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ABSTRACT: With the availability of high-density 
marker maps and cost-effective genotyping, genomic 
selection methods may provide faster genetic gain than 
can be achieved by current selection methods based 
on phenotypes and the pedigree. Here we investigate 
some of the factors driving the accuracy of genomic 
selection, namely marker density and marker type 
(i.e., microsatellite and SNP markers), and the use of 
marker haplotypes versus marker genotypes alone. 
Different densities were tested with marker densities 
equivalent to 2, 1, 0.5, and 0.25Ne markers/morgan us-
ing microsatellites and 8, 4, 2, and 1Ne markers/mor-
gan using SNP, where 1Ne markers/morgan means 
100 markers per morgan, if effective size (Ne) is 100. 
Marker characteristics and linkage disequilibria were 
obtained by simulating a population over 1,000 genera-
tions to achieve a mutation drift balance. The marker 
designs were evaluated for their accuracy of predicting 
breeding values from either estimating marker effects 
or estimating effects of haplotypes based upon combin-
ing 2 markers. Using microsatellites as direct marker 
effects, the accuracy of selection increased from 0.63 

to 0.83 as the density increased from 0.25Ne/morgan 
to 2Ne/morgan. Using SNP markers as direct marker 
effects, the accuracy of selection increased from 0.69 
to 0.86 as the density increased from 1Ne/morgan to 
8Ne/morgan. The SNP markers required a 2 to 3 times 
greater density compared with using microsatellites to 
achieve a similar accuracy. The biases that genomic 
selection EBV often show are due to the prediction of 
marker effects instead of QTL effects, and hence, ge-
nomic selection EBV may need rescaling for practical 
use. Using haplotypes resulted in similar or reduced 
accuracies compared with using direct marker effects. 
In practical situations, this means that it is advanta-
geous to use direct marker effects, because this avoids 
the estimation of marker phases with the associated 
errors. In general, the results showed that the accu-
racy remained responsive with small bias to increas-
ing marker density at least up to 8Ne SNP/morgan, 
where the effective population size was 100 and with 
the genomic model assumed. For a 30-morgan genome 
and Ne = 100, this implies that about ~24,000 SNP are 
needed.

Key words:  accuracy of selection, breeding value estimation, dense marker map, genome-wide selection, 
marker-assisted selection
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INTRODUCTION

Information from high-density marker maps and 
high-throughput genotyping can be utilized in new 
selection methods. Current methodology for utilizing 
markers in breeding programs is marker-assisted se-
lection (e.g., Meuwissen and Goddard, 1996). A limita-
tion of using marker-assisted selection is the limited 
variance explained by the detected QTL due to the use 
of stringent significance tests in QTL detection.

Meuwissen et al. (2001) made a first step toward pre-
dicting a total genetic value using a genome-wide dense 
map of highly informative markers. The method was 
termed genomic selection, and the idea was to estimate 
the effects of all genes or chromosomal segments simul-
taneously. The effect of these segments is summed to 
predict the total breeding value. Selection can then be 
based on these breeding values. By treating the mark-
ers or haplotypes as random effects, the problem of es-
timating large numbers of haplotype effects from a lim-
ited number of animals can be managed. Meuwissen 
et al. (2001) compared different methods for predicting 
breeding values based on haplotype effects and found 
accuracies in the range of 0.79 to 0.85. Although the 
accuracy obtained depends on the genomic and pheno-
typic models assumed, these accuracies were obtained 
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only by phenotyping the parental and grandparental 
generation and were greater than the accuracy ob-
tained if the breeding values of both parents had been 
known without error.

Factors affecting the accuracy of the prediction of 
the genotypes are largely unknown. At present it is un-
known how dense markers need to be, particularly if 
they vary in information content. Therefore, the main 
aim of this paper was to examine how the accuracy 
of predicted breeding values responded to changes in 
marker densities with 2 different classes of markers 
such as microsatellites and SNP. Additionally, we ex-
amined if effects of marker genotypes should be used or 
if it was advantageous to use haplotype effects instead, 
due to their increased informativeness.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because no animals were used. 

This study examined by simulation the changes in 
accuracy resulting from changing the type and density 
of markers and the approach to estimating effects with 
the evaluation. Throughout all comparisons, a Markov 
chain Monte Carlo approach was taken to the analysis 
with markers and QTL obtained from 1,000 genera-
tions of mutation selection balance.

Population

A stochastic model was simulated with a base gen-
eration of 100 unrelated animals (50 males and 50 
females). To form generation 1 and later generations, 
sires and dams were mated randomly, but excluding 
selfing, for 1,000 generations. The effective population 
size (Ne) was 100. The number of offspring born in gen-
eration t = 1,001 was increased to 1,000 using a facto-
rial mating design involving all 50 sires and 50 dams 
from generation t = 1,000, where each sire was mated 
to 20 dams with 1 offspring per mating pair. In genera-
tion t = 1,002 a further 1,000 individuals were created 
by randomly sampling with replacement the sire and 
dam from among the 500 sires and 500 dams in genera-
tion t = 1,001.

Genome

In total, 10 chromosomes of equal length were simu-
lated in the genome, such that the total genome size 
was 10 morgan. Markers were distributed evenly along 
the chromosomes but with differing densities. Marker 
densities are expressed throughout the paper in terms 
of Ne and morgan if not otherwise stated, because link-
age disequilibrium is a function of 4Nec, where c = the 
distance between the loci, and thus the same linkage 
disequilibrium is obtained when doubling Ne and halv-
ing c (i.e., doubling marker density). For example, 8Ne/
morgan is equivalent to 800 markers per chromosome 
in our case, where Ne = 100, or 8,000 markers in total. 
In total, 4 different density schemes were evaluated for 
each of the 2 marker types. Using microsatellites, the 4 
density schemes were 2Ne/morgan, 1Ne/morgan, 0.5Ne/
morgan, and 0.25Ne/morgan, whereas, using SNP 
markers, the densities were 8Ne/morgan, 4Ne/morgan, 
2Ne/morgan, and 1Ne/morgan. The total number of pu-
tative QTL, which can turn into a real QTL when a 
mutation occurs, was kept constant at 100 per chromo-
some for all marker density schemes. Marker and QTL 
positions are illustrated in Table 1 for 1 chromosome 
for the different marker density schemes. For example, 
with a density of 2Ne/morgan, the chromosome begins 
with 2 markers, then 1 putative QTL, followed by 2 
markers, a putative QTL, and so forth, in total 302 loci 
per chromosome.

Creation of Microsatellites and QTL

At t = 0 there was no polymorphism in marker or 
QTL loci. Each generation, for each individual at each 
locus, a random number was drawn in the simulation 
to test for the occurrence of a mutation. The muta-
tion rate for the marker positions was 2.5 × 10−3 per 
locus per generation. The mutation rate for the QTL 
positions was 2.5 × 10−5 per locus per generation, and 
whether a putative QTL caused genetic variance or 
not depended on the mutations at these putative QTL 
positions. For each new mutation at a QTL, an allelic 
effect was drawn from the gamma distribution with 
a shape parameter β = 0.4 and a scale parameter of 

Table 1. Illustrated marker (M) and QTL (Q) positions1 on 1 chromosome for different marker density schemes 

Marker density2 Illustrated marker and QTL position on 1 chromosome

0.25Ne/morgan M1-Q1-Q2-Q3-Q4-M2-…//…-M25-Q97-Q98-Q99-Q100-M26
0.5Ne/morgan M1-Q1-Q2-M2-…//…-M50-Q99-Q100-M51
1Ne/morgan M1-Q1-M2-…//…-M100-Q100-M101
2Ne/morgan M1-M2-Q1-M3-M4-…//…-M199-M200-Q100-M201-M202
4Ne/morgan M1-M2-M3-M4-Q1-M5-M6-M7-M8-…//…-M397-M398-M399-M400-Q100-M401-M402-M403-M404
8Ne/morgan M1-M2-M3-M4-M5-M6-M7-M8-Q1-M9-M10-M11-M12-M13-M14-M15-M16-…//…-M793-M794-M795-M796-M797-M798-M799-M800-Q100-

M801-M802-M803-M804-M805-M806-M807-M808

1Mx represents a marker, whereas the Qx symbolizes a putative QTL. One chromosome is 100 cM in length, and in total, 10 chromosomes 
were simulated, such that the genome size was 10 morgan.

2Marker density indicates the number of markers in terms of effective population size (Ne) and the distance (in morgan).
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1.66 (Hayes and Goddard, 2001). The shape parame-
ter was chosen to reflect the empirical distribution of 
the QTL effects, and the scale parameter was chosen 
such that the expected total genetic variance equaled 
1. The gamma distribution yields only positive effects; 
therefore, the QTL effect was sampled to be positive 
or negative with probability 0.5. Typically, the number 
of segregating QTL was between 5 and 6% of the total 
number of QTL, and the distribution of the QTL allele 
frequencies resembled a U-shaped distribution as in 
the Wright-Fisher mutation drift equilibrium (Wright, 
1931, 1935). Figure 1 shows the total genetic variance 
and heterozygosity of microsatellite markers plotted 
against the number of generations.

SNP Markers

The SNP markers were obtained by recoding micro-
satellite alleles. First, the evolutionary tree of how the 
microsatellite alleles evolved was stored (e.g., allele 
4 may have come from a mutation in allele 2 and so 
on). Second, one of the mutations in this evolutionary 
tree was assumed visible and the others were invisible, 
which resulted in only 2 alleles, 1 mutated allele and 1 
ancestral allele. The mutation to be visible was chosen 
such that the SNP allele frequency was as close as pos-
sible to 0.5 in generations t = 1,001 and 1,002. Figure 
2 shows a typical minor allele frequency of the SNP 
markers, illustrated using the 1Ne/morgan density 
scheme. The minor allele frequencies of the SNP mark-
ers showed approximately a uniform distribution with 
an overrepresentation of marker alleles with interme-
diate frequencies, which reflects the effect in practice 
of prescreening SNP markers and selecting the most 

informative. This resulted in a typical number of seg-
regating SNP markers of 98 to 99% of the total number 
of markers.

Phenotypes

Only the 1,000 individuals in generation t = 1,001 
were assumed to have a phenotypic record. Phenotypic 
records in generation t = 1,001 were obtained by Pi = 
TBVi + εi, where TBVi = the true breeding value of the 
ith animal and εi sampled from N(0,σ e

2 ). The environ-
mental variance (σ e

2 ) was set equal to the true genetic 
variance (σ g

2 ); therefore, the heritability was 0.5 for ev-
ery replicate. The genetic variance varied somewhat 
from replicate to replicate, but was on average close to 
1 (Figure 1).

The effect of doubling the number of phenotypes was 
tested by doubling the number of animals in t = 1,001 
to 2,000 using the factorial mating design described 
above, except that each sire was mated to 40 dams 
with 1 offspring per mating pair. In this scenario, a 
further 2,000 unphenotyped individuals were created 
in t = 1,002 by randomly sampling with replacement its 
sire and dam among the 1,000 sires and 1,000 dams in 
generation t = 1,001.

Estimation of Marker and Haplotype Effects

The markers were treated either as marker geno-
type effects or as 2 markers combined into a haplotype. 
When haplotypes are referred to in this text, it means 

Figure 1. Genetic variance and marker heterozygos-
ity using a density of 1Ne/morgan between microsatel-
lite markers after 1,000 generations (Ne = 100). Lines 
are average genetic variance and heterozygosity for 
microsatellite markers based on 20 replicated simula-
tions. Ne = effective population size. Figure 2. Typical minor allele frequency distribu-

tion of the SNP alleles (top) and a typical QTL allele 
frequency distribution of the segregated QTL.
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2 neighboring markers combined into a haplotype, un-
less otherwise stated. Haplotypes used densities of 
1Ne/morgan and 2Ne/morgan using microsatellites and 
4Ne/morgan and 8Ne/morgan using SNP markers. Re-
combination between the markers followed Haldane’s 
mapping function (Haldane, 1919). In each simulated 
population, the BayesB method of Meuwissen et al. 
(2001) was used to estimate the effects of single mark-
ers and haplotypes in generation t = 1,001. The model 
at the level of the data was: y = μ1n + ΣiXigi + e, where 
y = the vector of phenotypes; 1n = a vector of n ones; Σi 
= the summation over all markers (haplotypes); Xi = 
a design matrix for the ith marker; gi = the vector of 
marker (haplotype) effects; and e = the error. The vari-
ance of the marker effects is σ2

gi, which is estimated for 
every marker using an informative prior distribution. 
The distribution of the genetic variances across loci 
resembles a situation where there are many loci with 
no genetic variance (not segregating) and some with 
genetic variance. The prior distribution, therefore, is a 
mixture of distributions with a probability π, at σ2

gi = 0 
and an inverted chi-square distribution χ−2(ν, S) with 
probability (1-π) for σ2

gi > 0. The parameters of the prior 
distribution were ν = 4.234 and S = 0.0429 (Meuwissen 
et al., 2001). The probability π depends on the density 
of the markers and varies with different marker densi-
ties, because with more markers, it becomes less likely 
for marker i to be closest to a QTL. At 0.25, 0.5, 1, 2, 
4, and 8Ne/morgan, the values of π were 0.212, 0.106, 
0.053, 0.0265, 0.01325, and 0.006625, respectively.

Sampling from a prior for σ2
gi, which was a mixture 

distribution, was by a Metropolis-Hastings algorithm 
that sampled σ2

gi from p(σ2
gi|y*), where the prior dis-

tribution, p(σ2
gi) was used as the distribution to suggest 

updates for the Metropolis-Hastings chain (Gilks et al., 
1996) and y* denotes the data y corrected for the mean 
and all other genetic effects except the marker (hap-
lotype) effect (gi). The Metropolis Hastings chain was 
run for 10,000 cycles using a burn-in period of 1,000 
cycles. Given σ2

gi, marker (haplotype) effects, gi, were 
sampled from p(gi|σ2

gi) using Gibbs sampler (Sørensen 
and Gianola, 2002).

Linkage Disequilibrium and Marker 
Informativeness

Linkage disequilibrium (LD) was estimated as the 
average r2 value for 2 adjacent SNP markers using 10 
replicates for all 1,000 animals in generation t = 1,001 
for the 4 different SNP density schemes. The formulae 
used to calculate LD was r2 = D2/(p1p2q1q2), where D = 
the coefficient of disequilibrium. The frequency of al-
lele 1 and 2 in locus 1 and frequency of allele 1 and 2 
in locus 2, are p1, p2 = (1-p1), q1 and q2 = (1-q1), respec-
tively. Figure 3 shows the estimated r2 value for the 4 
different density schemes when adjacent SNP markers 
were evaluated. The estimated LD was similar to the 
expected value of LD if a population is in recombination 

drift balance and allows for mutations, which is ap-
proximately 1/(2 + 4Nec), where c = the recombination 
rate between the markers (Tenesa et al., 2007). The LD 
increased with increasing marker density, as expected. 
Marker informativeness was calculated for both mic-
rosatellites and SNP markers using the polymorphism 
information content (PIC; Lynch and Walsh, 1998).

Prediction and Accuracy of Breeding Values

Generation t = 1,002 was not phenotyped, but breed-
ing values in generation t = 1,002 were estimated using 
the phenotypic records of t = 1,001 and the genomic 
records in t = 1,001 and 1,002. The EBV were made 
either using marker genotypes or combining neighbor-
ing marker genotypes into haplotypes. The EBV were 
compared with the TBV in generation t = 1,002. Esti-
mated breeding values of animal j were obtained after 
estimating the marker-haplotype effects from:

 EBVj ji i
i

n
= ∑ X g ,  

where Xji denotes the marker genotype of animal j at 
locus i in generation t = 1,002 and gi = the estimate of 
the marker or haplotype effects, which were estimated 
on animals in generation t = 1,001.

Twenty replicated simulations were performed per 
marker density and marker type as described above. A 
regression analysis was performed of TBV on estimat-
ed breeding values. The regression analysis resulted in 
a regression coefficient (b) and a correlation coefficient 
(r), where the regression coefficient reflects the bias of 
the breeding value estimate, b = 1 denotes unbiased 
estimates, and the correlation coefficient reflects the 
accuracy of predicting the breeding values.

Figure 3. Calculated r2 linkage disequilibrium (LD) 
and expected r2 LD [E(LD)] in generation t = 1,001 for 
adjacent SNP markers for the 4 different marker den-
sity schemes. Ne = effective population size.
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RESULTS

Marker Informativeness

Typically, the number of microsatellite alleles was 
between 1 and 14, with an average of 6 alleles per locus 
genome-wide. Table 2 shows the marker informative-
ness (PIC) for microsatellites and SNP in generation 
t = 1,001. Mean values for the PIC genome-wide for 
microsatellites and SNP markers were typically 0.459 
and 0.234, respectively. These can be compared with 
theoretical maxima for PIC of 0.810 for a 6-allele mi-
crosatellite and 0.375 for a biallelic SNP, where the 
maxima are achieved with equal frequency among the 
alleles at a locus.

Direct Estimation of Marker Effects

Four schemes with different densities for microsatel-
lites and SNP markers were compared. The regression 
coefficients (b) of TBV on EBV and the accuracy of se-
lection (i.e., the correlation between TBV and EBV) are 
given in Tables 3, 4, and 5. The accuracy of the EBV 
varied from 0.626 to 0.827 for microsatellites using a 
marker density of 0.25Ne/morgan and 2Ne/morgan, re-
spectively (Table 3). Hence, the accuracy of estimating 
the breeding values using microsatellites increased as 
the density of the markers increased, as expected. The 
regression of TBV on EBV become closer to 1 as the 
marker density increased, although for SNP, this rela-
tionship was less clear.

From Tables 3 and 4, it is seen that the accuracy us-
ing 1Ne/morgan for SNP markers is intermediate be-
tween the accuracies achieved with densities of 0.25Ne/
morgan and 0.5Ne/morgan for microsatellite markers, 

indicating the need for a 2 to 3 times greater density 
when using SNP markers. However, for greater densi-
ties of microsatellites, this equivalence is closer to a 
2-fold density of SNP.

In general, the accuracies for both microsatellites and 
SNP markers increased about 1.04 to 1.07-fold when 
the marker density was doubled. Figure 4 summarizes 
the results graphically, where the average accuracy for 
the 20 replicates is plotted against the marker density 
when using marker genotypes for estimation.

When the number of offspring was doubled to 2,000 
animals, the accuracy increased 1.09-fold from 0.77 to 
0.84 using microsatellites and a density of 1Ne/morgan. 
The EBV were also less biased when the number of ani-
mals increased, as the regression coefficient increased 
from 0.88 to 0.93 (Table 5).

Using Haplotypes to Estimate  
Breeding Values

Two different densities using haplotypes for both mi-
crosatellites and SNP were evaluated. The regression 
coefficients (b) of TBV on EBV and the accuracy of EBV 
are given in Tables 6 and 7.

When haplotypes were obtained from microsatellite 
markers, the accuracy varied from 0.764 to 0.798 using 
densities of 1Ne/morgan and 2Ne/morgan, respectively 
(Table 6). Microsatellite haplotypes gave similar ac-

Table 2. Typical marker informativeness1 for micro-
satellite and SNP markers, illustrated with the poly-
morphism information content (PIC) 

Marker type PICmean ± SE
Average number of 

alleles per locus

Microsatellite 0.459 ± 0.0140 6.1
SNP 0.234 ± 0.0008 2.0

1The measured values are from generation t = 1,001 using a den-
sity of 1Ne/morgan. Ne = effective population size.

Table 3. Accuracy of selection (r) and regression coef-
ficient (b) of true breeding value (TBV) on EBV when 
EBV are estimated using microsatellite genotypes 

Marker density1 rTBV;EBV ± SE bTBV;EBV ± SE

0.25Ne/morgan 0.626 ± 0.014 0.835 ± 0.015
0.5Ne/morgan 0.723 ± 0.010 0.882 ± 0.013
1Ne/morgan 0.770 ± 0.013 0.882 ± 0.013
2Ne/morgan 0.827 ± 0.010 0.941 ± 0.012

1Ne = effective population size.

Table 4. Accuracy of selection (r) and regression coef-
ficient (b) of true breeding value (TBV) on EBV when 
EBV are estimated using SNP genotypes 

Marker density1 rTBV;EBV ± SE bTBV;EBV ± SE

1Ne/morgan 0.690 ± 0.016 0.877 ± 0.019
2Ne/morgan 0.790 ± 0.07 0.879 ± 0.011
4Ne/morgan 0.841 ± 0.004 0.943 ± 0.009
8Ne/morgan 0.860 ± 0.010 0.923 ± 0.011

1Ne = effective population size.

Figure 4. Average correlation coefficient (20 rep-
licates; i.e., accuracy of selection) for the 4 different 
density schemes using marker genotype effect for mi-
crosatellite (Microsatt) and SNP markers. TBV = true 
breeding value. Ne = effective population size.

Genomic selection 2451
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curacies, at least not significantly different compared 
with using microsatellite genotype effects, although 
the tendency was to a reduction in accuracy using hap-
lotypes. The bias was greater when using haplotypes. 
These trends were repeated when comparing SNP hap-
lotypes and SNP genotypes.

DISCUSSION

This study demonstrates the effect of marker density 
and type on the prediction of breeding values for the 
next generation, when the single marker effects or hap-
lotype effects have been estimated in a previous gener-
ation. When using SNP markers for genomic selection, 
a 2 to 3 times greater density was required compared 
with using microsatellites to achieve comparable accu-
racy using the same genetic architecture. A density of 
2Ne/morgan using microsatellites or 4Ne/morgan using 
SNP yielded an accuracy of selection >0.8 for popula-
tions with an effective size of 100, 1,000 phenotypes, 
and a heritability of 0.5. Using haplotypes resulted 
in similar or reduced accuracies compared with using 
marker genotypes. In practice, it is therefore advan-
tageous to use marker genotypes, because this avoids 
the estimation of marker phases and errors associated 
with this.

It is perhaps counterintuitive that the use of marker 
haplotypes instead of marker genotypes yielded some-
what lower accuracies at a relatively low SNP density 
of 4Ne/morgan, and similar tendencies were found for 
the microsatellite markers (Tables 6 and 7). The cova-
riance structure imposed by fitting marker genotypes 
differs from that by fitting marker haplotypes. For ex-
ample, for 2 adjacent markers M and N with M11N11 
denoting the marker genotypes at M and N: when fit-
ting marker genotype, there is a covariance between re-
cords yM11N11 and yM11N22, due to the common genotype 
at M, whereas there is no covariance between these re-

cords when marker haplotypes are fitted. Apparently, 
assuming covariance between records that carry the 
same marker genotype yields better prediction of the 
QTL genotypes than assuming this covariance is ab-
sent. If we assume that one of the markers is the better 
predictor of the QTL, say marker M, it is apparently 
not always beneficial to make haplotypes with an adja-
cent marker, which itself may not be a good predictor 
of the QTL. The latter is especially the case when the 
adjacent markers are further apart (i.e., having rela-
tively low r2), and thus their r2 with the QTL may be 
different (Table 7).

A simulation study, as carried out here, requires sev-
eral assumptions about the underlying genetic model 
and the population history. The genetic model assumed 
here is a model, just like the infinitesimal model is a 
model, and the assumptions will never hold exactly in 
any practical situation. However, we believe that our 
main conclusions about the effects of marker density 
and types of markers are general and they will quali-
tatively also hold for different genetic models. Never-
theless, it may be that different genetic models (e.g., 
with fewer large QTL) may require adjusting the prior 
distribution of the genetic model at hand. It is impor-
tant that the prior distribution and the true underly-
ing genetic model correspond well, and this will require 
research on the distribution of the QTL effects (e.g., 
Hayes and Goddard, 2001). The prior distribution of 
the variances of marker effects used here was a mixture 
distribution of an inverted chi-square and a distribu-
tion with zero variance, whereas the true QTL effects 
were sampled from the gamma distribution. Hence, the 
prior distribution used for the analysis and the distri-
bution for the sampling of the true QTL effects did not 
agree exactly in this study, which may explain the bias 
observed in the EBV (b values <1 in Tables 3 and 4). 
However, we also simulated 5 replicates, where it was 
assumed that the QTL genotypes at the true QTL posi-
tions were known (i.e., running the model using only 
QTL genotypes) and the estimates of the QTL effects 
were used to predict the EBV. The accuracy of selection 
in that case was 0.919 ± 0.013, and the regression of 
TBV on EBV was 1.000 ± 0.023, which indicates that in 
our study the bias came from the use of marker effects 
rather than from the distributional assumptions made 
concerning QTL. The accuracy of 0.919 also places an 
upper bound for the accuracy that can be expected from 
using a very dense marker map. In practice, we have to 
be aware of possible biases of genomic selection EBV, 

Table 6. Accuracy of selection (r) and regression coef-
ficient (b) of true breeding value (TBV) on EBV when 
EBV are estimated using microsatellite haplotypes 

Marker density1 rTBV;EBV ± SE bTBV;EBV ± SE

1Ne/morgan 0.764 ± 0.010 0.847 ± 0.015
2Ne/morgan 0.798 ± 0.011 0.839 ± 0.014

1Ne = effective population size.

Table 7. Accuracy of selection (r) and regression coef-
ficient (b) of true breeding value (TBV) on EBV when 
EBV are estimated using SNP haplotypes1 

Marker density rTBV;EBV ± SE bTBV;EBV ± SE

4Ne/morgan 0.802 ± 0.011 0.891 ± 0.012
8Ne/morgan 0.821 ± 0.015 0.902 ± 0.012

1Ne = effective population size.

Table 5. Accuracy of selection (r) and regression coef-
ficient (b) of true breeding value (TBV) on EBV using 
microsatellite markers with a density of 1Ne/morgan, 
when the number of offspring was doubled1 

Coefficient 1,000 offspring 2,000 offspring

rTBV;EBV ± SE 0.770 ± 0.013 0.842 ± 0.010
bTBV;EBV ± SE 0.882 ± 0.013 0.930 ± 0.010

1Ne = effective population size.
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which may be due to differences between the prior dis-
tribution used in the EBV estimation and the true un-
derlying genetic model and from using markers instead 
of QTL effects. These biases may be corrected for us-
ing a cross-validation type of approach, in which some 
phenotypes are hidden from the analysis and later the 
regression of the hidden phenotypes on the predicted 
EBV is estimated. This regression coefficient should 
equal 1, and if this is not the case, the EBV can be res-
caled such that the regression coefficient equals 1.

Although there are many structural similarities in 
the simulated populations and the parameters used in 
this study compared with Meuwissen et al. (2001), the 
results show that there is no barrier to achieving such 
accuracies using genomic evaluations in practice. In a 
traditional progeny test scheme in Canadian Holsteins, 
the accuracy of predicting the EBV of progeny-tested 
young bulls for production, conformation, fertility, and 
longevity was estimated to be 0.75 for their first EBV 
(Schaeffer, 2006). Compared with this, a density of 
1Ne/morgan using microsatellites or 2Ne/morgan using 
SNP seems sufficient to achieve a similar accuracy.

The presented simulations assumed a relatively 
small effective population size of Ne = 100, which gen-
erates LD between the markers and a QTL and thus 
causes the marker effects. The expected amount of dis-
equilibrium in a stable population represents a balance 
between its creation by drift and its decay by recom-
bination. For a randomly mating population in which 
the drift-recombination balance has been achieved, the 
expected squared correlation between the presence of 
2 linked loci is E(r2) = 1/(1 + 4Nec), where c = the re-
combination between 2 loci (Lynch and Walsh, 1998). 
Thus, if Ne is 2 times greater than in our simulations, 
the marker density needs to be doubled to generate the 
same LD and thus to have the same accuracy of se-
lection. To test this, a simulated population with Ne = 
200 using SNP markers with a marker density of 1Ne/
morgan (i.e., Ne = 200) was compared with a popula-
tion using Ne = 100 and a marker density of 1Ne/mor-
gan. Table 8 shows that using Ne = 200 gave almost 
the same accuracy compared with using Ne = 100 using 
half the marker density. Note that in both schemes, 
marker densities are 1Ne/morgan, demonstrating that 
selection accuracies are similar for similar densities 
expressed in Ne/morgan units, which is why we used 
these units throughout this paper.

The LD is the key factor that is driving the genom-
ic prediction process, and, to further confirm this, 
some simulations were tested to see how the accuracy 
changed with increasing LD. The simulated population 
was therefore stopped before it reached a balance be-
tween recombination and drift, and before the equilib-
rium amount of LD was reached, resulting in a lower 
LD. Figure 5 shows that the increase in LD and the in-
crease of the accuracy curve are very similar, suggest-
ing that LD is indeed driving the accuracy of selection.

A heritability of 0.5 was used in this simulation 
study. However, many traits in animal breeding show 
a smaller heritability than 0.5 (i.e., they will show rela-
tively more environmental variance). A reduced heri-
tability will lead to a decrease in accuracy of predict-
ing the breeding value but can be compensated for by 
using a larger number of observations to estimate the 
marker (haplotype) effects.

The estimation model assumes that there is no domi-
nance (i.e., only the additive effects are fitted), and the 
average effects of the genes are estimated, which is 
probably satisfactory for the prediction of breeding val-
ues in most cases. When the prediction of dominance 
effects is important to predict total genetic values, 
dominance effects need to be added to the statistical 
model. In theory, this is not a problem, but research 
is needed to verify that such estimates are accurate in 
realistic scenarios. Another assumption in the simula-
tion model is that the markers and QTL are evenly dis-
tributed on the chromosome, which in fact is realistic 
for microsatellite markers (Liu and Cordes, 2004).

This study showed that the results of Meuwissen et 
al. (2001) could be extended to SNP markers, which 
make dense high-throughput genotypes possible. At 
greater densities, one needs about twice as many SNP 
as microsatellites. Using such dense SNP genotyping 
technology may make selection for complex traits, or 
traits that are not widely recorded, possible, by esti-

Table 8. Comparison of accuracy of selection (r) and re-
gression (b) of true breeding value (TBV) on EBV when 
EBV are estimated using SNP markers when Ne = 200 
using a marker density of 1Ne/morgan compared with 
using Ne = 100 and a marker density of 1Ne/morgan1 

Marker density rTBV;EBV bTBV;EBV

Ne = 100, 1Ne/morgan 0.690 ± 0.016 0.877 ± 0.019
Ne = 200, 1Ne/morgan 0.677 ± 0.012 0.890 ± 0.026

1Ne = effective population size.

Figure 5. Accuracy of selection (r) and regression of 
true breeding value (TBV) on EBV (b) when the amount 
of linkage disequilibrium (LD) gradually increased in 
the population. Based on 6 replicates using SNP mark-
ers with a density of 1Ne/morgan. Ne = effective popula-
tion size.
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mating the marker effects in one generation, and using 
these effects in later generations to select their descen-
dents.
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