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Abstract—In this paper, a new technique is developed to evaluate
efficiently the Sommerfeld integrals arising from the problem of a
current element radiating over a lossy half-space. The annihilation
of the asymptote and the branch-point singular behavior of the
spectral Green’s function is used in this technique. The contributions
of the subtracted asymptotic and singularity terms are calculated
analytically. The annihilation results in a remaining integral that
is very smooth and can be calculated adaptively by using Gaussian
quadratures and extrapolation methods to accelerate the convergence
of the oscillating integrand. The accuracy and efficiency of the new
technique has been confirmed by comparison with literature, and the
commercial software NEC. The application of the proposed technique
provides a robust and rapid procedure to calculate spatial Green’s
functions which can be used in ground-wave propagation, and lightning
return stroke channel modeling.
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1. INTRODUCTION

The numerical analysis of electromagnetic wave interaction in half-
space problems is important for a variety of applications such as
linear antennas near earth or ocean surface, ground-wave propagation,
geophysical prospecting, grounding systems, and lightning return
stroke channel modeling [1–5]. The radiation characteristics of a
dipole source above a dissipative half-space was first introduced by
Sommerfeld in 1909 [6]. The solution was given in terms of integrals,
presently called Sommerfeld integrals (SIs). Later, he discussed and
extended this problem much more in [7]. Then, a comprehensive
formulation on the development of the lossy half-space problem, using
Hertz potentials, was given by Banos [8].

There have been published many numerical and analytical
techniques to deal with the integrals arising in the Sommerfeld half-
space problem, which have been reviewed in [9–12]. A fundamental
fact is that the occurring Sommerfeld integrals cannot be evaluated
in closed form. The analytic methods described are based on
approximations, which can be used for only a limited range of
parameters. Numerical techniques have difficulties in accurately
evaluating the Sommerfeld integrals. This is due to the highly
oscillatory and slowly converging behaviour of the integrand, and to
its singularities, including branch points and a virtual pole near the
real-axis path of integration in the kρ-plane [11].

A direct numerical integration of SI is generally useful in near-field
regions [13–19]. The numerical integration on the real-axis path (path
A in Fig. 1) was first done by Siegel and King [13]. Direct integration

Figure 1. Different integration paths in the complex kρ-plane [12].
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using Simpson’s rule or other quadratures was also applied by Tsang
et al. [14]. They used fast Fourier transform (FFT) to expand a part
of the integrand which has known integrals to reduce the computation
time. The real-axis path has been used in related problems by Kuo and
Mei [15], Lin and Mei [16], Katehi and Alexopoulos [17], Johnson and
Dudley [18], and Michalski [19]. Highly accurate numerical integration
techniques can be used for any set of parameters of the lossy ground.
However, these procedures suffer from high computational complexity.

Other authors prefer to deform the original path of integration to
a contour off the real axis, based on Cauchy’s theorem for analytic
functions, to avoid the difficulties associated with the presence of
singularities. If transformations of the integration path are performed,
the convergence is improved, but the formulation becomes more
complicated. For example, path B (Fig. 1) is used by Miller et al. [20]
and Sarkar [21], but Burke et al. [10] have employed path C. Integration
along the vertical branch cuts as shown in Fig. 1 [22, 23], and more
complicated integration paths have also been used [24].

There are various asymptotic solutions for different ranges
of relative source-observation distance. An asymptotic far-field
evaluation was done by Yokoyama [25], while Chang and Wait [26]
developed the near-field approximation. Kuo [27] assumed a large
refractive index to transform the SI to fast-convergent forms with
the aid of several approximations. Expressions for several forms of
SI in terms of incomplete Hankel functions were given by Chang and
Fisher [28]. Another approach is to expand part of the integrand in
a special form which has known integrals. Lindsay [29] used spline
functions to represent part of the integrand and the resulting integrals
were then evaluated in terms of Lommel functions. The image-
theory approximation was developed by Wait [30], who represented
the reflection function in terms of exponentials in the integrals.
This approximation is valid for a low frequency or a large dielectric
permittivity. The image-theory extension to an arbitrary quasi-static
source was done by Weaver [31]. The image-theory accuracy was
demonstrated by Bannister [32] through comparison with available
analytical and numerical results.The effect of the earth’s permeability
and displacement currents were neglected in these formulations. One
efficient method has been to approximate the Fourier transform of the
field by an expression that can be transformed back to the physical
space introduced by Mittra et al. [33]. Also, composite multipole
images for different kind of sources by using the FFT [14] are employed
by Mohsen [11]. Using these two techniques results in a small
computation time and a wide range of applicability. However, it has not
been easy to see the range of validity for the different image systems.
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Using a unified analytical approach, four image representations for
sources of vertically polarized waves above a conducting surface have
been introduced by Mahmoud [34]. This approach is computationally
simple, but only a limited range of parameters can be considered.
Lindell et al. [35–38] used the continuous image theory for an electric
or a magnetic dipole in a half space to calculate the reflected fields
in the same half-space [35–37] or the transmitted fields in the other
half-space [38]. Xu and Huang [39] analyzed efficiently a vertical thin-
wire antenna above a lossy halfspace by reducing the Sommerfeld-type
integrals to semi-infinite integrals that converge rapidly using the exact
image theory.

Another important integration method is the steepest descent
path (SDP) method. Direct numerical integration consumes a large
amount of computer time in far-field regions. However the saddle-
point technique is used along the SDP instead of the Sommerfeld
integration path (SIP) [40–42] for the asymptotic approximation of
the integrals [43, 44] This path of integration is superior to other
approaches in far-field regions since this method in the limit leads
to the geometrical optics technique, which is known to have a low
calculation time consumption. In this method, the contributions
of proper surface and leaky wave modes should be included, and
hence a technique for locating the modes should be considered. For
this, techniques have been developed based on several approximate
analytical expressions for a wide variety of conditions. The range
of applicability of these expressions depends upon the frequency and
the relative locations of source point, observation point, and ground,
as well as the medium parameters such as permittivity, permeability,
and conductivity. Rahmat-Samii et al. [9] have found, however, that
the integration along the SDP is very efficient even for distances less
than in the far-field region. The combination of asymptotic and exact
evaluation of these integrals can efficiently compute the spatial Green’s
functions [45], but the computational complexity is high. However,
there are a few difficulties with the SDP method. One difficulty is
due to the virtual pole of the integrand, i.e., the Zenneck surface-
wave (ZSW) pole [43, 46], which can be close to the SDP when both
the source and the observation points are close to the interface and
the contrast between the two media is large. In that case, the
integrand behavior on the SDP exhibits a sharp variation close to
the Zenneck surface-wave pole, requiring a very careful integration.
Tsang and Kong [47] coped with that by calculating the saddle
point contribution in near-field regions by using the Gaussian hermite
quadrature formula. Furthermore, in intermediate regions and in far-
field zones, the modified saddle point method (MSP) should be used
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when there are poles near the saddle point. Another issue is the
fact that the position of the SDP should be monitored constantly
with respect to the branch cuts in order to use the most efficient
contour of integration [48]. Michalski and Butler introduced an efficient
analytic expression on a new SDP, which is qualitatively represented
as contour D in Fig. 1, when the source and field points are in different
media [12]. This path avoids the real-axis singularities and is the SDP
for the exponential function part of the integrand, leading to a fast
and accurate calculation in far-field regions. Recently, the numerically
modified steepest descent path method (NMSP) has been used for thin
layers [49]. The NMSP method is an extension of the MSP [47], which
consists of the extraction of the poles and the numerical evaluation
of the SDP by using a much lower quadrature. Therefore, the
contribution due to these pole and branch point singularities must be
taken into account in the SDP method, leading to a high complexity
and time-consumption.

In general, several approaches have been developed for the
numerical evaluation of Sommerfeld integrals occurring in the
calculation of multi-layered media spatial Green’s functions. The
traditional method is the integration over the real axis combined
with pole extraction techniques and averaging methods, leading to
a very efficient algorithm [50]. This technique is very efficient for
relatively small source-observer distances. For large source-observer
distances it is usually required to integrate functions exhibiting abrupt
variations and fast oscillating behaviors. To overcome this problem,
several extrapolation methods have been introduced to accelerate
convergence of Sommerfeld-type integral tails, which explicitly utilize
remainder estimates. This proves to be particularly effective and
accurate. Michalski [51] has presented a review of the most promising
extrapolation methods for the acceleration of Sommerfeld-type integral
tails to give rapid and accurate results. Mosig et al. presented
another efficient technique for the numerical evaluation of Sommerfeld
integrals [52, 53]. They choose a new integration contour that is closed
by the imaginary axis of the spectral plane. This results in improper
integrals involving fast decaying modified Bessel functions Kn along the
imaginary axis, which results in very fast converging integrals, and thus
less computational effort. Demuynck et al. [54] developed an accurate
and computationally efficient procedure to calculate spatial Green’s
functions using asymptotic and singularity subtraction methods. First,
the asymptotic behavior of the spectral-domain Green’s function at
high spectral values is removed. Its inverse is added analytically in
the spatial domain. In addition, the spectral Green’s function shows
singular behavior due to the existence of poles and branch points
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located along the real axis. This behavior, both due to poles and
branch points, can also be subtracted in the spectral domain, and re-
added analytically in the spatial domain. The singular behavior due to
the branch points can be associated with the existence of half-spaces
in the layer structure. The remaining spectral function along the real
axis is a smooth and fast decaying function, which can be integrated
numerically. It is important to note that the technique of [54] cannot
be applied directly to multi-layered media with two open-half spaces.
Simsek et al. [55] presented a procedure to subtract analytically
singularity terms causing a slow convergence. This procedure can
be described as an improved version of the extraction procedure
implemented in the discrete complex image method (DCIM) [56]. Each
individual term of the integrand and the contribution of the subtracted
terms is calculated analytically. The remaining integral is calculated
numerically by using Gaussian quadratures.

In the present study, we propose improvements to [54] to be able
to use it for double half-space problems. So, basically, asymptotic and
branch-point singularity subtraction functions with analytical spatial
equivalents are used. This leads to a remaining spectral function along
the real axis which is very smooth and fast decaying, and can be
integrated numerically. For near and intermediate regions, this can
be done by using Gaussian quadratures. For far regions, it is necessary
to use extrapolation methods to accelerate the convergence of the
Sommerfeld-type integral tail [51]. The rest of the paper is organized as
follows. The algorithm of the proposed numerical method is described
in Section 2. The validity of the proposed method is examined in
Section 3, where it is compared with commercial software such as the
Numerical Electromagnetic Code (NEC) and [50]. Concluding remarks
are given in Section 4.

2. EFFICIENT CALCULATION OF THE HALF-SPACE
GREEN’S FUNCTIONS

Consider a lossy medium in the half space z < 0 characterized by
the relative dielectric constant εr, conductivity σ, and wave number

Figure 2. An electrical dipole above a lossy ground.
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k1. The upper half space z > 0 is vacuum, with permittivity ε0,
permeability µ0, and wave number k0. A horizontal electric dipole
(HED) of unit strength is located at height z′ above the medium,
as shown in Fig. 2. The proposed method can be applied to all the
spectral-domain Green’s functions of the HED, but here it is explained
only for the spectral-domain scalar potential G̃q in the air region. G̃q

can be represented as follows [56, 57]:

G̃q =
1

4πε0

1
2jkz0

[
e−jkz0|z−z′| + (RTE + Rq) e−jkz0(z+z′)

]
(1)

RTE =
kz0 − kz1

kz0 + kz1
(2)

Rq =
2k2

z0 (1− ε′r)
(kz0 + kz1) (ε′rkz0 + kz1)

(3)

k2
z0 + k2

ρ = k2
0, Im{kz0} ≤ 0 k2

z1 + k2
ρ = k2

1, Im{kz1} ≤ 0 (4)

k2
0 = ω2µ0ε0 k2

1 = ω2µ0ε
′
rε0 ε′r = εr − jσ/ωε0 (5)

kρ is the radial wave number and kzi is the wave number in the
z-direction in medium i (i = 0 for vacuum and i = 1 for the
dielectric). The time variation ejωt is assumed throughout this paper
and suppressed.

The spatial-domain Gq is the inverse Fourier transform of its
spectral equivalent. It can be calculated as a Sommerfeld integral
given by [52]

Gq =

∞∫

−∞
H

(2)
0 (kρ ρ) kρ G̃q(kρ) dkρ (6)

where H
(2)
0 is the Hankel function of the second kind and order zero.

ρ is the horizontal distance between the source and observation point.
The asymptotic behavior of kρ G̃q(kρ) for large kρ determines the
contribution in the neighborhood of the source because the oscillation
period of the Hankel function is very large for low ρ. The decay of
kρ G̃q(kρ) is very slow. Therefore, the so-called direct and reflected
terms are easily subtracted from (1) to improve the convergence of
the integration. The contribution of these components to (6) can be
calculated analytically by using the Sommerfeld identity [56]. After
some mathematical manipulation, we obtain

Gq =
1

4πε0

(
e−jk0r0

r0
+

1− ε′r
1 + ε′r

e−jk0r′0

r′0

)
+ I1 (7)
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I1 =
1

πε0(1+ε′r)

∞∫

0

1
2jkz0

(
kz0−kz1

ε′rkz0+kz1

)
e−jkz0(z+z′)J0(kρ ρ)kρdkρ (8)

r0 =
√

ρ2 + (z − z′)2, r′0 =
√

ρ2 + (z + z′)2 (9)

where J0 is the Bessel function of the first kind and order zero. The
singular behavior of kρ G̃q(kρ) governs the result spatially further away
from the source. There are no proper poles for a half-space medium
in the upper Riemann sheet to be taken into account. However, when
Cauchy’s residue theorem is used to convert the integral on the real
axis in the kρ-plane into a contour integral over the entire complex
kρ-plane, a Zenneck surface wave pole should be taken into account.
Particularly, when the ground has a large dissipation, and source and
observation points are near to or on the interface, the virtual pole is
very close to the saddle point [43]. In that case, the integrand behavior
on the SDP exhibits a sharp variation close to the Zenneck surface wave
pole, requiring a very careful integration, for example with the MSP
method [47]. However, the improper poles responsible for the Zenneck
surface waves are hardly excited by a highly localized source [2]. In
the available references [58–61], more details about the excitation and
characteristics of the surface waves in a multi-layered region are found.

Since the problem consists of two semi-infinite regions, there are
two branch point singularities corresponding to the wave numbers of
each region. They are responsible for the far-field behavior of the field
components. The branch points represent the continuous spectrum
and appear as lateral waves in the far field [2, 53]. Also, one needs
to consider the effect of the branch point related to the free space
wave number only, since the contribution of the other branch point is
inferior due to the lossyness of the medium. Therefore, the only type
of singularity that occurs in the numerical integration of (8) is at the
branch point kρ = k0. A new function is proposed to annihilate this
singularity. It shows the following characteristics: 1) the behavior of
the function in the neighborhood of the singularity is the same as the
behavior of the Green’s function; 2) the inverse Fourier transform of the
function is known analytically in closed form; and 3) the asymptotic
behavior for large kρ of the function decays faster than the asymptote
of the original Green’s function in order not to influence the subtraction
procedure of the direct term. The new function is

f̃(kρ) = − 1
2jkz0

+
1

2
√

k2
ρ + k2

0

(10)

The first part of f̃(kρ) is used to annihilate the singular behavior
at kρ = k0. The second one is necessary for large kρ in order to make
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the decay there large enough to avoid the introduction of a spatial
singularity at the origin. The analytical functions calculated by the
inverse Fourier transform are [62]

f(ρ) = −e−jk0ρ

ρ
+

e−k0ρ

ρ
(11)

After the removal of the asymptote and the branch-point
singularity from the spectral Green’s function, Gq can be calculated
as

Gq =
1

4πε0

[
e−jk0r0

r0
+

1−ε′r
1+ε′r

e−jk0r′0

r′0
+

2
1+ε′r

(
−e−jk0ρ

ρ
+

e−k0ρ

ρ

)]
+I2(12)

I2 =
1

πε0(1+ε′r)

∞∫

0

(
1

2jkz0

kz0−kz1

ε′rkz0+kz1
e−jkz0(z+z′)−f̃(kρ)

)
J0(kρρ)kρdkρ(13)

In a similar manner and with a few simple mathematical
manipulations, the x component of the magnetic vector potential GA

xx
can be calculated as follows.

GA
xx =

µ0

4π

(
e−jk0r0

r0
− e−jk0ρ

ρ
+

e−k0ρ

ρ

)

+
µ0

2π

∞∫

0

(
1

2jkz0
RTE e−jkz0(z+z′) − f̃(kρ)

)
J0(kρ ρ) kρ dkρ (14)

For a vertical electric dipole (VED) of unit strength, the spatial-
domain Green’s function for the z component of the electric field GEJ

z
in the upper region is given by [63]

GEJ
z = −jω GA

zz + Φd
z (15)

GA
zz =

µ0

4π

(
e−jk0r0

r0
− 1− ε′r

1 + ε′r

e−jk0r′0

r′0

)
+

µ0

4π

(
2ε′r

1 + εr
′

)
I3 (16)

I3 = 2

∞∫

0

1
2jkz0

(
kz0 − kz1

ε′rkz0 + kz1

)
e−jkz0(z+z′)J0(kρ ρ) kρ dkρ (17)

Φd
z =

−1
j4πωε0

∂2

∂z∂z′

(
e−jk0r0

r0
+

1−ε′r
1+ε′r

e−jk0r′0

r′0

)
+

1
j4πωε0

(
2ε′r

1 + εr
′

)
I4 (18)

I4 =

∞∫

0

jkz0

(
kz0 − kz1

ε′rkz0 + kz1

)
e−jkz0(z+z′)J0(kρ ρ) kρ dkρ (19)
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The integral I3 has the branch-point singularity at kρ = k0. After the
removal of the asymptote and the branch-point singularity from the
spectral Green’s function, I3 can be calculated as

I3 = −e−jk0ρ

ρ
+

e−k0ρ

ρ

+2

∞∫

0

1
2jkz0

(
kz0 − kz1

ε′rkz0 + kz1
e−jkz0(z+z′) − f̃(kρ)

)
J0(kρρ)kρdkρ (20)

Finally, the remaining spectral functions in (13), (14), and (20)
along the real axis are smooth and fast decaying functions, which
can be integrated numerically. For near and intermediate regions, the
integrals in (13), (14) and (20) can be computed by using Gaussian
Laguerre interpolatory quadratures [21]. For far regions, especially
when the source and field points are on the interface, the W
transformation and the weighted-averages method (WAM) emerge as
the most efficient extrapolation methods to accelerate the convergence
of the Sommerfeld-type integral tails [51].

3. NUMERICAL RESULTS

The accuracy and efficiency of the proposed method is verified by
considering numerical examples. The first example is a lossy half-
space medium with εr = 10 and σ = 0.1 S/m, as shown in Fig. 2,
analyzed at 1 GHz. Both the source and observation points are on the
interface, i.e., at z = z′ = 0. The behavior of the integrand of I1 in (8)
(before the subtraction) and that of I2 in (13) (after the subtraction)
are depicted for different ρ’s. Fig. 3 shows a typical example of the
type of function to be integrated, in this case for k0ρ = 10. An
enlarged view in the interval [0.99k0, 1.01k0] is depicted in the same
figure. The numerical integration is challenging because of the strong
variations close to the branch-point singularity, a consequence of the
infinite derivative at kρ = k0. After subtraction of the branch-point
singularity, i.e., f̃(kρ), from the integrand, the infinite derivative in k0

is eliminated. The resulting function is much smoother, as shown in
Fig. 4. Fig. 5 shows the effect of the subtractions in a higher interval.
The resulting function is a smooth and fast decaying function that
can easily be integrated by using Gaussian Laguerre interpolatory
quadratures in the near and intermediate region. In the far region
however, it can be adaptively integrated in the interval [0, k0

√
εr] by

using Gaussian quadratures, and in the region [k0
√

εr,∞] by using the
weighted-averages method (WAM).
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Figure 3. Real and imaginary parts of the integrand 4πε0I1 before
the subtraction of the branch-point at kρ = k0.

Figure 4. Real and imaginary parts of the integrand 4πε0I2 after the
subtraction of the branch-point at kρ = k0.

Figure 5. Real part of the integrands in the interval [4k0, 10k0]
before (the solid line) and after (the dashed line) the subtraction of
the asymptotic and branch point contributions.
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The amplitudes of Gq and GA
xx are depicted in Figs. 6 and 7,

respectively, in the range 10−3 ≤ k0ρ ≤ 104 for three frequencies:
10MHz, 100MHz, and 1 GHz. The numerical results obtained by
the proposed method are compared with those obtained using Mosig’s
method [50]. The agreement is almost perfect. In addition, the first
part of (12) and (14) is also shown in the near field zone, where the
field is dominated by the quasi-static term, showing a 1/ρ behavior.
The continuous spectrum results in the overall (1

/
ρ2) dependence for

large source-observer distances [53]. Table 1 compares the computation
times of the proposed method and Mosig’s method [50] to calculate Gq

in the range 10−3 ≤ k0ρ ≤ 104 (700 points). The computer used in this
comparison has an Intel Core 2 CPU 2.13GHz processor and 2 GB of
RAM. The new technique is considerably faster.

Figure 6. The amplitude of Gq at 10MHz, 100 MHz, and 1 GHz.

Figure 7. The amplitude of GA
xx at 10 MHz, 100 MHz, and 1GHz.
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Figure 8. The amplitude of GEJ
z at 10MHz, 100MHz, and 1 GHz.

Table 1. Comparison of the computation times to calculate Gq.

Frequency Proposed method Method of [50]

10MHz 127.136 sec 416.192 sec
100MHz 139.310 sec 486.505 sec
1000MHz 150.925 sec 588.514 sec

The second example is more complex. It involves losses and the
proper combination of vector and scalar potential Green’s functions
in order to obtain directly the Green’s function for an electric field
component. Consider a vertical electric dipole (VED) located at z′ =
10mm above the previous lossy ground. The spatial Green’s function
for the z component of the electric field vector GEJ

z in the upper region
on the interface, i.e., atz = 0, is computed with the proposed technique.
The results are compared to the Numerical Electromagnetic Code
(NEC) in Fig. 8, in the range 10−3 ≤ k0ρ ≤ 102 for different frequencies
(10MHz, 100 MHz, and 1 GHz). Again, the agreement is almost perfect
for all field regions. The proposed technique is very simple and efficient
compared to NEC, in which the Sommerfeld integrals are evaluated by
numerical integration along contour C in Fig. 1, using lookup tables,
interpolation methods, and higher-order asymptotic approximations,
in order to cover the entire distance [64].
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4. CONCLUSION

In this paper, a new, simple and efficient technique for the evaluation
of Sommerfeld integrals occurring in lossy half-space problems is
described. In this technique, the asymptotic and branch-point
singularity behaviors of the spectral Green’s functions, yielding a
slow convergence, have been subtracted. Their contribution is added
again analytically in the spatial domain. No matter how close the
source and field points are to the interface or no matter how large
the distance between source and observation point is, the described
annihilation procedure returns a remaining integrand that is smooth
and fast decaying along the real axis. Consequently, it can be
computed by using a variety of methods well-known in literature. The
accuracy, efficiency, and speed of the technique have been verified
via representative numerical examples. The main advantages of the
proposed technique are its generality, relative simplicity, the capability
to implement it in a straightforward way in the case of multilayered
structures, and the very low computation time compared to other
techniques. It can be used in a variety of applications, such as ground-
wave propagation, geophysical prospecting, and lightning return stroke
channel modeling.
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