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Abstract—The electromagnetic modeling of radiation by vertical
dipole antennas above a lossy half-space is an important subject.
The modeling often encounters Sommerfeld-type integrals that are
normally highly oscillatory with poor convergence. Recently, an
efficient computation of the electric field radiated by an infinitesimal
electric dipole above a lossy half-space has been reported, in which the
Sommerfeld-type integrals are reduced to rapidly-converging integrals.
Using such efficiently-calculated electric field as the Green’s function,
in this paper, an electric field integral equation (EFIE) is formulated for
the analysis of a vertical dipole antenna above a lossy half-space. Then,
the EFIE is solved numerically employing the Method of Moments
(MoM). Sample numerical results are presented and discussed for the
current distribution as well as the input impedance and radiation
pattern of the antenna. In particular, the EFIE solutions of the current
distribution on an antenna in free space are checked with that obtained
using a traditional approach of solving the Pocklington’s equation.
Also, the current distributions on an antenna above a very lossy half-
space are checked by comparing them with that for the antenna above a
PEC plane. Data of the current distribution and the input impedance
show that for an antenna close to the media interface separating the two
half-spaces, the electromagnetic parameters of the lower half-space can
significantly affect the antenna characteristics. The radiation patterns
of the antenna presented all exhibit properties as expected and similar
to that documented in literature for infinitesimal vertical dipoles above
a lossy half-space.
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1. INTRODUCTION

Wire antennas are the oldest and perhaps still the most prevalent one
of all antennas forms. For an accurate electromagnetic modeling of
wire antennas, the electric current distributed on the wire must be
determined [1]. In the past, Pocklington’s equation [2] and Hallen’s
equations [3, 4] have been formulated by expressing the scattered
electric field in terms of the magnetic vector potential and electric
scalar potential, and then solved for the unknown current distribution
on thin-wire antennas [1, 5]. This approach is widely used for analyzing
wire antennas located in an open space where no media interface
presents.

As pointed out in [6] and [7], the electromagnetic modeling of
radiation by vertical dipole antennas above a lossy half-space has
become an important subject of research and development, due to
many applications where these antennas are involved. The modeling
often encounters the Sommerfeld-type integrals [8] that represent the
effect of the media interface. Asymptotic techniques, including the
saddle-point method [9], have been developed to efficiently evaluate
the Sommerfeld-type integrals. But these methods are limited for
the evaluation of the Sommerfeld-type integrals involved in the far-
zone field computations, which are not applicable for integral equation
formulations that require information of the near-zone fields. In [7, 10],
the input impedance of a vertical dipole antenna above a dielectric half-
space is calculated, and an aperture antenna above a lossy half-space
is analyzed, respectively. In the calculation and analysis, a complex
image Green’s function is used and a sinusoidal current distribution
is assumed. However, the complex image Green’s function is only
an approximation of the exact Green’s function, using a series of
exponential functions, and the sinusoidal current assumption may not
faithfully represent the actual current distribution, especially when
the antenna is close to the media interface. Recently, an efficient
computation of the electric field radiated by an infinitesimal electric
dipole above a lossy half-space has been reported [11]. The efficient
computation is based on an exact image theory [12–14] derived by
means of applications of integral transforms and appropriate identities.
In that way, the Sommerfeld-type integrals involved in the computation
of the electric field are reduced to integrals that converge very
rapidly, and the computation time is greatly reduced. Using such
efficiently-computed electric field as the Green’s function will make the
application of an integral equation approach practical for determining
the current distribution on the surface of a dipole antenna above a
lossy half-space.
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In this paper, an electric field integral equation (EFIE) is
formulated for the current distribution on a vertical dipole antenna
above a lossy half-space, where the Green’s function is the vertical
component of the electric field radiated by an infinitesimal vertical
dipole, which is readily determined making use of the exact image
theory and is presented in [11]. Then, the integral equation formulated
is solved numerically employing the Method of Moments (MoM) [15].
The numerical solution of such formulated integral equation is expected
to be more efficient because the semi-infinite integral included in the
Green’s function converges very rapidly. Finally, based on knowledge
of the current distribution, the antenna characteristics of interest, such
as the input impedance and the radiation pattern, are computed.

The outline of the rest of this paper is as follows. Section 2 presents
the formulation of the EFIE for the unknown current distribution.
In the formulation, we start with a vertical dipole antenna in free
space, extend it to that for the antenna above a lossy half-space
employing the exact image theory, and then incorporate them in the
EFIE formulation. The numerical solution procedure of the EFIE,
employing the MoM, is described in Section 3. Also in Section 3,
sample numerical results of the current distribution on a vertical dipole
antenna above a lossy half-space, as well as data of its input impedance
and radiation pattern are presented and discussed. Finally, conclusions
are drawn in Section 4.

2. FORMULATION OF THE ELECTRIC FIELD
INTEGRAL EQUATION (EFIE)

As shown in Fig. 1, a vertical dipole antenna of length l and of a
circular cross section with radius a is located above a planar interface
z = 0 at a height h measured from the center of the vertical antenna.
The interface separates two semi-infinite homogeneous spaces. The
upper half-space (z > 0) is taken to be free space representing the air
characterized by (µ0, ε0, σ = 0); and the lower half-space is assumed to
be a lossy medium with electromagnetic parameters (µ0, εrε0, σ �= 0).
The antenna has a very narrow feed gap at its center and is fed by a
delta-gap source [5] so that the incident electric field can be expressed
by Ei

z = V δ(z), where δ(z) is a delta function. Under the excitation,
a z-directed electric current is induced on the surface of the antenna
that can be viewed as a perfect electric conductor (PEC). To determine
the unknown current distribution, an electric field integral equation
(EFIE) is formulated in this section. Different from the Pocklington’s
equation and the Hallen’s equation, the Green’s function used in the
integral equations formulation presented in this section is the electric
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Figure 1. A vertical dipole antenna above a lossy half-space.

field, rather than the potentials, radiated by an infinitesimal vertical
dipole above a lossy half-space. The EFIE is formulated by enforcing
the boundary condition on a PEC surface, which requires that the
tangential component of the total electric field be zero,

Es
tan + Ei

tan = 0, (1)

where Es
tan is the scattered electric field generated by the induced

current and

Es
tan = Ef

tan + Ed
tan, (2)

in which Ef
tan is the electric field of the antenna if it were in free

space and Ed
tan is the diffracted field due to the existence of the lower

half-space. Therefore, in this section, we present the electric field
radiated by an infinitesimal vertical dipole in free space first, then
derive the diffracted field by an infinitesimal vertical dipole above a
lossy half-space, and finally, incorporate the electric fields in the EFIE
formulation as the Green’s function.

2.1. The Electric Field Radiated by an Infinitesimal Vertical
Dipole in Free Space

The electric field radiated by an infinitesimal z-directed electric dipole
of dipole moment Il in free space is given in [16], and its z-component
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is readily found to be

Ef
z,dipole =Il

e−jk0R

4πR
jk0η0

[(
1− 3j

k0R
− 3
k2

0R
2

)
cos2 θ−

(
1− j

k0R
− 1
k2

0R
2

)]
,

(3)

where R is the distance between the source point and the field point,
and R = |r − r ′| =

√
(x− x′)2 + (y − y′)2 + (z − z′)2, in which

(x′, y′, z′) and (x, y, z) locate the source and field point, respectively.
Also, in equation (3), k0 and η0 are the wavenumber and the intrinsic
impedance of free space, and θ is the angle between vector R and the
z-axis.

2.2. The Diffracted Electric Field of an Infinitesimal Vertical
Dipole above a Lossy Half-space

The diffracted electric field of an infinitesimal dipole of orientation l̂,
where l̂ = lxx̂+lyŷ+lz ẑ, located above a lossy half-space was originally
derived by Sommerfeld and given in [11]

Ed
dipole(r, r

′) = x̂
k0η0I

4π

∫ ∞

0

{
kρ

2kz
Γh[−lx(J2(kρρ) cos 2φ + J0(kρρ))

−lyJ2(kρρ) sin 2φ)] + Γv
kρ

2kz

[
2jkzkρ

k2
0

lz cosφJ1(kρρ)
k2

z

k2
0

lx(J0(kρρ)

−J2(kρρ) cos 2φ)− k2
z

k2
0

lyJ2(kρρ) sin 2φ
]}

ejkz(z+z′)dkρ

+ŷ
k0η0I

4π

∫ ∞

0

{
Γh

kρ

2kz
[−lxJ2(kρρ) sin 2φ−ly(J0(kρρ)−J2(kρρ) cos 2φ)]

+Γv
kρ

2kz

[
2jkzkρ

k2
0

lz sinφJ1(kρρ) −
k2

z

k2
0

lxJ2(kρρ) cos 2φ

+
k2

z

k2
0

ly(J0(kρρ) + J2(kρρ) cos 2φ)
]}

ejkz(z+z′)dkρ

−ẑ k0η0I

4π

∫ ∞

0

kρ

kz
Γv

[
k2

ρ

k2
0

lzJ0(kρρ)+
jkzkρ

k2
0

J1(kρρ)(lx cosφ+ly sinφ)

]

×ejkz(z+z′)dkρ, (4)

where ρ is the radial distance between the observation and source
points, φ is the angle between ρ and the x-axis, z and z′ are the heights
of the observation and source point above the lossy half-space, kρ and
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kz are spectral wave numbers and k2
z = k2

0 − k2
ρ. Also, in equation (4),

J0(·), J1(·), and J2(·) are Bessel functions of order 0, 1 and 2, Γh and
Γv are the horizontal and vertical Fresnel reflection coefficients given
by

Γh =
ηn − k0/kz

ηn + k0/kz
, Γv =

−ηn + kz/k0

ηn + kz/k0
(5a)

in which ηn is the normalized intrinsic impedance of the lower half-
space, defined by

ηn = η/η0 =
√

1/[εr − jσ/(ωε0)]. (5b)

For a vertical infinitesimal dipole, lx = 0, ly = 0, and lz = 1, equation
(4) reduces to

Ed
v,dipole(r, r

′) =
k0η0Il

4π

∫ ∞

0

kρ

kz
Γv

[
jkzkρ

k2
0

cosφJ1(kρρ)x̂

+
jkzkρ

k2
0

sinφJ1(kρρ)ŷ−
k2

ρ

k2
0

J0(kρρ)ẑ

]
ejkz(z+z′)dkρ. (6)

One notes that the semi-infinite integral in (6) is a Sommerfeld-type
integral, which does not have a closed-form analytic result, and is
difficult to be evaluated numerically because of its poor convergence
and highly oscillatory nature as shown in Fig. 2.
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Figure 2. Highly oscillating integrand of the Sommerfeld-type integral∫ ∞
0

k3
ρ

kz
ΓvJ0(kρρ)ejkz(z+z′)dkρ for z+z′ = 4, ρ = 30 and ηn = 0.3+j0.1.
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In order to improve the convergence property of the Sommerfeld-
type integral, the exact image theory is employed by means of
applications of integral transforms and appropriate identities as
described in [11], the procedure is outlined below. First, equation (6)
is rewritten to an equation that contains the zero-order Bessel function
only as

Ed
v,dipole(r, r

′) =− η0Il

4πk0

[
∂2

∂x∂z
x̂ +

∂2

∂y∂z
ŷ −

(
∂2

∂x2
+

∂2

∂y2

)
ẑ

]
∫ ∞

0

kρ

kz
ΓvJ0(kρρ)ejkz(z+z′)dkρ, (7)

by using the following identities

−j cosφ
kzkρ

k2
0

J1(kρρ) =
1
k2

0

∂2

∂x∂z
J0(kρρ), (8a)

−j sinφ
kzkρ

k2
0

J1(kρρ) =
1
k2

0

∂2

∂y∂z
J0(kρρ), (8b)

and

−
k2

ρ

k2
0

J0(kρρ) =
1
k2

0

(
∂2

∂x2
+

∂2

∂y2

)
J0(kρρ). (8c)

Then, the vertical Fresnel reflection coefficient Γv contained in (7) is
expressed in the form of a Laplace transform as

Γv = 1 − 2ηnk0

∫ ∞

0
e−(ηnk0+kz)ξdξ. (9)

Substituting equation (9) into (7) and then solving the resulting
integrals in terms of kρ analytically by applying

ejkR′′

R′′ = j

∫ ∞

0

kρ

kz
J0(kρρ)ejkz(z+z′)dkρ, (10)

where R′′ is defined by R′′ =
√

(x− x′)2 + (y − y′)2 + (z + z′)2, we
arrive at the final form of Ed

v,dipole as

Ed
v,dipole(r, r

′) = −jη0Il

4πk0

[
∂2

∂x∂z
x̂ +

∂2

∂y∂z
ŷ −

(
∂2

∂x2
+

∂2

∂y2

)
ẑ

]
[
e−jkR′′

R′′ − 2ηnk0

∫ ∞

0
e−ηnk0ξ e

−jk0R′(ξ)

R′(ξ)
dξ

]
, (11)
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Figure 3. Rapidly decaying integrand of the semi-infinite integral∫ ∞
0

e−ηnk0ξe−jk0R′(ξ)
R′(ξ) dξ for z + z′ = 4, ρ = 30 and ηn = 0.3 + 0.1j.

in which R′(ξ) is defined by R′(ξ) =
√

(x−x′)2+(y−y′)2+(z+z′+jξ)2.
As illustrated in Fig. 3, the integrand of the semi-infinite integral on
the right-hand side of equation (11) with the same parameters as those
used in Fig. 2 decays rapidly as ξ increases, due to both exponen-
tially decaying factors e−ηnk0ξ and e−jkR′(ξ). Subsequently, the semi-
infinite integral with such a rapidly decaying integrand will converge
quickly, making the application of an integral equation approach prac-
tical, where Ed

v,dipole is to be used as part of the Green’s function in
the integral equation formulation.

2.3. Formulation of EFIE for a Vertical Dipole Antenna
above a Lossy Half-space

Based on knowledge of the electric field of an infinitesimal dipole in
free pace and the diffracted field by the dipole above a lossy half-space,
derived in the previous two sub-sections, an EFIE is formulated for the
current distributed on the surface of a vertical dipole antenna above
a lossy half-space. The EFIE is formulated for a thin wire antenna,
the radius of which is much less than the wavelength and the length
of the antenna (a � λ, a � l). The current on the antenna surface
is assumed to be in z direction and is independent of φ due to the
azimuthal symmetry of the cylindrical configuration of the antenna,
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and the current is supposed to vanish at the two ends of the antenna.
The first step of the formulation of the EFIE is to enforce the

boundary condition which requires that the tangential component of
the total electric field be zero on a PEC surface, as shown in equation
(1). Under the assumption that the current distributed on the antenna
surface is z-directed and φ-independent, the tangential component of
the electric field should be Ez. Then, equation (1) reduces to

Es
z + Ei

z = 0, (12)

where Ei
z is the z-component of the incident electric field and

Ei
z = V δ(z), (13)

in which V is a voltage applied across a very narrow feed gap and δ(z)
is a delta function. Also, in equation (12), Ei

z is the scattered field
that contains the free-space-field term and the diffracted-field term as

Es
z = Ef

z + Ed
z , (14)

where Ef
z can be found as an integral, on the antenna surface, of the

z-component of the electric field generated by an infinitesimal vertical
dipole in free space, given in equation (3),

Ef
z,dipole =Il

e−jk0Rjk0η0

4πR

[(
1− 3j

k0R
− 3
k2

0R
2

)(
z−z′

R

)2

−
(
1− j

k0R
− 1
k2

0R
2

)]
.

(3’)

Also, in equation (14), the diffracted field Ed
z can be obtained as an

integral, on the antenna surface, of the z-component of the diffracted
field generated by an infinitesimal vertical dipole above the lossy half-
space, given by equation (11) as

Ed
z,dipole =

jη0Il

4πk0

(
∂2

∂x2
+

∂2

∂y2

)[
e−jk0R′′

R′′ −2ηnk0

∫ ∞

0
e−ηnk0ζ e

−jk0R′(ζ)

R′(ξ)
dξ

]
.

(11’)

Then, the total scattered field by the vertical dipole antenna can be
found as the surface integral of Ef

z,dipole and Ed
z,dipole, given in equations
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(3’) and (11’), and

Es
z =

∫ h+ l
2

z′=h− l
2

∫ π

φ′=−π
Jza

{
jk0η0e

−jk0R

4πR

[(
1− 3j

k0R
− 3

k2
0R

2

)(
z−z′

R

)2

−
(

1− j

k0R
− 1
k2

0R
2

)]
+

jη0

4πk0

(
∂2

∂x2
+

∂2

∂y2

)

×
[
e−jk0R′′

R′′ − 2ηnk0

∫ ∞

0
e−ηnk0ζ e

−jk0R′(ζ)

R′(ξ)
dξ

]}
dz′dφ′, (15)

in which Jz is the surface current density on the antenna surface. For
convenience, we define a current as I(z) = 2πaJz(z). After substituting
such defined I(z) into (15) and taking the derivatives in the equation,
we rewrite equation (15) as

Es
z =

∫ h+ l
2

z′=h− l
2

I(z′)
2π

∫ π

φ′=−π

{
jk0η0e

−jk0R

4πR

[(
1− 3j

k0R
− 3

k2
0R

2

)(
z−z′

R

)2

−
(

1− j

k0R
− 1
k2

0R
2

)]
+

jη0

4πk0

×e−jk0R′′[
(3/R′′+3jk0−k2

0R
′′)[(x−x′)2+(y−y′)2]−2R′′(jk0R

′′+1)
]

R′′4

−jη0ηn

2π

∫ ∞

0
e−ηnk0ξ

×e−jk0R′[
(3/R′+3jk0−k2

0R
′)[(x−x′)2+(y−y′)2]−2R′(jk0R

′+1)
]

R′4 dξ

}

×dz′dφ′. (16)

Finally, substituting equations (13) and (16) into (12), the EFIE is
formulated as∫ h+ l

2

z′=h− l
2

I(z′)
2π

∫ π

φ′=−π

{
jk0η0e

−jk0R

4πR

[(
1− 3j

k0R
− 3

k2
0R

2

)(
z−z′

R

)2

−
(

1− j

k0R
− 1
k2

0R
2

)]
+

jη0

4πk0

×e−jk0R′′[
(3/R′′+3jk0−k2

0R
′′)[(x−x′)2+(y−y′)2]−2R′′(jk0R

′′+1)
]

R′′4
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−jη0ηn

2π

∫ ∞

0
e−ηnk0ξ

×e−jk0R′[
(3/R′+3jk0−k2

0R
′)[(x−x′)2+(y−y′)2]−2R′(jk0R

′+1)
]

R′4 dξ

}

×dz′dφ′ = −V δ(z). (17)

3. NUMERICAL SOLUTION TECHNIQUE, RESULTS,
AND DISCUSSION

3.1. The Numerical Solution Technique

In this section, the EFIE formulated in the previous section is solved
numerically, employing the MoM, for the unknown current I(z)
distributed on the surface of a vertical dipole antenna above a lossy
half-space. Then, based on knowledge of the current distribution, the
antenna characteristics of interest, such as the input impedance and
the radiation pattern, are computed. Sample numerical results are
presented and discussed.

One notes that the integral equation presented in equation (17)
contains double integrals. To eliminate one of the double integrals
for an efficient numerical solution of the integral equation, the reduced
kernel approximation [5, 17] for thin wires [18–20] under the conditions
that a � λ and a � l is employed. Realizing that for both the source
point and field point on the antenna surface, the radial distance d =
(x−x′)2+(y−y′)2 = 4a2 sin2(φ/2) can be approximated by its median
value d = a for a thin wire. Subsequently, R,R′, and R′′ in equation
(17) can be approximated by R ≈ Rr =

√
(z − z′)2 + a2, R′ ≈

R′
r =

√
a2 + (z + z′ + jξ)2, and R′′ ≈ R′′

r =
√
a2 + (z + z′)2; then

the integrands in the integrals of (17) become φ-independent. Thus,
the integral equation reduces to

∫ h+ l
2

z′=h− l
2

I(z)

{
jk0η0e

−jk0Rr

4πRr

[(
1 − 3j

k0Rr
− 3

k2
0R

2
r

) (
z − z′

Rr

)2

−
(

1 − j

k0Rr
− 1

k2
0R

2
r

)]
+

jη0

4πk0

×e−jk0R′′
r
[
(3/R′′

r + 3jk0 − k2
0R

′′
r ) · a2 − 2R′′

r (jk0R
′′
r + 1)

]
R′′

r
4

−jη0ηn

2π

∫ ∞

0
e−ηnk0ξ
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×e−jk0R′
r
[
(3/R′

r + 3jk0 − k2
0R

′
r) · a2 − 2R′

r(jk0R
′
r + 1)

]
R′

r
4 dξ

}
dz′dφ′

= −V δ(z). (18)

To solve the integral equation (18), the MoM is employed. First,
we divide the vertical antenna into N segments, the length of each
is ∆ = l/N , then express the unknown current I(z) as a linear
combination of pulse function

I(z) =
N∑

n=1

InΠn(z), (19)

where the pulse function is defined by

Πn(z) =


 1, z ∈ (zn − ∆

2
, zn +

∆
2

)

0, otherwise
(20)

in which zn is the median point of the nth segment. Then, substituting
the pulse expansion for I(z) in (18) and then testing the resulting
equation with the pulse function; the integral equation is converted to
a matrix equation as

[Zmn][In] = [Vm], (21)

where the forcing function is

Vm =
∫ h+ l

2

h− l
2

Ei
z(z)Πm(z)dz (22)

and the impedance matrix elements Zmn are given by

Zmn =
∫ ∆

2

z=−∆
2

∫ ∆
2

z′=−∆
2

{
jk0η0e

−jk0Rr

4πRr

[(
1 − 3j

k0Rr
− 3

k2
0R

2
r

)
(

(m− n)∆ − z′

Rr

)2

−
(

1 − j

k0Rr
− 1

k2
0R

2
r

)]
+

jη0

4πk0

×e−jk0R′′
r
[
(3/R′′

r + 3jk0 − k2
0R

′′
r ) · a2 − 2R′′

r (jk0R
′′
r + 1)

]
R′′

r
4

−jη0ηn

2π

∫ ∞

0
e−ηnk0ξ
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×e−jk0R′
r
[
(3/R′

r + 3jk0 − k2
0R

′
r) · a2 − 2R′

r(jk0R
′
r + 1)

]
R′

r
4 dξ

}
dz′dz,

(23)

in which,

Rr =
√
a2+((m−n)∆−z′)2, R′′

r =
√

(2h−l+(m+n)∆+z′)2+a2,

and
R′

r =
√

(2h− l + (m + n)∆ + z′ − jξ)2 + a2.

Based on knowledge of the current distribution on the surface of
a center-fed antenna, its input impedance can be readily found by

Zin = V/I(h), (24)

where V is taken to be 1 volt and I(h) is the input current at the feeding
point z = h. Also, the far-zone radiation pattern of the antenna can
be found [21] by

Fu(θ)=sin θ
∫ h+ l

2

h− l
2

I(z′)(ejk0z′ cos θ+Γe−jk0z′ cos θ)dz′ − π/2<θ<π/2,

(25)

where

Γ =
cos θ/η2

n −
√

1/η2
n − sin2 θ

cos θ/η2
n +

√
1/η2

n − sin2 θ
, (26)

for the upper half-space. And

Fl(θ) = sin θe−jkR

∫ h+ l
2

h− l
2

I(z′)Tejkz′ cos θdz′ π/2 < θ < 3π/2, (27)

where

T =
2 cos θ

ηn cos θ −
√

1 − sin2 θ/η2
n

, (28)

for the lower half-space. In equations (25) and (27), k0 and k are the
wavenumbers in the upper and lower half-space, respectively.
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3.2. Numerical Results and Discussion

Sample numerical results of the current I(z) distributed on the surface
of a thin-wire vertical antenna above a lossy half-space as well as the
input impedance and radiation pattern of the antenna are presented
and discussed in this section. First of all, the EFIE results of
the current distribution on a half-wavelength-long thin-wire antenna
(a = 0.01λ) located in free-space are checked by comparing them with
that obtained by a traditional approach of solving the Pocklington’s
equation. The comparison is illustrated in Fig. 4, where one observes
that the two sets of data resulting from these two methods fall on
top of each other. The same comparison is also made for a one-
wavelength-long thin-wire antenna in free-space, and is presented in
Fig. 5, which shows again that the EFIE results are almost the same
as the Pocklington’s equation solutions, as they should be.
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Figure 4. Comparison between the current distributions obtained
using Pocklington’s eq. and that employing EFIE on a thin-wire
vertical antenna (a = 0.01λ, l = 0.5λ) in free space.

Then, data of the current distribution on a half-wavelength-long
thin-wire antenna (a = 0.01λ) above a lossy half-space of various
conductivities are checked by comparing them with that on the antenna
above a PEC plane. The comparisons are illustrated in Fig. 6 for
h = 0.26λ and Fig. 7 for h = 0.35λ. From these two figures, one
observes that as the conductivity of the lower half-space increases,
the current distribution gradually approaches to that for the antenna
above a PEC plane. When the conductivity is taken to be high enough
(σ = 104), the two sets of data match very well, as one would expect.

Fig. 8 depicts data of the current distributed on the surface of a
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Figure 5. Comparison between the current distributions obtained
using Pocklington’s eq. and that employing EFIE on a thin-wire
vertical antenna (a = 0.01λ, l = 1λ) in free space.

thin-wire antenna (a = 0.01λ, l = 0.5λ) above a lossy half-space with
normalized intrinsic impedance ηn = 0.3 + j0.1, at different heights.
One notes from the data that when the antenna is very close to the
media interface separating the two half-spaces (h = 0.26λ), its current
distribution is significantly different from that obtained for the antenna
located in free space. However, as the height of the antenna increases,
the current distribution data gradually approach to the free-space
result. This makes sense because when the antenna location is moved
away from the media interface, the influence of the lower half-space on
the antenna current distribution becomes weaker and weaker. If the
antenna is located high enough above the lossy half-space, then the
influence of the lower half-space on the antenna would be negligible,
making its current distribution be about the same as the free-space
results.

To see how the electromagnetic parameters of the lower half-space
can affect the current distribution on an antenna above it, in Figs. 9
and 10, we present the current distribution on a thin-wire vertical
antenna (a = 0.01λ, l = 0.5λ) above the lower half-space, at a height
of h = 0.251λ, with various normalized intrinsic impedance ηn. In
Fig. 9, the imaginary part of ηn is taken to be unchanged, only its
real part varies. The data presented in Fig. 10 are for the case that
the real part of ηn remains to be a fixed value, only its imaginary
part changes. The data depicted in these two figures show that when
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Figure 6. Comparison between the current distributions on a vertical
dipole antenna (a = 0.01λ, l = 0.5λ) above a lossy half-space
(εr = 1.001, h = 0.26λ, f = 300 MHz) of various conductivities with
that on the antenna above a PEC plane.

the normalized intrinsic impedance of the lower half-space varies, the
current distribution changes, and they all are significantly different
from that for the antenna located in free space.

Based on knowledge of the current distribution on a thin-wire
antenna above a lossy half-space, its input impedance and radiation
pattern are obtained and presented in Tables 1–3 and Figs. 11–12, all
for a = 0.01λ and l = 0.5λ. In Table 1 are listed data of the input
impedance ηn = 0.3+ j0.1of the antenna above a lossy half-space with
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Table 1. The input impedance of a vertical dipole antenna (a =
0.01λ, l = 0.5λ) above a lossy half-space (ηn = 0.3+0.1j) with various
heights.

Zin(Ω)

Free space result 106.8188 + 25.1592j

h = 2λ 106.7627 + 25.2726j

h = 1λ 107.3416 + 24.2268j

h = 0.5λ 103.0509 + 18.2636j

h = 0.26λ 132.4766 + 6.4395j

Table 2. The input impedance of a vertical dipole antenna (a =
0.01λ, l = 0.5λ, h = 0.251λ) above a half-space with various real part
of normalized intrinsic impedance.

Zin(Ω)

Free space result 106.8188 + 25.1592j

ηn = 0.05 + 0.1j 198.8489 − 9.8498j

ηn = 0.12 + 0.1j 183.6976 − 4.7526j

ηn = 0.2 + 0.1j 168.5355 − 0.4902j

ηn = 0.3 + 0.1j 152.2572 + 3.2005j

Table 3. The input impedance of a vertical dipole antenna (a =
0.01λ, l = 0.5λ, h = 0.251λ) above a half-space with various imaginary
part of normalized intrinsic impedance.

Zin(Ω)

Free space result 106.8188 + 25.1592j

ηn = 0.3 + 0.01j 153.9227 + 17.1085j

ηn = 0.3 + 0.1j 152.2572 + 3.2005j

ηn = 0.3 + 0.15j 150.474 − 4.1298j

ηn = 0.3 + 0.23j 146.5436 − 15.0825j
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Figure 7. Comparison between the current distributions on a vertical
dipole antenna (a = 0.01λ, l = 0.5λ) above a lossy half-space
(εr = 1.001, h = 0.35λ, f = 300 MHz) of various conductivities with
that on the antenna above a PEC plane.

normalized intrinsic impedance, at different heights. One observes that
when the antenna is very close to the media interface separating the
two half-spaces, its input impedance is significantly different from that
for the antenna located in free space. As the height of the antenna
increases, its input impedance gradually approaches to the free-space
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Figure 8. Current distributions on a vertical dipole antenna (a =
0.01λ, l = 0.5λ) at different heights above a half-space with normalized
intrinsic impedance ηn = 0.3 + j0.1.

result. Again, this is what one would expect and is due to the fact
that as the antenna is placed farther and farther apart from the media
interface, the influence of the lower half-space becomes weaker and
weaker, and eventually negligible if the antenna is located high enough
above the interface. Tables 2 and 3 present the input impedance for
the antenna above a lossy half-space, at a height of h = 0.251λ, with
different normalized intrinsic impedance ηn. Data listed in these two
tables show that variation of the electromagnetic parameters of the
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Figure 9. Current distributions on a vertical dipole antenna (a =
0.01λ, l = 0.5λ, h = 0.251λ) above a half-space with various real part
of normalized intrinsic impedance.

lower half-space can significantly change the input impedance of a
vertical antenna above it.

Radiation patterns of an antenna above a lossy half-space are
presented in Figs. 11 and 12. Fig. 11 depicts the radiation patterns
of an antenna above a very lossy half-space. One observes that as the
conductivity increases, the magnitude of the field in the upper half-
space becomes larger and larger, and the radiation patterns gradually
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Figure 10. Current distributions on a vertical dipole antenna (a =
0.01λ, l = 0.5λ, h = 0.251λ) above a half-space with various imaginary
part of normalized intrinsic impedance.

approach to that for the antenna above a PEC plane. This is expected
and is similar to that presented in [21] for an infinitesimal vertical
dipole above a very lossy half-space. Fig. 12 presents the radiation
patterns corresponding to different antenna heights. One notes that for
an antenna with larger height h above the lower half-space, its radiation
pattern has more lobes. This phenomenon is similar to that presented
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Figure 11. Radiation patterns of a vertical dipole antenna (a =
0.01λ, l = 0.5λ) above a very lossy half-space (εr = 1.001, h =
0.26λ, f = 300 MHz) of various conductivities, compared with that
for the antenna above a PEC plane.
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Figure 12. Radiation patterns of a vertical dipole antenna (a =
0.01λ, l = 0.5λ) at different heights above a lossy half-space with
normalized intrinsic impedance ηn = 0.3 + j0.1.

and discussed in [21] and [22] for infinitesimal vertical dipoles above
a lossy half-space. The magnitude of the far-zone field in the lossy
lower half-space is supposed to be very small, due to an exponentially
decaying factor e−jkR in equation (29). In order to provide information
of the angular distribution of the field in the lower half-space, the field
pattern depicted for that region is enlarged by a factor of 1/e−jkR.
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4. CONCLUSIONS

In this paper, an EFIE is formulated and solved numerically for an
efficient analysis of a vertical thin-wire antenna above a lossy half-
space. In the EFIE formulation, the Sommerfeld-type integrals, which
are often encountered in electromagnetic modeling involving media
interfaces, are reduced to semi-infinite integrals that converge rapidly
making use of the exact image theory. The EFIE solutions of the
current distribution on an antenna in free space have been checked with
that obtained using a traditional approach of solving the Pocklington’s
equation, and a good agreement is observed. A comparison between
the current distributions on an antenna above a lossy half-space of
various conductivities with that on the antenna above a PEC plane
illustrates that as the conductivity increases, the current distribution
data gradually approach to that for the antenna above a PEC plane.
And when the conductivity is taken to be high enough, the two sets
of data match each other, as one would expect. Data of the current
distributed on an antenna above a lossy half-space at different heights
show that for an antenna close to the media interface separating
the two half-spaces, the lower half-space can significantly affect the
current distribution on the antenna and its input impedance. But
as the antenna is located farther apart from the lower half-space, its
influence would become weaker and weaker, and eventually negligible
if the antenna is placed high enough above the lower half-space. The
radiation patterns of an antenna above a lossy half-space of various
conductivities show that the magnitude of the field in the upper half-
space becomes larger and larger and the radiation patterns approach
to that for the antenna above a PEC plane, as the lower half-space
conductivity increases. The radiation patterns for an antenna above
a lossy half-space at different heights illustrate that as the height
increases; the field pattern in the upper half-space has more lobes.
All these properties of the radiation patterns presented are similar to
that documented in literature for infinitesimal dipoles above a lossy
half-space.
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