radii (= 1, 10, 50). In total there are 21 matrix and
parameter combinations. We ran simulations for 2000 generations and ran five replicates for
each parameter combination. The five replicates exhibited very small standard deviations
in terms of equilibrium frequencies and variance-to-mean ratios of cell types. The following
tables show the average outcome for each enhanced matrix.

In terms of conclusions, there were no qualitative differences between the results from
the enhanced and original matrices (Tables C.5, C.9, C.10 and C.11 and Figures C.2 and
C.3). When the dispersal, frequency-dependence and density-dependence radii are small,
the enhanced matrices produce greater within cell-type clumping (higher variance-to-mean
ratios). This is to be expected. When the density-dependence limit permits, a cell that
interacts with its own type now has some probability of proliferating which adds another
like-type cell to the clump. When the enhanced matrix has no T− at the nonspatial ESS,
both the enhanced and original matrices for the spatial game result in the ESS frequencies of
T+ and TP cells. When the nonspatial ESS has a very small frequency of T−, the resulting
spatial game (for enhanced matrix) results in a near absence of T−. When the nonspatial
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ESS has a sizable frequency of T−, the resulting spatial game (for enhanced matrix) stabilizes
on frequencies of T− that are below the nonspatial ESS. However, the discrepancy between
T− in the spatial game (for enhanced matrix) and the nonspatial game becomes smaller.

In exploring the consequences of increasing either the frequency-dependence, dispersal, or
density-dependence radii in the spatial games, the games with enhanced matrices yield higher
variance-to-mean ratios for the increased frequency-dependence radii (Tables C.6 and C.9),
but there is little change when the other 2 radii are increased as well (Tables C.7, C.10,
C.8 and C.11). When increasing these particular radii, the resulting spatial equilibrium
frequencies of the original and enhanced matrices are almost identical. Visually, there is no
difference regarding the dispersion of cells when the density-dependence radius is 10 or 50,
in comparison to the original matrices. For both, a density-dependence radius of 10 still
yields numerous small clumps of cells across the space (Figure C.2) and a radius of 50 yields
a single large cluster in the middle of the space (Figure C.3).

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.3979, 0.6021, 0) (2.2267, 1.5470, -)
8 (0.3659, 0.5659, 0.0682) (0.3752, 0.6133, 0.0115) (2.1368, 1.3431, 10.2605)
22 (0.2016, 0.6285, 0.1699) (0.2214, 0.6217, 0.1569) (5.0451, 1.4141, 6.7156)

Table C.4: The frequencies and variance-to-mean ratios achieved at the saturated spatial
equilibrium for the enhanced matrices, when dispersal, frequency-dependence and density-
dependence radii are all equal to 1. The standard deviation of spatial equilibrium frequencies
and variance-to-mean ratios over 5 runs are reported in Table C.5. Table 5.4 shows saturated
equilibrium frequencies and variance-to-mean ratios of the original matrices.

# Std of spatial equilibrium frequencies Std of variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −)

7 (0.0031,0.0031,0) (0.0223,0.0291,0)
8 (0.0044,0.0037,0.0013) (0.0300,0.0158,0.0397)
22 (0.0042,0.0034,0.0029) (0.0413,0.0207,0.0138)

Table C.5: The standard deviation of spatial equilibrium frequencies and variance-to-mean
ratios over 5 runs
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# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.3970, 0.6030,0) (17.9747,15.2977,0)
8 (0.3659, 0.5659, 0.0682) (0.3757,0.5686,0.0557) (16.0118,11.0791,18.6105)
22 (0.2016, 0.6285, 0.1699) (0.2138,0.6231,0.1631) (11.0032,7.1923,13.8021)

Table C.6: The frequencies and variance-to-mean ratios achieved at the saturated spatial
equilibrium for enhanced matrices, when the dispersal and density-dependence radii are
both set to 1, while the frequency-dependence radius is 10. The standard deviations of the
equilibrium frequencies and variance-to-mean ratios are very small and comparable to those
in Table C.5. For comparison, Figure 5.7 shows the saturated equilibrium frequencies and
variance-to-mean ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.3966,0.6034,0) (2.6659,3.7850,-)
8 (0.3659, 0.5659, 0.0682) (0.3682,0.5603,0.0715) (2.5072,3.5029,2.9234)
22 (0.2016, 0.6285, 0.1699) (0.2003,0.6309,0.1688) (2.1402,3.5098,1.9857)

Table C.7: The frequencies and variance-to-mean ratios achieved at the saturated spatial
equilibrium for enhanced matrices, when the frequency-dependence and density-dependence
radii are set to 1, while the dispersal radius is 10. The standard deviations of the equilibrium
frequencies and variance-to-mean ratios are very small and comparable to those in Table C.5.
For comparison, Figure 5.8 shows the saturated equilibrium frequencies and variance-to-mean
ratios of the original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.3970,0.6030,0) (59.2311,41.9001,-)
8 (0.3659, 0.5659, 0.0682) (0.3468,0.6131,0.0401) (40.7464,39.8969,51.0012)
22 (0.2016, 0.6285, 0.1699) (0.1898,0.6902,0.1201) (20.9789,21.1066,28.6123)

Table C.8: The frequencies and variance-to-mean ratios of types achieved at the spatial
equilibrium for enhanced matrices, when frequency-dependence and dispersal radii are all
equal to 1, while density-dependence radius is 10. The standard deviation of the equilibrium
frequencies and variance-to-mean ratios are very small and comparable to those in Table C.5.
Also see Figure 5.9 for saturated equilibrium frequencies and variance-to-mean ratios of the
original matrices.

161



# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.4015, 0.5985, 0) (27.3108, 21.9151, -)
8 (0.3659, 0.5659, 0.0682) (0.3648, 0.5653, 0.0700) (26.7213, 24.5489, 28.6670)
22 (0.2016, 0.6285, 0.1699) (0.2012, 0.6300, 0.1688) (33.3553, 13.5125, 23.4429)

Table C.9: The frequencies and variance-to-mean ratios of types achieved at the spatial
equilibrium for enhanced matrices, when dispersal and density-dependence radii are all equal
to 1, while frequency-dependence radius is 50. The standard deviation of the equilibrium
frequencies and variance-to-mean ratios are very small and comparable to those in Table C.5.
Also see Figure 5.7 for saturated equilibrium frequencies and variance-to-mean ratios of the
original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.4014, 0.5986, 0) (1.0855, 1.0912, -)
8 (0.3659, 0.5659, 0.0682) (0.3642, 0.5667, 0.0691) (1.1300, 1.0619, 1.0503)
22 (0.2016, 0.6285, 0.1699) (0.1990, 0.6304, 0.1706) (0.9689, 1.1189, 0.9624)

Table C.10: The frequencies and variance-to-mean ratios of types achieved at the spatial
equilibrium for enhanced matrices, when frequency-dependence and density-dependence radii
are all equal to 1, while dispersal radius is 50. The standard deviation of the equilibrium
frequencies and variance-to-mean ratios are very small and comparable to those in Table C.5.
Also see Figure 5.8 for saturated equilibrium frequencies and variance-to-mean ratios of the
original matrices.

# ESS Saturated equilibrium frequencies Variance-to-mean ratio
(T +,TP ,T −) (T +,TP ,T −) (T +,TP ,T −)

7 (0.4000, 0.6000, 0) (0.4005, 0.5995, 0) (1.1327, 1.0842, -)
8 (0.3659, 0.5659, 0.0682) (0.3686, 0.5669, 0.0644) (1.0648, 0.9689, 1.0774)
22 (0.2016, 0.6285, 0.1699) (0.1979, 0.6312, 0.1709) (1.0221, 1.1004, 1.0951 )

Table C.11: The frequencies and variance-to-mean ratios of types (only the central zone i.e.,
sub-square whose number of total cells is above 200, is measured) achieved at the spatial
equilibrium, for enhanced matrices, when frequency-dependence and dispersal radii are all
equal to 1, while density-dependence radius is 50. The standard deviation of the equilibrium
frequencies and variance-to-mean ratios are very small and comparable to those in Table C.5.
Also see Figure 5.9 for saturated equilibrium frequencies and variance-to-mean ratios of the
original matrices.

162



(a) (b) (c)

Figure C.2: The appearance of the simulated tumors for enhanced matrices (a) #7, (b) #8
and (c) #22, when the density-dependence radius is set to 10 while the other two radii are
held at 1. Each figure is at saturated equilibrium following 2000 generations.

Figure C.3: Simulated tumors for enhanced matrices resulting from setting either the
frequency-dependence, dispersal, or density-dependence radius to the highest level (shown
as the rows) while holding the other two at 1: The columns represent different enhanced
matrices, and the simulations were run for 2000 generations insuring a saturated equilibrium.
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