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Summary: The morphology of the sternocleidomastoid muscle (SCM) of human fetuses, ranged from 12 to 32 weeks

gestation, was  investigated by a light microscopy and a scanning electron microscopy. The  collagenous fibers of the

 perimysium of the SCM formed complex structures from 24 weeks gestation by contrast to fibers of the endomysium of the

SCM. The cross-sectional area (CSA)  of  the bundle  of  muscle fibers and the CSA  of  the individual muscle fibers  of  the SCM
increased during development from 12 to 32 weeks gestation, in a process linked to the development of the  perimysium.

Therefore the perimysium affects and controls to the  muscle fiber of the developed SCM and ads to resisting stretch forces

in the movements. The changes in the arrangement and development of the  collagenous fibers in the perimysium may be 

correlated to with these of the muscle fibers.

 Vries et al. (1982) reported that rotation of the 
head movement occurs from 9 week to 13 weeks 
gestation and is often associated with retroflexions of 
the head. Hooker (1952) and Birnholz et  al. (1978) 
also reported that head movement occurs at early 
stage in the fetus. The differentiation of fiber types 
in developing human skeletal muscle is found from 
an early stage (ca. 10-21 weeks gestations; Dubowitz, 

 1963,1965,1966;  Colling-Saltin,  1978). The myotube 
fibers are clearly visibly at an early, stage at least 
before 12 weeks gestation, and formation of muscle 
fibers can be seen 20-24 weeks gestations. These 
reports indicate that the organization of muscle oc-
curs at early stages during formation of and changes 
in muscle fibers and affects development. 

  In general, collagenous fibrils of connective tissues 
can be classified into two types: large, straight paral- 
lel fibrils (Fawcett, 1986); and helically arranged, 
wavy fibrils that form sinuous bundles or three-
dimensional sheaths (Rizk,  1980). The connective 
tissues are composed of type I, type III, and type V 
which indicate intermixed fibrils by chemical and 
immunohistochemical methods (Light and Cham-
pion, 1984; Mayne and Sanderson,  1985). It is diffi-
cult to determine the compositions of fiber types, 
and to determine changes in size of collagen fibers

and patterns in different regions of the muscle during 
development. Such information is important if we 
are to understand the function of the connective 
tissues of the muscle fibers. The framework with its 
collagen fibrils that surrounds each muscle fiber is 
also involved in resisting stretching forces during 
movement (Schmalbruch,  1974). The development 
of the connective tissue of the muscle may be involved 
in the formation and development of the muscle 
fiber  itself. There are many factors that affect the 
development of muscle, for example, the extracellu-
lar matrix components (ECM) are related to the 

pattern of muscle fibers (Chevallier et  al.  , 1977; 
Kieny and Chevallier, 1980). Collagen is required by 
organisms when they become multicellular and de- 
velop tissues and organs (Schmidt and Alder, 1984; 
Reh and Nagy, 1987; Park and Hollenberg, 1989). 
Transforming growth factor beta 1 is implicated in 
the formation of patterns of muscle fibers (McLennan, 
1993) in addition to temporal and positional fac- 
tors (McLennan, 1983; Narusawa et al. , 1987). The 
organized layers, suggested by the earlier studies, 
namely the connective tissue of the muscle, are the 
most important elements to in the development of 
muscle  fibers. 

  In the present study, we examined the morphology
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of collagenous fibers and the relationship between 
the muscle fibers and the connective tissue in human 
fetuses, which ranged from 12 to 32 weeks gestation, 
by light microscopy and scanning electron microscopy. 

Materials and Methods 

  Twelve fetuses at autopsy were selected from 
donations at Nippon Dental University for morpho-
logical analysis of the sternocleidomastoid (SCM). 
The approximate fetal age was assigned by reference 
to Streeter's Tables  (Streeter,  1920,  1942,  1948, 1951). 
The specimens were fixed for 30  min in a solution of 
10% paraformalin. After specimens had been washed 
in running water, the SCM was dehydrated in absol-
ute ethyl alcohol and then embedded in paraffin. 
Serial cross sections were made at a thickness of 
about 3  p,m on a rotary microtome. Picro-sirus red 
staining was used in order to determinate between 
the epimysium and perimysium (Sweet et  al.  , 1964). 
Sections were observed under a light microscope 

(Vanox-S; Olympas  Co., Tokyo). The cross-sectional 
area (CSA) of muscle (mm2) and of individual muscle 
fibers  (Rm2)  in each muscle section were measured 
into an image analyzer (Pias LA-500; Pias Co., 
Osaka) linked to a microcomputer (PC-9801 VX; 
NEC, Tokyo) (Fig. 1). Fifty areas were selected at 
random for analysis of muscle fibers. 

  Four sections were selected from serial sections 
that had been fixed in 0.2 M glutaraldehyde and 

post-fixed in 1% osmic acid. Sections were washed in 
2% cacodylate buffer (pH 7.2) after dewaxing, and 
then etched with 8  N-HC1 for 3 sec. at room  tern-

perature (modified version of the method of Desaki 
and Uehara, 1981) and finally dried by a t-butyl 
alcohol freeze-drying method (Inoue and Osatake, 
1988). They were coated with a 1.5-nm layer of gold-

palladium and observed under a scanning electron 
microscope  (5-4000; Hitachi Co., Tokyo; 5-10 kv).

Results 

Microscopic observations of the sternocleidomastoid 
muscle 
  At 12 weeks gestation, myotube cells were found 
in cross-sections of the  sternocleidomastoid muscle 

 (SCM). Irregularly arranged, fine shows of connec-
tive tissues were seen around these muscle fibers 

(Fig.  2a). The perimysium, composed of thin  shown 
of connective tissues reacted very weakly with  picro-
sirus red, but there were no large bundles of collagen 
fibers. From 16 weeks gestation, collagenous bundles 
were found in the epimysium (Fig. 2b).The perimy- 
sium was composed of irregularly arranged colla- 

genous bundles and reacted strongly with picro-sirus 
red from 20 weeks (Fig. 2c). The perimysium was 
composed of thick and thin collagen fibers. At 
28-32 weeks, numerous collagen fibers were ar-
ranged in irregular patterns and formed a network 
between each muscle fiber (Figs.  2d-f). 

Dimensions of the sternocleidomastoid muscle 
Weights of muscle and the cross-sectional areas (CSA) 
of muscle and individual muscle fibers are shown in 
Fig. 3. The weight and the CSA of the muscle in the 
SCM increased rapidly from 2 weeks gestation. How-
ever, the weight and the CSA of the SCM had 
already begun to increase gradually from 12 to 20 
weeks gestation. The CSA of individual muscle fibers 
of the SCM increased gradually throughout develop-
ment and increased rapidly from 28 weeks gestation. 

Scanning electron microscopy 
At 12 weeks gestation, the muscle fibers contained 
numerous myofibrils which formed a hollow core 

(Fig. 4a). These myofibrils were surrounded by thin 
reticular  fibers. The few very fine irregularly arranged 
fibers (about 1 nm in diameter) were found around 
muscle fibers, and they run from muscle fiber to 
the other muscle fibers. The thin perimysium was

Fig. 1. Schematic representation of the analytical method. Data (dimensions of muscle  fibers) were obtained by 
     use of a light microscope linked to an image analyzer and a computer system. Small regions [white-outlined 

     square: cross-sectional area  (40000  [im2) of muscle fiber] were prepared for analysis.
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Fig. 2. Light micrographs of cross sections of muscle fibers in the human sternocleidomastoid muscle (SCM) stained with 
     picrosirus  red. a. At 12 weeks gestation, the perimysium (arrow) is composed of complex structures near the muscle 

     fibers. b. At 16 weeks gestation, the  perimysium (arrow) is composed of irregularly arranged collagenous fibers. c. At 
     20 weeks gestation, the  perimysium forms a complex network structure (arrow), with fine fibers between each muscle 

     fiber. d. At 24 weeks gestation, the perimysium is composed of large bundles (arrow) arranged irregularly. e. At 28 
     weeks gestation, a very large  perimysium is composed a complex network structure. f. At 32 weeks gestation, a few 

    large bundles (arrow) form the perimysium and are arranged irregularly (Bar = 50  um).

composed of an irregular arrangement of thick 

 (40-60  nm in diameter) and complex thin fibers 
(about  20  nm in diameter) (Fig. 4a). By 16 weeks 
gestation, the number of collagenous fibers had gradu-
ally increased and they formed networks which con-
nected with muscle fibers. Numerous large and small 
fibers were found in the perimysium (Fig. 4b). In the 
epimysium, irregular, thick collagen fibers and thin 
reticular fibers were found and seen to form networks

(Fig. 4b). At 20 weeks, in the perimysium, large and 
small collagen fibers formed thick bundles (about 
4.5  pm in diameter) (Fig. 4c). The perimysium was 
composed of a complex network of numerous thick 
and thin fibers. Some of small bundles were composed 
of thick and thin collagen fibers, and these bundles 
were arranged regularly oriented parallel to the longi-
tudinal axis of the muscle fiber. The numerous fine 
fibers  (20-40  nm in diameter) formed fine networks
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Fig. 3. Dimension of the sternocleidomastoid muscle 

     a. Weight of the sternocleidomastoid muscle from 12 to 32 weeks gestation 

     b. Cross section of the sternocleidomastoid muscle from 12 to 32 weeks gestation 

 C. Cross section of muscle fiber of the sternocleidomastoid muscle from 12 to 32 weeks gestation

around the thick fibers (60-80 nm in diameter) and 
bundles (about 0.6  pm in diameter) (Fig. 4c). These 
layers were linked to the muscle fibers. At 24 weeks 
gestation, the perimysium (about 5.5  pin in diameter) 
was composed of a complex network of collagenous 
fibers  (60-100  nm in diameter) and numerous fine 
networks of reticular fibers. The network of thick 
fibers and the fine network of thin fibers were linked 
each others (Fig. 4d). At 28 weeks, the perimysium 

 (about 8  p.m in diameter) was composed of numerous 
thin (about 0.5  tun in diameter) and thick (about 

 41am in diameter) bundles of thick collagen fibers 
 (80-100 nm in diameter), and these bundles were 

arranged regularly and oriented in parallel to the 
longitudinal axis  of  the muscle (Fig. 4e). Each muscle 
bundle was linked to thick collagen fibers and fine 
reticular fibers which formed complex networks (Fig. 
4e). At 32 weeks, numerous thin fibers (20-40 nm in 
diameter) and thick fibers  (60-100  nm in diameter) 
formed a complex network which linked the muscle 
fibers (Fig. 4f). Each muscle bundle was linked to 
thick and think collagen fibers. In the perimysium 
(about 18  pm in diameter), a large number of thick 
collagenous bundles (about 3  [un in diameter) was 
arranged irregularly. Some of the connective tissue 
near the muscle fibers formed a complex network 
composed of thick and thin fibers (Fig. 4f). 

Discussion 

  The sternocleidomastoid muscle (SCM) is a  'ro-
tator' type of muscle and functions in turning move-
ments around a longitudinal axis. Strong stress is 
exhibited when it acts in the flexion, rotation and

lateral flexion of the head. In mice, the SCM has a 
complex collagenous matrix which act as a framework 
for the rotating structures (Nagel,  1935). The  SCM 
of human fetuses has a complex collagenous  epimy-
sium and the density of fibers increases during devel-
opment. In our SEM study, Ohtani et al. (1988) 
reported that the endomysium of the dog lingual 
muscle is composed of two types of fibers which 
are separated by different arrangements of collagen 
fibers. Helically arranged collagen fibrils surrounding 
muscle fibers act to resisting stretch forces along 
the muscle fibers  (Schmalbrauch, 1974). Bundles of 
collagen fibrils allow freedom of motion individual 
muscle fibers (Fawcett,  1986). It appears, therefore, 
that the connective tissues in each muscle play differ-
ent roles in movement. In the human fetus, individual 
muscle bundles were separated from each others by 
connective tissues (perimysium): reticular and collagen 
fibers. The connective tissues of the SCM increased 
in density. In particular, a large number of collagen 
fibers and complex networks were found in the SCM 
during development. The morphological features and 
composition of reticular and collagen fibers may be 
directly related to the functional properties of each 

 muscle. The endomysium composed of curvilinear 
collagen fibrils in an isotropic array has been found 
in various animals (breast muscle of domestic fowl; 
Bennett and Porter, 1953; tibialis anticus muscle of 
frog; Mauro and Adamus, 1961; biceps femoris of 
cat, Trotter and Purslow, 1992), while other studies 
have shown as two types of the collagen fiber (sar- 
torius muscle;  Schmalbruch,  1974; ventral abdominal 
wall muscle of albino rat; Risk, 1980; human cardiac 
muscle; Ohtani et al. ,  1988). Fawcett (1986) reported 
that collagen fibers play a role in the freedom of
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Fig. 4. A scanning electron micrograph of the cross section of muscle fibers in the human sternocleidomastoid muscle. 
     a. At the 12 week gestations, the few number of very fine fibers are found around the muscle fiber cells, and they run from the 

    muscle fiber to  the other muscle fibers (Bar = 5  tun). b. At 16 weeks gestation, numerous thick and thin fibers are found in the 

 perimysium. Complex thick collagen fibers and small reticular fibers are seen as networks (Bar =  7.5  µm). c. At 20 weeks 
    gestation, thick bundles composed of complex network of thick and thin fibers form the perimysium. Numerous fine fibers 
    formed networks around large fibers and the  perimysium composed of irregular arrangement of large (arrow) and complex small 

    (arrowhead) fibers (Bar = 2.5  um). d. At 24 weeks gestation, the perimysium is composed of complex collagenous networks and 
 fine networks of reticular fibers. The small fine fibrous networks are  linked to one another  (Bar  =  3.31Am). e. At 28 weeks 

    gestation, the perimysium is composed of numerous bundles of thick collagen fibers which  are linked via thick collagen fibers. 
     Fine  reticular fibers arc form complex networks (Bar = 2.2  um). f. At 32 weeks gestation, numerous fine fibers and thick fibers 
     form complex networks. Large numbers of thick collagenous bundles are arranged irregularly. Some of the connective tissue 
     near  the muscle fibers forms a complex network (Bar =  3.8  µm).



386 L Sato et  al.

motion of individual muscle fibers during movement. 
Schmalbruch (1985) suggested that the collagen fibers 
that  surround muscle fibers protect the muscle fiber 
during movements. The morphological features re-
flect functional differentiation within the muscle. 
The endomysium is composed of helically arranged 
and longitudinal bundles of collagen fibrils (Plenk, 
1927, 1934; Ushiki and Ide, 1986; Ohtani et  al., 
1988), which are stained in silver-impregnated prep-
arations (Laidlaw, 1930; Nageotte,  1932). In our 
observations, scanning electron microscopy revealed 
that these collagen fibers were composed of thick 
and thin fibrils which increased in number and formed 
a complex network from 16 weeks gestation. Collagen 
fibers control formation of myotube cells. Gulati et 
al. (1982) reported that the appearance of fibronectin 
is associated with the formation of myotubes. Fi-
bronectin is located in  pericellular regions of the 
myotubes and is absent from the sarcoplasm (Linder 
et  al.  , 1978;  Stenman and Vaheri, 1978). The ma-
nubrium becomes visible from the muscle cell by 
a trans differentiation with collagenous enzymes 

 (Schmidt,  1984). The connective tissues contain myo-
genic regulatory factors (Davis et  al.,  1987). Ontell 
(1982) reported that the formation of the perimysium 
affects the development of the fascicles of muscles 
(Ignotz and Massague, 1986; Varga et  al.  , 1987; 
Ishikawa et  al.  ,  1990). McLennan (1993) suggested 
that the  TGF-131 is affect to the fibroblasts and other 
connective  tissue. The  TGF-131 affect also to the 
development of myoblasts. Colling-Saltin reported 
(1978) that large type I muscle fibers occurred at 20 
weeks  gestation. A difference in levels of growth 
factor may be involved in the connective tissue around 
the differentiation of types of muscle fiber at each 
embryonic stages. 

  The connective tissue network of the epimysium, 
perimysium and endomysium in the skeletal muscle 
is composed of type I and type III collagen (Mayne 
and Sanderson, 1985). The distribution of the  vari-
ous collagen fibers differs in the muscle (Light and 
Champion,  1984). The morphological features of the 
extracellular matrix network have been implicated in 
heart function (Borg et  al.  , 1983; Weber et  al.  , 1987; 
Borg and Terracio, 1990; Carver et  al.  ,  1993). In 
particular, the level of type III collagen in the neo-
natal heart increases in contrast to that of type I 
collagen (Carver et  al.  , 1993). The distribution of 
the different types of collagen suggests differences in 
the functional properties of other skeletal muscles. 
In the SCM of the human fetus, the thick collagen 
fibrils increased in number during development of 
the fetus. The complex network of collagen fibers of 
the  perimysium in the SCM is implicated the freedom 
of movement of the muscle fibers and allows allow 
the specialized  'rotator' actions of the muscle that is

associated with a considerable stress. 
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