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Abstract: Quantum chemistry meets one of its greatest challenges in the field of transition-metal compounds 
capable of fascinating chemical transformations. Complicated electronic structure and interesting chemistry are 
intimately connected, and the theoretical elucidation of such molecular processes requires computational proce-
dures that are both feasible and accurate. In this review we elaborate on our recent work in the field.
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1. Introduction

Quantum-chemical methods based on the 
first principles of quantum mechanics  
aim at the solution of the electronic 
Schrödinger equation,

(1)

This equation implies that we may 
 calculate the electronic energy En

el from the 
electronic wave function Ψn

el by means of 
the Hamiltonian operator Ĥel, which con-
tains operators for the kinetic energy of the 
electrons as well as for all electrostatic pair 
interaction energies of the electrons and 
the atomic nuclei in a molecule. The elec-
tronic energy depends on the positions R 
of all atomic nuclei, En

el = En
el (R), and de-

fines the potential energy hypersurface for 
chemical reactions. The index n denotes 
the electronic state under consideration, 
and we are usually interested in the one 
with lowest energy, i.e. in the electronic 
ground state with n = 0.

From the accurate solution of this equa-
tion follows the prediction of molecular 
structures (as minima on the electronic 
energy hypersurface), reaction energies 
(as differences of electronic energies cal-
culated for specific molecules), and mo-
lecular properties of any kind (as electron-
ic-energy derivatives). Hence, the above 
equation allows us to study molecular pro-
cesses with as little experimental input as 
possible – only fundamental constants that 
enter Ĥel are needed. As a consequence, 
no model assumptions are made and origi-
nal theoretical discoveries and predictions 
are possible. However, this ideal picture, 
which is in principle correct, is distorted 
by the fact that the interaction of electrons 
in molecules is difficult to describe. While 
few-electron atoms and molecules can be 
treated exactly in the so-called full config-

uration interaction (FCI) approach, larger 
molecules require us to make approxima-
tions designed such that accuracy is com-
promised as little as possible.[1]

The history of theoretical transition-
metal chemistry is a history of approxi-
mations to the equation given above. 
Early approaches reduced the problem to 
Schrödinger-type equations which treat the 
central metal ion quantum mechanically 
perturbed by surrounding ligands modelled 
as partial charges (crystal-field theory) or 
in some more elaborate way (ligand-field 
theory).[2] Nowadays, these approxima-
tions are no longer necessary – though 
very helpful in order to better understand 
the fully quantum mechanical results – and 
the Schrödinger equation is solved for the 
full transition-metal complex including all 
ligands.

The quantum-chemical approach to 
transition-metal chemistry primarily aims 
at the prediction of 
i)  molecular structures of stable complex-

es and of transition states in reactions, 
ii)  the energies corresponding to these 

structures and 
iii)  their molecular properties in order to 

relate to experimental observations. 
Because of the approximations in-

trinsic to quantum-chemical methods, all 
these observable quantities are affected by 
some error that needs to be assessed and 
then controlled. However, the method-in-
herent error is not the only error one has 
to deal with. In addition, a model error is 
introduced, which can, however, be well 
controlled. This error refers to the fact 
that one has to select a structural model 
for the transition-metal complex (and its 
potential reactants) which resembles the 
chemical process as closely as possible. In 
transition-metal chemistry, these structural 
models are usually well-defined since there 
is often only one metal center surrounded 
by well-structured ligands of less than, say, 
200 atoms. The inclusion of environmental 
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effects like interactions with solvent mol-
ecules can be decided on.

Fortunately, ligand binding energies 
are often large and dominated by the local 
reaction center, i.e. by the transition-metal 
center, so that dynamical effects may be 
neglected and a reaction mechanism can 
then be efficiently characterized and un-
derstood on the basis of only a few station-
ary structures on the potential energy hy-
persurface E0

el (R). In other words, the reli-
able description of the electronic structure 
is often more important than the inclusion 
of the time-dependent motion of the reac-
tants. In addition to the complicated elec-
tronic structure, which is characterized by 
dense lying electronic states Ψn

el usually 
due to the involvement of d-type orbitals, 
the open-shell nature of many transition-
metal complexes gives rise to states of dif-
ferent spin symmetry that must be taken 
into account.

In this review, we discuss some recent 
results from our work in computational 
transition-metal chemistry. We address the 
spin-state problem of density functional 
theory (DFT), the coupling of local spins 
in transition-metal clusters, the production 
of accurate reference data, and finally the 
calculation of molecular properties within 
the relativistic Douglas–Kroll–Hess theo-
ry. The paper concludes with a perspective 
on new developments that are in progress 
in our laboratory.

2. Quantum Chemical Methods

Historically, quantum chemical meth-
ods proved useful first for small closed-
shell molecules as they occur, for instance, 
in organic chemistry. For such molecules 
calculations of minimum structures within 
a single-determinant approximation for 
the electronic wave function of the ground 
state, Ψ0

el, often provide results of suffi-
cient accuracy. In transition-metal chemis-
try, however, dense lying electronic states 
Ψn

el require wave-function models beyond 
the independent-particle approximation 
of Hartree–Fock theory. In principle, so-
called (correlated) multi-determinant 
ab initio methods – of which FCI is the 
most accurate one if a sufficiently large 
one-electron basis set is used – provide 
the optimal frame for reliable calculations 
on transition-metal compounds. However, 
such calculations are usually prohibitively 
expensive in terms of computational effort 
because of the unfortunate factorial scal-
ing behavior of these methods with system 
size. In addition, the various approxima-
tions in correlated ab initio models lead 
to different intrinsic deficiencies, which 
make their accuracy difficult to assess for 
transition-metal compounds. For instance, 
the complete-active-space self-consistent-

field (CASSCF) approach, which imple-
ments the idea that a FCI-type wave func-
tion considering only the frontier orbitals 
in the complete active space (CAS) might 
be sufficient for describing the reactivity 
of a molecule, can produce qualitatively 
correct wave functions for transition-metal 
complexes.[3] Its results can be improved 
by a subsequent second-order perturbation 
treatment (CASPT2) – needed to consider 
also those orbitals neglected from the CAS 
–, but the accuracy may still be limited due 
to the CAS reference being restricted for 
technical reasons to at most 18 electrons 
in 18 orbitals because of the factorially 
scaling computational effort required. By 
contrast, coupled-cluster calculations do 
not suffer from such CAS-limitations and 
have become very popular (especially in 
form of the so-called CCSD(T) variant 
which is regarded as some sort of standard 
model that guarantees accurate results). 
Such standard coupled-cluster methods 
are restricted to closed-shell reference 
wave functions. Open-shell transition-
metal complexes, however, require a multi-
reference coupled-cluster scheme. Such 
schemes are currently being developed by 
various groups but one may estimate on the 
basis of the enormous effort required for 
a standard single-reference coupled-clus-
ter model like CCSD(T), which formally 
scales like 0(M7) with system size M (e.g. 
number of one-electron basis functions), 
that multi-reference coupled-cluster calcu-
lations will be feasible only for compara-
tively small molecules (with much less than 
a dozen atoms). Efforts in many research 
groups aim at implementations of ab initio 
methods that eventually scale linearly with 
increasing system size.[4] However, these 
linear-scaling methods perform best if the 
molecule under consideration features an 
extended structure built up by well-defined 
subunits (as in the case of a polymer).

Because of the limitations of the high-
ly accurate ab initio approaches indicated 
above, the dawn of computational transi-
tion-metal chemistry coincides with the 
advent of gradient-corrected density func-
tionals introduced to DFT about twenty 
years ago (many review articles exist; see 
for examples refs. [5]). Despite the fact that 
these density functionals are employed in 
a single-determinant, the so-called Kohn–
Sham framework, which is algorithmically 
very much alike the standard Hartree–Fock 
protocol, the results obtained were surpris-
ingly accurate. The rise of DFT was then 
followed by the identification of DFT 
failures, which have been reported since 
the late 1990s. Though in principle exact, 
contemporary DFT in the framework es-
tablished by Kohn and Sham is hampered 
by the present-day approximations for the 
exchange–correlation functional.[6] Espe-
cially the past few years have seen new ad-

vances in the development of functionals, 
as for example, provided by orbital-depen-
dent functionals (see e.g. refs. [7]) or by 
exchange–correlation density functionals 
with position-dependent mixing functions 
for the combination of different functional 
expressions.[8] Also, new functionals pa-
rametrized on a well-balanced set of refer-
ence data have been devised[9] to mention 
only a few of the various promising recent 
developments.

Apart from the approximation chosen 
for the electronic wave function – or for 
the exchange–correlation density func-
tional – also the Hamiltonian operator in 
Schrödinger’s equation requires some at-
tention. The Hamiltonian is exactly known 
in nonrelativistic Schrödinger quantum 
mechanics, which is an approximate de-
scription of physical reality as it does not 
obey the principles of Einstein’s theory of 
special relativity since an infinite speed of 
light is assumed.[10] As a result, kinematic 
relativistic effects and spin–orbit coupling 
are completely neglected. It is important to 
understand that a consistent treatment of 
relativistic effects is the more important 
the higher the nuclear charge of the metal 
atom is. Hence, these effects must not be 
neglected in transition-metal chemistry.

A consistent relativistic description 
can be based on the Dirac one-electron 
Hamiltonian and yields the so-called four-
component methods.[10] However, routine 
calculations are involved and very ex-
pensive in terms of computing time. For 
instance, a four-component ab initio cor-
related calculation on a metal dimer like 
Hg2 or U2 with a sufficiently large basis set 
requires significant computer resources. 
Therefore, quasi-relativistic one- and two-
component methods emerged of which the 
most prominent ones are the simple and ef-
ficient zeroth-order regular approximation 
(ZORA)[11] and the formally elegant Doug-
las–Kroll–Hess (DKH) transformation 
theory,[12] which have attracted consider-
able attention in the new millennium. Also, 
relativistic effective core potentials[13] are 
heavily used although their accuracy and 
applicability can be limited if, for instance, 
molecular properties probed at an atomic 
nucleus are desired.

3. The Spin-State Problem

It is important to note that the DFT ap-
proach to large transition-metal complexes 
is currently the only feasible one if their 
chemistry shall be routinely investigated. 
Even if special variants of ab initio meth-
ods are feasible for a certain molecule, the 
molecule’s structure is likely to be opti-
mized in a DFT calculation under the as-
sumption that the molecular structure will 
be reliable even if the corresponding DFT 
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quantum numbers (e.g. one would obtain a 
Mayer local spin for iron of about SFe = 2 
for a high-spin Fe(ii) complex).

DFT calculations of Heisenberg cou-
pling constants J are complicated by the 
need to converge the so-called broken-
(spin-)symmetry determinant as an ap-
proximation for the antiferromagnetically 
coupled state.[29] Van Voorhis and col-
laborators[30] proposed a controlled con-
vergence scheme based on a Lagrangian 
multiplier technique. We have investigated 
this approach, which is incredibly useful in 
routine quantum-chemical studies on tran-
sition-metal clusters, and have elaborated 
on a possibility to soften the idealized-spin 
condition of the original approach within a 
restrained algorithm.[31]

Despite the huge number of papers 
dedicated to broken-symmetry DFT cal-
culations on such clusters, almost no sys-
tematic investigation of different density 
functionals in broken-symmetry calcula-
tions existed. Therefore, we investigated a 
dinuclear bis-µ-oxo-iron cluster with den-
sity functionals of varying exact-exchange 
admixture.[32] Again, a systematic depen-
dence of energy splittings and Heisenberg 
coupling constants on exact-exchange ad-
mixture in the functional was found.

5. DMRG for Accurate Reference 
Data

In order to assess and improve on the 
accuracy of contemporary density func-
tionals one strategy to follow is to aim at 
highly accurate ab initio reference data for 
comparison with DFT results. Examples 
have been given by many groups (see refs. 
[33] to mention only a few), where con-
figuration-interaction-type methods like 
CASSCF, CCSD(T), or multireference 
CI have been employed. The basic idea 
of any such configuration-interaction-like 
approach is to include all important elec-
tronic configurations, i.e. Slater determi-
nants Ψ1(N), into the N-electron basis set 
expansion of the total wave function

(2)

where N is the total number of electrons 
in the molecule under consideration and 
m denotes the number of N-electron basis 
functions Φ1(N), which is infinite in the 
case of an exact solution. The CI coeffi-
cients CI

(n) are determined by solution of 
an eigenvalue problem.

Unfortunately, decades of intense work 
in theoretical chemistry have shown that in-
credibly large CI expansions are required if 
an accuracy of about 1 kcal/mol is desired 
for relative energies like reaction energies. 

energy is not. Therefore, the assessment of 
DFT methods in transition-metal chemistry 
is decisive. One systematic failure of DFT 
of particular importance in transition-metal 
chemistry is the spin-state energetics prob-
lem.[14] The reliable calculation of states of 
different spin is crucial – especially for the 
correct prediction of reaction mechanisms 
(cf. refs. [15] for two examples). This is 
particularly true if a change of spin in the 
course of a reaction represents an essen-
tial step within the reaction mechanism 
(see the two-state reactivity concept by 
Schröder, Schwarz and Shaik[16]).

One focus of our research has been 
the assessment, reparametrization and ap-
plication of density functional theory for 
the spin-state problem in transition-metal 
chemistry. We encountered the need to re-
liably calculate energies of different spin 
states first in the context of iron–sulfur 
complexes in 2001 and discovered a sys-
tematic linear dependence of spin-state 
energy differences on the admixture of 
exact (Hartree–Fock-type) exchange in 
the density functional.[17] This systematic 
dependence revealed that the main differ-
ence between various (approximate) den-
sity functionals is the admixture of exact 
exchange. Pure density functionals turned 
out to yield very similar spin-state energy 
splittings compared to those obtained from 
hybrid functionals. The deviation between 
pure and hybrid functionals in this respect 
can amount to more than 100 kJ/mol, which 
makes the calculation of reaction mecha-
nisms very difficult – especially if two-state 
reactivity is important. The importance of 
accurately calculated spin-state energetics 
can hardly be overemphasized since they 
play a prominent role in catalysis and in 
bioinorganic chemistry.

Discovered first for iron–sulfur com-
plexes,[17] which have become some sort of 
standard test molecules for the assessment 
of quantum-chemical methods,[18] we soon 
investigated a series of metallocenes and 
metallabenzenes[19] and confirmed that a 
reparametrized B3LYP density functional 
with reduced exact-exchange admixture 
(15% instead of 20% ), which we dubbed 
B3LYP*, can consistently improve on spin-
state energetics at equilibrium structures. 
Despite the simple nature of this reparame-
trization of the functional, which is clearly 
no satisfactory long-term solution but only 
a pragmatic one especially since it is not 
clear whether the calculated spin densities 
are reliable,[20] the effect is decisive and 
stimulated work[21] on the most critical cas-
es, namely on spincrossover compounds,[22] 
which show a thermally induced spin flip 
and possess a high-spin–low-spin energy 
splitting of the size of the thermal energy 
RT. Even for these complexes we obtained 
quite satisfactory results, which allowed us 
to predict the likelihood of thermal spin-

crossover based on the electronic-energy 
gap between high-spin and low-spin states. 
In turn, we were able to explain previous 
results on spincrossover complexes.[23]  
All these studies rest on comparisons of 
different density functionals because truly 
reliable ab initio reference data are very dif-
ficult to obtain (see also below). However, 
for a resilient development of new density 
functionals more theoretical work on their 
functional form will be necessary.

4. Local Spins

The spin-state problem described 
above for mononuclear transition-metal 
complexes becomes even more severe 
when electronic spin–spin interactions in 
polynuclear clusters need to be considered. 
Such clusters are, for instance, found in 
active sites of metalloenzymes and often 
feature interesting physical and chemical 
properties as molecular magnets and cata-
lysts. In these cases the accurate calcula-
tion of two electronic energy levels, name-
ly those of the ferromagnetically coupled 
high-spin state and the antiferromagneti-
cally coupled low-spin state, determines 
the coupling strength J of two (artificial) 
electronic spins located at fragments in 
such a spin–spin-interacting cluster. The 
coupling constant J is extracted from these 
two energies according to the phenom-
enological Heisenberg Hamiltonian[24] and 
facilitates a direct comparison with experi-
mentally derived coupling strengths.

The Heisenberg Hamiltonian connects 
the coupling constant J with the product of 
two electronic spin operators assigned to 
the interacting metal centers. Hence, it is of 
the form of an operator that describes the 
quantum-mechanical coupling (interac-
tion) of angular momenta and is therefore 
also called magnetic coupling. However, it 
is by far not obvious how a spin operator 
assigned to some position or basin in space 
(i.e. to an atom in a molecule) can be ex-
tracted from the individual spin operators 
of the electrons in the cluster because they 
are not bound to specific atoms. Though a 
definition of local spins is always affected 
by an anthropogenic choice of the defini-
tion of the local basin, this choice has still 
to be made in the most consistent way pos-
sible. Clark and Davidson[25] elaborated 
on a choice defined by standard atom-
centered one-electron basis sets which we 
investigated in some detail.[26] A different 
choice based on a spatial decomposition of 
spin expectation values was then suggested 
by Mayer to eliminate the nonvanishing 
local Clark and Davidson spins in closed-
shell molecular structures.[27] In the first 
implementation of the Mayer scheme,[28] 
we could demonstrate that the Mayer local 
spins agree well with idealized local spin 



Young AcAdemics in switzerlAnd PArt ii CHIMIA 2009, 63, No. 3 143

Usually, these methods converge the abso-
lute energy of a molecule and achieve this 
goal either by an efficient basis-set expan-
sion as in the case of the coupled-cluster 
models or by a pre-selection of dominant 
configurations before a standard orbital 
substitution pattern (usually called excita-
tion hierarchy) is employed as in a multi-
reference CI approach. Of course, spending 
a tremendous effort on the accurate calcu-
lation of the absolute energy might not al-
ways be necessary. Consequently, tailored 
(difference-dedicated) CI approaches[34] 
aim at the accurate calculation of energy 
differences with less effort.

The main feature of all these approach-
es is that the analytic expansion of the elec-
tronic wave function given above, from 
which the electronic energy is calculated, 
is pre-defined. Surely, one may always in-
clude a new or skip an old configuration 
(determinant) in the basis set expansion 
according to some rule of thumb, but the 
energy is always obtained for an expansion 
defined prior to the calculation of its pa-
rameters. However, a quite novel CI-type 
method has become available, which can 
be beneficial in transition-metal chemistry 
as we have demonstrated recently.[35] This 
method is called the density matrix renor-
malization group (DMRG) and was invent-
ed by White[36] based on earlier work by 
Wilson.[37] Introduced to solid-state phys-
ics in the 1990s, several groups pioneered 
the application of DMRG in a chemical 
context.[38]

DMRG is an iterative, adaptive ap-
proach to expand the electronic wave 
function into an N-electron basis whose 
composition changes until convergence 
is reached (for details of the algorithm we 
may refer to refs. [39]). The basis functions 
are most general FCI-type functions with 
weights (CI-like coefficients) that are de-
termined in the DMRG iterations. The ex-
plicit analytic composition of this N-elec-
tron basis can in practice only be known 
for the smallest molecules[39d] (for the 
same reason for that FCI is only feasible 
for such small molecules). However, this is 
no drawback as the electronic energy is ob-
tained by diagonalization of the optimized 
matrix representation of the Hamiltonian. 
Of course, the convergence and scaling be-
havior of the DMRG algorithm depends on 
DMRG-specific parameters, but as in any 
other approximate CI-type approach one 
may hope that the target quantities (mostly 
the electronic energies) converge fast with 
an efficient choice of these parameters.

And indeed, we could demonstrate 
that spin-state energy differences as well 
as energy differences between different 
molecular structures of transition-metal 
clusters[35] are quite reliably obtained in 
DMRG calculations. Accordingly, DMRG 
has the potential to substitute CASSCF ap-

proaches if large active orbital spaces are 
required so that m in the equation given 
in this section above would be too large 
for actual calculations. Hence, DMRG is 
a particularly promising approach for cal-
culations on metal complexes with large 
unsaturated ligands (like porphyrins) or 
with noninnocent ligands and for polynu-
clear transition-metal clusters. We also ob-
served a behavior of DMRG to select those 
configurations Φ1(N) that are decisive for 
relative electronic energies, which is thus 
comparable to the difference-dedicated 
CI approach,[35] but now in a completely 
automated and in principle exact manner. 
Here, the flexibility of DMRG to produce 
a truly optimum N-electron basis set for the 
wave-function expansion with hardly any 
restrictions is highlighted when compared 
to the pre-defined form of analytic basis 
expansions in standard CI procedures.

6. Douglas–Kroll–Hess Theory and 
Relativistic Effects

As already mentioned in the beginning 
of this review, the sufficiently accurate 
description of the electronic structure is 
only one part of the theoretical challenge 
of transition-metal chemistry. Especially 
heavy metal atoms require a Hamiltonian 
that is in accordance with the theory of rel-
ativity. The relativistic theory of the elec-
tron rests on Dirac’s equation that replaces 
the nonrelativistic Schrödinger equation. 
The difference between results from a 
consistent relativistic calculation and one 
based on standard Schrödinger quantum 
mechanics is called relativistic effect. Such 
effects are often discussed in terms of or-
bital contractions that eventually affect the 
electron density and hence the chemistry 
of transition-metal complexes.[40]

In the past years, one focus of our work 
in the development of relativistic quantum-
chemical methods was on the DKH theory, 
in which a sequence of unitary transforma-
tions is applied to the Dirac Hamiltonian 
in order to decouple the desired positive-
energy (‘electronic’) states from the neg-
ative-energy ones, i.e. from the so-called 
positronic states that are not relevant in 
chemical investigations but increase the 
computational effort. Stimulated by work 
of Nakajima and Hirao,[41] who presented 
the first DKH results of third order in the 
external potential, we revisited and largely 
extended the DKH method.[42] Arbitrary-
order generalized DKH energy calcula-
tions have become feasible[43] and our new 
arbitrary-order scalar relativistic DKH 
implementation is designed to be strictly 
modular so that it can be easily combined 
with standard quantum chemistry program 
packages. Recent developments[44] then 
reduced the computational effort also for 

four-component methods by the introduc-
tion of ideas first derived for two-compo-
nent approaches like ZORA and DKH.

Also the calculation of various mo-
lecular properties in the DKH framework 
has been implemented in a most general 
way.[45] Detailed studies of the approach 
for electric-field-like properties[46] then al-
lowed us to work on the electron density at 
an atomic nucleus and on the electric field 
gradient,[47] which both enter the theory 
of Moessbauer spectroscopic parameters. 
Current work in our laboratory aims at 
the establishment of a rigorous, reliable 
and transferable protocol for the calcula-
tion of Moessbauer isomer shifts for iron 
complexes.

Of course, also magnetic properties are 
important as diagnostic tools in transition-
metal chemistry. These, however, are not 
easy to implement in a DKH framework.[48]

7. Conclusion and Outlook

Present-day quantum-chemical meth-
ods allow us to study and to predict re-
actions at transition-metal complexes 
where all reactants are described quan-
tum mechanically in contrast to crystal- 
and ligand-field theories, which treat the 
metal-center surroundings in a much more 
approximate way. However, the average 
accuracy obtained for electronic energy 
differences (excitation energies, reaction 
energies) is still not sufficient for original 
predictions, and hence a close comparison 
to experimental data is always necessary 
where possible. Current quantum chemi-
cal approaches – especially DFT methods 
– live on the fact that the decision of cer-
tain chemical questions of structure or of 
relative reaction energies can afford com-
paratively large errors in the calculated 
results.

In the long run, however, a systematic 
error theory is needed which connects a 
scientific assertion based on computa-
tional results with error bars assigned to 
the calculation in order to guarantee the 
validity of the calculated results. Cur-
rently, this aspect is often reduced to the 
claim that a quantum-chemical method 
should be systematically improvable in 
order to guarantee a protocol for the im-
provement of calculated results once they 
turn out to be not accurate enough. This 
feature is completely absent in all DFT 
methods as there exists no recipe on how 
to systematically improve on an approxi-
mate density functional employed in the 
calculations. Furthermore, the situation is 
difficult because the individual error in a 
DFT calculation on some complex may be 
quite large although the average error with 
that functional may be acceptable; and it 
is hard if not impossible to tell when the 
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individual error becomes large compared 
to the average error (determined for a test 
molecule set). By contrast, ab initio meth-
ods may always be improved by increas-
ing the N-electron basis-set size (e.g. via 
higher ‘excitations’). However, systematic 
improvability is not sufficient for arriving 
at accurate results since procedures need to 
be found that increase the basis-set size in 
a most efficient way in order not to collect 
a lot of deadwood with little effect on the 
desired physical quantities.

All these difficulties of improving the 
computational models go by the name of 
solving the electron-correlation problem, 
and therefore methodological develop-
ments are still at the heart of research in 
quantum chemistry. But research in this 
direction is not only concerned with meth-
odological and algorithmic advances, also 
theoretical work is still needed and in prog-
ress. One example of the latter is the role 
of electron spin in DFT.[49] In the focus of 
our current work is the spatial resolution 
of deviations found with contemporary ap-
proximate density functionals when com-
pared with one another[50] and with the ex-
act density functional reconstructed from 
accurate densities and spin-densities.

For a true de novo design of transition-
metal complexes, especially if they shall 
serve as functional units (e.g. as catalysts), 
an inverse approach to quantum chem-
istry[51] is necessary, which denotes the 
re-formulation of well-known quantum-
chemical equations in such a way that the 
formalism provides a direct answer to a 
given scientific question. We have already 
demonstrated how this can be achieved for 
molecular vibrations if one is looking for the 
properties of a specific molecular vibration 
(mode-tracking)[52] or if the distribution 
of spectroscopic intensities on molecular 
distortions is sought (intensity-tracking) 
to directly yield all intense vibrations in a 
spectrum.[53] We are currently working on 
extensions to other properties like energies 
and structures. In computational drug and 
materials design this is known as the ra-
tional exploration of chemical space and 
we may refer to two interesting examples 
in these areas.[54] Only work along these 
lines will eventually replace the still need-
ed chemical intuition – i.e. the profound 
knowledge of the experimentally working 
chemists – in the design of chemical reac-
tions and reactants. Purpose-driven algo-
rithms like mode-tracking represent a new 
generation of quantum chemical methods. 
More of them will surely become available 
because of the tremendously increased 
computational power of desktop comput-
ers that allows us to loosen the corset of 
the efficiency paradigm which governs the 
derivation and implementation of quan-
tum-chemical equations solely focused on 
their fast solution for ever-increasing mo-

lecular sizes. Even new concepts for the 
explorations of chemical reactivity – like 
the possibility to physically experience 
reactivity in a haptic-quantum-chemistry 
set-up[55] – become now feasible and al-
low us to push the limits of computational 
transition-metal chemistry forward.

In view of the remarkable achieve-
ments regarding structures, energies, and 
(spectroscopic) properties achieved world-
wide, we believe that the ultimate goal in 
theoretical transition-metal chemistry will 
become the de novo design of transition-
metal catalysts via the direct, theory-based 
prediction of metal complex structures (in-
cluding the rigorous theoretical determina-
tion of optimal central metal ion(s) and the 
design of chelate-ligand or nano-structured 
surroundings). Work along this paradigm 
is in progress in our laboratory.
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