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ABSTRACT 

 

 

 

Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces 

that can result in large hinge moments, high actuation power demands, and large actuator 

forces/moments. Also, there is no unique relationship between control inputs and the 

aircraft response. Distinct sets of control surface deflections may result in the same aircraft 

response, but with large differences in actuation power. An Artificial Neural Network and 

a Genetic Algorithm were used here for the control allocation optimization problem of a 

Hybrid Wing Body to minimize the Sum of Absolute Values of Hinge Moments for a 2.5-

G pull-up maneuver. To test the versatility of the same optimization process for different 

aircraft configurations, the present work also investigates its application on the Forward 

Swept Wing aircraft. A method to improve the robustness of the process is also presented. 

Constraints on the load factor and longitudinal pitch rate were added to the optimization to 

preserve the trim constraints on the control deflections. Another method was developed 

using stability derivatives. This new method provided better results, and the computational 

time was reduced by two orders of magnitude. A hybrid scheme combining both methods 

was also developed to provide a real-time estimate of the optimum control deflection 

schedules to trim the airplane and minimize the actuation power for changing flight 

conditions (Mach number, altitude and load factor) in a pull-up maneuver. Finally, the 

stability derivatives method and the hybrid scheme were applied for an antisymmetric, 

steady roll maneuver.  
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GENERAL AUDIENCE ABSTRACT 

 

 

 

Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces 

that can result in large actuation power. An Artificial Neural Network and a Genetic 

Algorithm were used here to minimize the actuation power on the Hybrid Wing Body. To 

test the versatility of the same optimization process for different aircraft configurations, the 

present work also investigates its application on the Forward Swept Wing aircraft. A 

method to improve the robustness of the process is also presented. A completely different 

method was developed, and it provided better results with the computational time reduced 

by two orders of magnitude. A hybrid scheme combining both methods was also developed 

to provide a real-time estimate of the optimum control deflection schedules to trim the 

airplane and minimize the actuation power for changing flight conditions (Mach number, 

altitude and load factor) in a pull-up maneuver.  
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1 Introduction 

1.1 Background 

 

“Although airlines are safer and more profitable than any time in history, the industry 

must innovate much more rapidly in order to secure its environmental and financial 

viability in the future.” [1] 

― Samantha Shankman 

Aviation is helping improve the development of the global economy, especially in many 

countries where citizens are traveling abroad for the first time. Besides the more than 58 

million jobs and $2.4 trillion annual economic activity that aviation supports [1], it has 

several advantages. It brings people together, including families, friends and colleagues. It 

helps minds to meet and exchange ideas. In other words, it has transformed our gigantic 

planet into a tiny world of tremendous and magnificent opportunities. However, as it moves 

toward the future, aviation will face major challenges amongst which are safety, 

convenience, and environmental and financial challenges.  

Flying today is much safer than the early days of aviation. In 2013 there were some 

36.4 million flights and 16 fatal accidents [1]. But, accidents do happen, and the memory 

of those lost in those accidents must be honored by more efforts on safety. However, there 

can be nothing guaranteed about the future of aviation if the industry is not sustainable.  

The two most important dimensions of sustainability include environmental impact and 

profitability.  

Sustainability is challenging for airlines that burn fuel to propel their aircraft. Nonetheless, 

the industry has committed to cutting, by 2050, the emissions to half the levels emitted in 

2005. The easiest way to reduce emissions is to reduce fuel consumption. Airports 

throughout the world are encouraged to participate in an acceleration program that 

recognizes their efforts in managing and reducing their carbon emissions.  
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The other vector of sustainability is profitability. Over the last years, the world has 

witnessed great variations in oil prices with some sharp peaks. For both of these reasons, 

the main objective of research and development in aeronautics design will be the reduction 

of fuel consumption. This will require the use of new aircraft concepts, on the one hand, 

and new design methods, on the other hand, in order to exploit to the highest potential the 

synergies between propulsion systems, aerodynamics, aeroelasticity and control systems. 

Efficient control systems and control allocation can minimize both drag and control power 

requirements. That is the focus of this work.   

1.2 Problem Definition 

In an effort to explore new aircraft concepts, NASA, the Boeing Phantom team and the Air 

Force Research Laboratory have developed a Hybrid Wing Body aircraft concept: the X-

48 (see Fig. 1.1) 

 

Figure 1.1: X-48B developed by Boeing Phantom team and NASA 

Hybrid Wing Body (HWB) aircraft, also known as Blended Wing Body, have a wide 

airfoil-shaped body, which helps to generate more lift as well as a higher lift-to-drag ratio 

than a conventional airplane.  Because of these characteristics, they can be more 

environmentally friendly than the popular “tube and wings” design. The design reduces 

fuel consumption, offers potential to reduce emissions, has community noise benefits, and 

consequently counters the effects of the rapid increase in future air traffic volume.  A 

comparison of HWB performance with that of a conventional aircraft for the same design 

point proved that the HWB fuel burn per seat mile is 27% lower that of the conventional 

aircraft [2]. HWB platforms also have large redundant control surfaces (see Fig. 1.2), which 
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may allow the aircraft to achieve a specific maneuver with many different control surface 

deflection schedules. However, the large control surfaces may sometimes lead to high 

hinge moments and required actuation power. Thus, an optimization problem must be 

solved to determine the combination of control surface deflections with the minimum 

actuation power to achieve a given maneuver. Because of the increased number of control 

surfaces and fundamentally different configuration as compared to a conventional design, 

traditional methods may not be effective for HWB control allocation optimization. [3, 4] 

 

Figure 1.2: The Boeing OREIO with up to 25 control surfaces and high lift devices. 

For transonic and supersonic speeds, there are no reliable theories to estimate hinge 

moments. The aerodynamic hinge moment depends on control deflections and 

aerodynamic quantities that are themselves dependent on the aircraft motion and the 

corresponding relationships are not always linear [5]. Therefore, an innovative method is 

required to solve the optimization problem.  

1.3 Proposed Solution 

As stated above, reduction of fuel consumption requires not only new aircraft designs, but 

also new design methods. The main objective of this work was to test the potential of using 

an Artificial Neural Network (ANN) and a Genetic Algorithm (GA) for the control 

allocation optimization of the HWB at the conceptual design level. 

ANNs are generally used to estimate costly objective functions [6 - 8], and they are 

a way of creating a surrogate model for a response.  ANNs are inspired by biological 
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nervous systems, and are used to estimate functions that are usually dependent on a large 

number of inputs.  This makes them suitable for a control surface scheduling optimization 

of an aircraft, such as a HWB, with many control surfaces. ANNs have not been used to a 

great extent in the literature to overcome the weaknesses of conventional methods for 

control allocation problems. 

1.4 Literature Survey 

The available prior work on the use of ANNs and GA for control allocation has been 

performed by researchers at NASA and Virginia Polytechnic Institute and State University 

through a NASA Aeronautics Research Mission Directorate (ARMD) Seedling Fund 

Project. Gern et al. [3] designed a proof-of-concept process to demonstrate the potential of 

using neurocomputing to optimize actuation power for aircraft with multiple independently 

actuated control surfaces. This process was applied to a half-span model of an HWB 

aircraft for an initial 2.5-G pitch maneuver analysis, and the optimization results for the 

Sum of Absolute Values of Hinge Moments were improved by 12% over the best case in 

the initial sample set. The project employed a finite element-based aeroelastic HWB model 

inspired by Boeing OREIO aircraft (see Fig. 1.2) along with accompanying flight test and 

wind tunnel data to construct a database used to develop an ANN. Chhabra et al. [10] 

applied the same process on the full-span model of the same aircraft, and the results showed 

an improvement of 14% over the best case in the initial sample set. The proposed concept 

applies to the design and development stages of future aircraft. 

1.5 Objective of this Thesis 

In order to test the potential and robustness of the aforementioned process, the present 

research studies its application for additional maneuvers and another aircraft configuration, 

a Forward Swept Wing (FSW) aircraft.  
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2  Aircraft Configurations Studied 

2.1 Hybrid Wing Body (HWB) 

A Hybrid Wing Body aircraft is a configuration where the wing and fuselage are integrated, 

which essentially results in a large flying wing. HWB aircraft were previously called 

‘tailless airplanes’ or ‘Flying-Wing aircraft’. The shape of the aircraft is the first thing that 

attracts one’s attention. The aircraft’s appearance is like a single extended wing because of 

the HWB design. [11] 

Some 85 years after the Wright Flyer, McDonnell Douglas aerodynamicist, Robert 

Liebeck proposed the concept of Blended Wing Body aircraft. But, the HWB aircraft 

concept has been on the drawing board even longer. Even though the HWB configuration 

has shown promise in terms of aerodynamic efficiency, and also shown quite remarkable 

advantages against the conventional “tube and wings” airframe, which included improved 

fuel efficiency, longer flight range, reliability and even lower manufacturing costs, such a 

concept has only been applied to military aircraft to obtain a low radar cross-section. The 

HWB’s shape also reduces total wetted area. In this imaginative layout there is no need for 

a conventional tail.  

In recent years, the Boeing Phantom team, NASA and the Air Force Research 

Laboratory (AFRL) have developed the X-48 as a HWB concept aircraft, and it has been 

observed very closely in its flight testing phase since 2006. In 2012, the remotely operated 

X-48C HWB aircraft, designed by Boeing and built by Cranfield Aerospace Limited in 

partnership with NASA, took its first flight from Rogers Dry Lake at Edwards Air Force 

Base, California. The X-48C model, was formerly the X-48B HWB aircraft shown here in 

Fig. 2.1, which was modified to evaluate the low-speed stability and control of a low-noise 

version of an HWB aircraft design. April 9, 2013 marked the end of the flight testing of X-

48C. [11] 

Hybrid Wing Body (HWB) platforms feature multiple control surfaces, with large 

control surface geometries leading to large hinge moments and high control power 
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Figure 2.1: Model Specifications of Boeing X-48B HWB OREIO aircraft 

 

 

 

 

demands. Due to the large number of control surfaces on a HWB aircraft, there is no unique 

relationship between control inputs and resulting aircraft response, i.e. different 

combinations of control surface deflections may result in the same maneuver, but with 

large differences in control power. [11] 

The model specifications of THE HWB X-48B Half Span model are:  

Span: 2552.1 in 

Area: 576720 in2 

Chord: 818.35 in 
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Figure 2.2 below shows the control surfaces on a Boeing X-48B OREIO aircraft.  

 

Figure 2.2: Control Surfaces in Boeing X-48B OREIO aircraft 

2.2 Forward Swept Wing (FSW) 

A Forward Swept Wing (FSW) aircraft was selected as a simpler case to study various 

analysis frameworks. It is an idealized model (see Fig. 2.3) from the MSC Nastran 

Aeroelastic Analysis User’s Guide [12]. 

 

Figure 2.3: FSW Half model with AILERON split into Inboard (INB) and Outboard 

(OUTB) sections 
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Its wing has an aspect ratio of 4.0 and an incidence of 0.1 degrees with respect to the 

fuselage and a forward sweep angle of 30 degrees. Both the wing and the canard have no 

taper, twist, or camber. The reference chord is 10 ft., the reference area is 400 sq. ft., and 

the reference span is 40 ft. The FSW initially had one canard (elevator), one rudder and 

one aileron. To investigate the efficient deployment of multiple control surfaces, the aileron 

was split down the middle into two ailerons, the inboard (INB) and outboard (OUTB), 

resulting in a total of four control surfaces (see Fig. 2.3) for this research.  
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3 Artificial Neural Networks 

3.1 Introduction 

Recently, research in the field of neural networks has increased dramatically. Artificial 

neural networks constitute a part of Artificial Intelligence which focuses on making 

computers behave in a more intelligent way. They are an effort at emulating the information 

processing potentials of biological neural systems, and they are used in a wide range of 

applications including but not limited to robotics, pattern recognition, data processing, 

classification and function approximation (surrogate models). [13] 

 

Figure 3.1: Human brain  

An Artificial Neural Network’s structure and functioning are motivated by the 

human brain. Human nervous systems are made up of billions of interconnected neurons 

(see Fig. 3.1), each of which is a complex organization capable of transmitting nerve 

impulses in several different ways. Although neurons are much slower than electronic 

components in reacting to a stimulus, the human brain is still able to deal with problems 

which no computer can effectively solve. The neuronal cells are the basic building blocks 

which constitute the architecture of the human nervous systems. A human brain is 

composed of different types of neurons, but they all share a similar structure (see Fig. 3.2). 
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Figure 3.2: Structure of Neuron [14] 

The cell body or soma is the main part of the cell. It is the bulbous part of a neuron, which 

contains the nucleus. The soma in turn contains the genetic information and connects to 

the dendrites, which are the primary elements that receive chemical signals from other 

neurons. The axon is a long fiber of a nerve cell which carries information from the soma 

to other neurons and muscles. The myelin sheath is the insulating substance that protects 

the axon and facilitates the transmission of impulses along a neuron. The nerve ending is 

the terminal structure of an axon, where the electro-chemical message from the axon is 

converted into chemical signal which is transmitted to the next neuron [14].  

A natural neural network is composed of natural neurons which receive signals 

through synapses located on dendrites. If the signals received reach a threshold, the neuron 

is activated, and an action potential is initiated before traveling through the axon [14]. An 

artificial neural network functions in a similar but more abstract way. There are several 

types of networks, but they are all made of a set of nodes and connections between the 

nodes.  Artificial neurons consist of inputs (similar to synapses), each transmitting a 

value 𝑥𝑖, which is multiplied by an associated weight 𝑤𝑖 (see Fig. 3.3). The strength of the 

input is directly related to the value of the weight. Also, the signal is increased by positive 

weights and inhibited by negative ones. The transmitted information is then computed by 

a primitive function f which determines the activation of the neuron. The primitive function 

can be chosen arbitrarily. [15] 

 

Figure 3.3: Artificial neuron  
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The computation of the neuron is dependent on the weight. So, a specific output 

can be targeted by adjusting the weight of a neuron. The more neurons there are, the more 

complicated it is to estimate the required weights to achieve a specific output. As a result, 

specific algorithms are developed to adjust the weights accordingly through a process 

known as learning or training. [15] 

The model of an artificial neural network depends on three important elements: 

- the structure of the nodes 

- the topology of the network  

- the training algorithm used to find the weights of the interconnections  

3.2 Artificial Neural Network Structure  

3.2.1 Learning  

One of the first things to take into account when using ANNs is the type of the problem 

and the type of learning algorithm required to solve the problem.  A number of learning 

algorithms are available, and they can be classified as unsupervised and supervised. 

Usually, problems requiring handling data are initially associated with unsupervised 

learning. Supervised algorithms are employed only after familiarization with the design 

space of inputs and outputs, and the characteristics of the responses. [16] 

 

3.2.1.1 Unsupervised learning 

In unsupervised problems, the data which one deals with have no specific or associated 

outputs. No external agent is involved in performing adjustments to the network weights, 

since in most cases the solution expected from the ANN is unknown. There are two main 

types of unsupervised learning: reinforcement learning and competitive learning. In 

reinforcement learning such as the Hebbian learning, each input will create a reinforcement 

of the network weight so as to improve the reproduction of the desired output [17]. In 

competitive learning, the nodes of the network compete with each other to provide the 

output related to an input vector. The unsupervised learning algorithms commonly used are 

the adaptive resonance theory and the self-organizing map. 
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3.2.1.2 Supervised learning 

In supervised learning, known outcomes for specific inputs are given to the ANN during 

training. The network then compares the processed outputs against the targeted outputs. 

Adjustment of the weights is then performed based on the calculated error between the 

processed and targeted outputs [20]. The most common error used is the mean-squared 

error, which attempts to minimize the average squared error between the calculated and 

targeted outputs. Supervised learning is usually used for pattern recognition (classification) 

and regression (function approximation). Pattern recognition is the study of how machines 

can classify an unknown pattern into a category of pre-defined classes. Regression 

algorithms deal with constructing the relationship between continuous variables using the 

square error as the loss function.  

 

3.2.2 Perceptron 

Developed by Rosenblatt in 1958, the Perceptron is among the earliest ANNs and 

constitutes the simplest form of almost all ANNs. The basic model operates just as a 

biological model with input/output relations, and its main revolution was the introduction 

of numerical weights and unusual interconnections between the nodes. The summation 

formula to determine whether or not the threshold is met is:  

𝑍 = ∑ 𝑤𝑖 𝑥𝑖𝑖                                                             (1) 

where xi is the input and wi the weight corresponding to each input. 

The activation function is  

𝑦 =  𝑓𝑁 (𝑧)                                                           (2) 

where z is the node output and fN the activation function. 

The activation function is a nonlinear function whose role is to keep the output within 

certain limits. Different functions are used as activation functions: Sigmoid, Threshold, 

Gaussian and Piecewise Linear, etc. [15] 

The Perceptron is only a single neuron, but it can also be a single-network. Single-

layer networks can be used only to solve problems with linearly separate patterns. Linearly 

separable problems are problems with input patterns that can be classified using a single 

hyperplane. The single-layer network has several limitations. For example, it cannot solve 

a 2-state Exclusive-Or (XOR) problem, or the 2-contradiction problem (XNOR) [18] and 
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other classes of problems that cannot be represented with any linear separation. To 

overcome the limitations of single-layer networks, multi-layer Perceptrons were 

introduced.  

 

3.2.3 Multi-Layer Perceptron 

The multi-layer Perceptron (see Fig. 3.4 below) is an ANN that consists of an input layer, 

one or more hidden layers for computation nodes, and an output layer of nodes [19]. One 

of the most important differences between single-layer and multi-layer Perceptrons is that 

the first ones are made up of parallel Perceptrons, making them limited in the kind of 

mappings they can represent. The multi-layer Perceptron is used either for unsupervised 

learning with auto-associative structure or for supervised learning with the 

backpropagation algorithm, which will be discussed in the next section. 

 

 

Figure 3.4: Multi-layer Perceptron  
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3.2.4 Feedforward Network 

A feedforward neural network is a network consisting of an input layer, one or more hidden 

layers, and an output layer. In this network, the input of one layer is the output of the 

previous layer. As a result, no cyclic connections exist between the nodes and information 

always flows in the forward direction. There is no connection between the nodes of hidden 

layers and the external environment and no connection between the nodes of the same 

layer. One advantage of the feedforward neural network lies in its capability to recognize 

input patterns [13]. Also, any mapping problem can be fitted by a feedforward ANN with 

only one hidden layer and sufficient neurons in the hidden layer. The Feedforward Network 

was used in this research. 

 

3.2.5 Backpropagation  

Introduced by Rumelhart, Williams and Hinton in 1986 [20], the back propagation 

algorithm has been used for training multi-layer networks by weights adjustment. It is 

mainly used within feedforward networks, meaning that the signal travels forward while 

the error moves backward. Because the backward propagation employs supervised 

learning, both the inputs and corresponding outputs must be provided to the algorithm. The 

error, which is the difference between the calculated and targeted output is then calculated, 

and the goal of the backpropagation algorithm is to adjust the weights until the error is 

minimized below a certain threshold. [20] 

The error function of the neural network can be defined as: 

𝐸(𝑥, 𝑤, 𝑑) = ∑ (𝑂𝑗(𝑥, 𝑤) − 𝑑𝑗)2
𝑗                                          (3) 

𝑂𝑗(𝑥, 𝑤) =
1

1+𝑒𝐴(𝑥,𝑤)
                                                    (4) 

𝐴𝑗(𝑥, 𝑤) = ∑ 𝑥𝑖𝑤𝑗𝑖
𝑛
𝑖=0                                                   (5) 

𝐴𝑗 is the activation function of neural networks using backpropagation which depends upon 

the inputs and weights. 𝑂𝑗 is the sigmoidal output function, which only depends on A. The 

total error function 𝐸 then depends only on the inputs and weights. By computing how the 
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error varies with respect to the weights (
𝜕𝐸

𝜕𝑂𝑗
), the algorithm can find the appropriate weights 

to minimize the error and have the computed output as close as possible to the targeted 

output [20]. Because the outputs of the intermediate layers are not available, the algorithm 

starts by computing the output layer, which is the only one where desired outputs are 

available. The weights of neurons are first corrected in the output layer, then in the last 

hidden layer (if available), and at the end in the first hidden layer that receives the signals 

directly from the input. This order of weight correction allows to know the exact error on 

each output node. Figure 3.5 below displays the order of weight correction in 

backpropagation.  

In backpropagation, the time required for training varies exponentially with respect 

to the number of layers. It is then preferable to use this type of algorithm for networks with 

few layers. [16] 

 

Figure 3.5: Order for correction of weights showing the 'bottom-top' oriented in the error 

backpropagation learning  

For this work, both inputs and outputs were available for Neural Network training, so it 

was decided to use the Backpropagation algorithm. 
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3.3 Artificial Neural Networks in MATLAB 

The Neural Network Toolbox in MATLAB [21] includes different functions and 

algorithms to create, train, visualize and simulate neural networks. It is also possible to 

perform regression, classification, clustering, time-series forecasting, and dynamic system 

modeling and control. The toolbox also provides tools for accelerated training of large data 

sets by dividing computations and data across multicore processors, GPUs, and computer 

clusters using the Parallel Computing Toolbox.  The Neural Network Toolbox’s key 

features include [21]: 

- Deep learning, including convolutional neural networks and autoencoders 

- Parallel computing and GPU support for accelerating training 

- Supervised learning algorithms, including multilayer, radial basis, learning vector 

quantization (LVQ), time delay, nonlinear autoregressive (NARX), and recurrent 

neural network (RNN) 

- Unsupervised learning algorithms 

- Apps for data-fitting, pattern recognition, and clustering. 

 

3.3.1 Workflow for Neural Network Design 

In MATLAB, the process of a neural network design has seven steps [22]: 

1- Collect data 

2- Create the network 

3- Configure the network 

4- Initialize the weights and biases 

5- Train the network 

6- Validate the network 

7- Use the network 

Important parts of the network creation and configuration include choosing the transfer 

functions, defining the network architecture, the number of neurons and hidden layers.  
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3.3.2 Architectures 

A wide variety of supervised and unsupervised architectures is supported by Neural 

Network Toolbox. Using the toolbox’s modular approach to building networks, one can 

customize network architecture according to a problem. An example of a network 

architecture with the inputs, outputs, and interconnections is visible on Fig. 3.6 below [23]. 

 

Figure 3.6: Example of a Neural Network Architecture 

Figure 3.6 displays a two-layer feedforward network with sigmoid hidden neurons and 

linear output neurons.  

 

3.3.2.1 Transfer Functions 

Many transfer functions are included in the Toolbox, but the two most commonly used 

include the linear transfer function (see Fig. 3.7) and the Log-Sigmoid Transfer function 

(see Fig. 3.8). [24] 

 

Figure 3.7: Linear Transfer Function 

The linear transfer function is used for neurons in the final layer of multilayer networks 

that are used as function approximators. 
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Figure 3.8: Log-Sigmoid Transfer Function 

The Log-Sigmoid Transfer is usually used in the hidden layers of multilayer networks. 

Other functions can also be used as transfer functions.  

 

3.3.2.2 Number of Hidden Units 

The choice of the number of hidden units requires many considerations including [25]: 

- The number of input and outputs units  

- The number of training cases 

- The amount of noise in the targets 

- The complexity of the function or classification to be learned 

- The architecture 

- The type of hidden unit activation function 

- The training algorithm  

- Regularization 

The only way to determine the best number of units is to train several networks and estimate 

the generalization error (see Sect. 3.3.3) of each. With too few hidden units, there will be 

underfitting and high statistical bias, which will result in high training error and high 

generalization error. With too many hidden units, there may be low training error, but there 

may still have overfitting and high variance.  

Some rules of thumb for choosing the number of units include: 

- The size of the hidden layer is somewhere between the sizes of the input layer and 

the output layer. 

- The number of hidden nodes can be calculated using the following formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 =
2

3
∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠)     (6) 

- The hidden layer should never be more than twice as large as the input layer.  
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- A good choice of the number of hidden units depends on whether early stopping or 

other forms of regularization (see Sect. 3.3.4.3) are used.  

- With conventional optimization algorithms, the weights used should not be more 

than the training cases. Otherwise, overfitting will result. 

- With the standard backpropagation algorithm, it is difficult to reduce training error 

to a level near the globally optimal value, even when using more weights than 

training cases. 

These rules of thumb do not guarantee the best training, because they do not take into 

account the number of training cases, the amount of noise in the targets, and the complexity 

of the function.  

  

3.3.2.3 Number of Hidden Layers 

Some problems do not require hidden layers. Certain rules can be used to choose the 

number of hidden layers: 

- In Multilayer Perceptron with step or threshold of Heaviside activation functions, 

two layers are needed for full generality.  

- In Multilayer Perceptron with any of a wide variety of continuous nonlinear hidden-

layer activation functions, one hidden layer with an arbitrarily large number of units 

can be used. [25] 

- With only one input, there is no advantage in using more than one hidden layer.  

- In certain architectures, such as Cascade Correlation, more than two hidden layers 

can be used. Cascade Correlation Learning Architecture is a supervised learning 

algorithm which, instead of adjusting the weights in a network of fixed topology, 

begins with a minimal network, then automatically trains and adds new hidden units 

one by one, creating a multi-layer structure. [48] 

- Two hidden layers may worsen the problem of local minima and it is important to 

use random initializations for global optimization. 

- Radial Basis Function networks, which are traditionally associated with radial 

functions in a single-layer network [49], usually require a single hidden layer. But 

an extra, linear hidden layer before the radial hidden layer can enable the network 

to ignore irrelevant inputs.  
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3.3.3 Generalization Error 

The goal of using a neural network is to generalize, i.e. to have the outputs of the net 

approximate the target values for inputs that are not necessarily in the training set. As stated 

earlier, the only way to determine the best number of units and hidden layers is to train 

several neural networks and choose the one with the minimum generalization error. There 

are different ways to estimate the generalization error: 

- Cross-validation: The goal is to use all of the data for training by refining the split-

sample validation. But, the network has to be trained several times.  

- Bootstrapping: It usually works better than cross-validation. It involves repeatedly 

analyzing subsamples of data instead of subsets of data, each subsample being a 

random sample with replacement from the full sample. Bootstrapping requires 

more computational time than cross-validation.  

- Split-sample of hold-out validation: This is the most frequently used method to 

estimate generalization error. It works by putting aside a chunk of available data as 

a test set, which must not be used for training. The error on the test set after training 

the network gives a good estimate of the generalization error, presuming that the 

test set is arbitrarily chosen and is a good illustrative sample of the data to 

generalize. A drawback of this method is that less than the available data will be 

used to train the network.  

- Simple sample statistics: Statistical theory gives many estimators of the 

generalization error under different sampling assumptions in linear models. The 

estimators tune the training error for the number of weights being estimated. The 

same statistics can also be used as simple estimates of the generalization error in 

nonlinear cases when there is a large training set.  

It is important to note that generalization is not always possible and it requires prior 

knowledge of the inputs, which must carry enough information related to the target. This 

is because the network cannot learn a nonexistent function. Also, the function must be to 

some extent smooth, meaning that a small change in the input must cause only a small 

change in the output. Finally a good generalization requires the training sample to be large 

enough to represent the set of all cases to be generalized. This is to avoid the need of 
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extrapolation, which is a type of generalization that is at once both unreliable and usually 

results into errors. [25, 26] 

3.3.4 Training  

The training starts with initialization of the network weights and biases. The network inputs 

and target outputs are required to start the training. The process requires adjusting the 

values of the weights and biases to optimize a network performance, represented by a 

network performance function net.performFcn. For feedforward networks, mean square 

error is the default performance function and it is defined as: 

𝐹 = 𝑚𝑠𝑒 =
1

𝑁
∑ 𝑒𝑖

2 =
1

𝑁
∑ (𝑡𝑖 − 𝑎𝑖)

2𝑁
𝑖=1

𝑁
𝑖=1                              (7) 

Training can be performed in two different ways: batch mode and incremental mode.  

- In batch training, weights and biases are not adjusted before all the inputs and 

targets are presented. It can be applied to both static and dynamic networks. 

-  In the incremental mode, however, the weights and biases are updated after 

application of each input to the network. In this case, the inputs and targets are 

presented as sequences. 

For multilayer feedforward networks, any numerical optimization training algorithm can 

be used to optimize the performance function, but there are a few that have resulted in 

excellent performance for neural network training.  

 

3.3.4.1 Training Algorithm  

Many of the training algorithms available in the Neural Network Toolbox use gradient- or 

Jacobian-based methods. The simplest optimization algorithm is the gradient descent, 

which adjusts the weights and biases in the direction in which the performance function 

decreases most rapidly. The fastest training function is the Levenberg-Marquardt (LM), 

which tends to be less efficient with networks with more than thousands of weights. For 

large networks, the Scaled Conjugate Gradient and Resilient Back Propagation are the best 

choices. [27] 

The simplest commands used to initiate the training process in MATLAB are the 

following:  

Load dataset 
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Net= feedforward (20); 

[net, tr] = train (net, inputs, Targets); 

Dataset contains the input and target data. The training window that appears during training 

is shown in Fig. 3.9 below.  

 

Figure 3.9: Neural Network Training Window in MATLAB [27] 

The progress of the training is constantly updated in the training window. The most 

important pieces of information are the performance, the magnitude of the gradient of 

performance and the number of validation checks. The magnitude of the gradient of 

performance and the number of validation checks are used to stop the training. As the 

training reaches a minimum of performance, the gradient becomes very small. The number 

of validation checks is the number of successive iterations that the validation performance 

fails to decrease. Other criteria can also be used to stop the network training: minimum 
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gradient magnitude, maximum training time, maximum number of validation increases and 

minimum performance value.  

 

3.3.4.2 Analysis and Testing  

Four plots can be accessed from the training window seen in Fig. 3.9:  

- Performance: It shows the value of the performance function with respect to the 

iteration number. It plots training, validation and test performances. 

- Training state: It shows other training variables such as the number of validation 

checks, the gradient magnitude, etc.  

- Error histogram: It shows the distribution of the network errors. 

- Regression: It shows a regression between network outputs and network targets. 

Figure 3.10 shows an example.  

 

Figure 3.10: Example of regression plot 

Figure 3.10 above shows the regression plot for a neural network training where 75% of 

the samples were used for training, 15% for testing and 10% for validation. The regression 

number is close to 1 for Training, Validation and Testing, showing how well trained the 

Neural Network is.  

The trained neural network can then be used to calculate the output corresponding 

to any input. It is important to mention that different neural networks trained for the same 
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problem can result in different outputs for the same input. This is due to different initial 

weight and bias values and different divisions of data into training, validation and tests sets 

each time a neural network is trained. [27] 

 

3.3.4.3 Improve Neural Network Training and Avoid Overfitting 

Overfitting is one of the problems that may occur during Neural Network training. It is 

characterized by the trained neural network resulting in a large error when new data is 

given as input even though the error on the training set is very small. This means that the 

network was successful in learning the training samples, but failed to learn the 

generalization to a new situation. Three methods are used to improve network 

generalization: 

- Large enough network: The larger the network is, the more complex functions the 

network can create. A small enough network is not powerful enough to overfit the 

data. As a result, reducing the size of a network can prevent overfitting. Also, there 

is no risk of overfitting if the number of parameters in the network is much smaller 

than the total number of points in the training set.  

- Regularization: This involves using a performance function other than the sum of 

squares of the network errors on the training set. The performance function can be 

modifed by adding a term that consists of the mean of the sum of squares of the 

network weights and biases: [28] 

𝑚𝑠𝑒𝑟𝑒𝑔 = 𝛾 ∗ 𝑚𝑠𝑤 + (1 − 𝛾) ∗ 𝑚𝑠𝑒                                (8) 

Where 𝛾 is the performance ratio and,  

𝑚𝑠𝑤 =
1

𝑁
∑ 𝑤𝑗

2𝑁
𝑖=1                                                   (9) 

- Early Stopping: Another method to improve generalization is early stopping. This 

technique is available for all supervised algorithms.  In this technique, the available 

samples are divided into 3 groups. The first is used for calculating the gradient and 

adjusting the network weights and biases. This is the training set. The second is the 

validation set. The error on this set is tracked during the training process. When the 

validation error increases for a specific number of iterations, the training stops, and 

the weights and biases at the minimum of the validation error are returned. The 

third set is the test set. This set is used to compare different models. If the error in 
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the test set reaches a minimum at a significantly different iteration number than the 

validation set error, this might be a consequence of a poor division of the data set.  

[28] 

 

3.3.5 Limitations  

Neural Network training with the MATLAB Toolbox has several limitations: 

- Neural Networks training requires the availability of a large number of previous 

cases. 

- There is no way to determine the best neural network topology for a specific 

problem.  

- The reliability of the results decreases as the complexity of the neural network 

increases. Several experiments with various network architectures must be 

performed to overcome this limitation.  

- Neural network training is highly sensitive to the number of neurons and the 

number of hidden layers. Too few neurons can lead to underfitting; too many to 

overfitting. It is also sensitive to the training algorithm, the number of points 

initially provided, division of data into training, validation and tests and many other 

parameters. This makes it difficult to decide on the most effective choice of 

parameters to train the neural network. [29] 

- The Levenberg-Marquardt (LM) training is only for small and medium size 

networks if there is enough memory available.  

- Backpropagation and its variants are not always able to find a solution.  

- Because nonlinear transfer functions in multilayer networks create many local 

minima in the error surface, the error surface of a nonlinear network is more 

complex than the error surface of a linear network. Being trapped in a local 

minimum is bad if it is far from the global minimum. As a result, the 

backpropagation algorithm might not always be able to find the correct weights for 

the optimum solution. A Neural Network must then be trained several times to 

ensure the best solution. [28] 

A method to determine the Neural Network with the best number of neurons is presented 

in the results.
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4 Genetic Algorithm 

4.1 Introduction 

Every organism has a set of genes describing how that organism is built up from the 

smallest building blocks of life. The genes are connected together into chromosomes. The 

transmission of gene’s offspring is the foundation of the inheritance of phenotypic traits, 

such as eye colour or hair colour. When two organisms breed, they share genes and the 

resultant progeny may have genes from both parents in a process called recombination. 

Sometimes, there can be mutation, where the gene does not affect the development of the 

phenotype [30]. The evolution of life on earth is based on the processes of natural selection, 

recombination and mutation.  

Genetic Algorithms were introduced by John Holland in 1970 to simulate some of 

these processes. As such, they constitute an intelligent exploitation of a random search to 

solve both constrained and unconstrained optimization problems. The basic idea of the GA 

is to simulate Charles Darwin’s principle of “survival of the fittest” [31]. A GA can be 

applied to solve problems that are not well suited for standard optimization algorithms, 

including problems in which the objective function is discontinuous, nondifferentiable, 

stochastic, or highly nonlinear.  

GAs mimic the survival of the fittest among individuals over consecutive generations 

for solving a problem. Each generation includes a population of strings that are comparable 

to the chromosomes in the DNA. Each individual constitutes a point in a search space and 

a possible solution, and it goes through a process of evolution. The foundations of GA are 

[32]:  

- Individuals in a population compete for resources and mates. 

- The most successful individuals will produce more offspring. 

- Genes from good individuals proliferate throughout the population so that better 

offspring can be produced. 
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- As a result, each successive generation will become more suitable for its 

environment.  

4.2 Genetic Algorithm Operators 

The simplest form of genetic algorithm involves three types of operators:  

- Selection: It is equivalent to survival of the fittest. It is the stage of a GA where the 

chromosomes are selected in the population for reproduction. The fitter the 

chromosome, the most likely it will be selected. Keeping the best individuals in a 

generation unchanged in the next generation is termed elitism of elitist selection. It 

is a successful form of the general process of constructing a new population. 

- Crossover: It represents mating between individuals. It selects randomly a locus 

and exchanges the subsequences before and after that locus between two 

chromosomes to create two offspring [31]. This emulates biological recombination 

between two single haploid organisms. There are several variants of crossover: 

o Single-point crossover (see Fig. 4.1): It generates a cut-point on each parent 

and recombines the first part of the first parent with the second part of the 

second parent to generate one offspring. The second offspring is generated 

by recombining the second part of the first parent with the first part of the 

second parent.  

 

Figure 4.1: Single-point crossover [9] 

o Two-point crossover (see Fig. 4.2):  Two crossover points are selected 

randomly. 

 

Figure 4.2: Two-point crossover [9] 
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o Cut and splice (see Fig. 4.3):  It results in change in length of the children 

strings. This is due to the fact that each parent has a different choice of 

crossover point.  

 

Figure 4.3: Cut and Splice Crossover 

- Mutation (see Fig. 4.4):  It randomly inverts some of the bits in a chromosome. This 

operator is used to maintain genetic diversity from one generation of a population 

of genetic algorithm chromosomes to the next. [34]   

 

Figure 4.4: Mutation [51]   

Some facts are important to know when using GA operators [33]: 

- Using only the selection operator will tend to fill the population with copies of the 

best individual from the population.  

- Using mutation alone causes a random walk through the search space 

- Using both selection and crossover operators will tend to push the algorithm to 

converge on a local optimum.  

- Using both selection and mutation creates a parallel, noise-tolerant, hill climbing 

algorithm.  

4.3 Genetic Algorithm Process 

A simple GA works as follows: 
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1- Start with a randomly generated population of n candidate solutions to a 

problem. 

2- Calculate the fitness function of each candidate solution. 

3- Repeat the following until n offspring have been created:  

a. Select a pair of parent chromosomes from the current population, the 

probability of selection being an increasing function fitness. Selection 

is done with replacement, meaning that the same chromosome can be 

selected more than once to become a parent.  

b. Using a crossover rate, cross over the pair at a randomly chosen point 

to create two offspring. If there is no crossover, form two offspring that 

are exact copies of their respective parents. 

c. Mutate the two offspring at each locus, and place the resulting 

chromosomes in the new population.  

4- Replace the current population with the new population 

5- Return to step 2 

Each iteration of this process is called a generation. The number of generations is usually 

between 50 and 500. Figure 4.5 below shows an example of a generation plot with the 

populations at iterations 60, 80, 95, and 100. 

 

Figure 4.5: Plot of populations at iterations 60, 80, 95, and 100. 
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 As the number of generations increases, the individuals in the population get closer to each 

other and approach the minimum.  

A run is the entire set of generations. One or more highly fit chromosomes remain in 

the population at the end of a run.  

The simple process described above is the basis for most GAs. Other details must be 

taken care of, such as the size of the population, the rates of crossover and mutation. 

4.4 Genetic Algorithm vs. Classical Algorithm 

The GA differs from a classical, derivative-based optimization algorithm in two main ways 

that can be summarized in Table 4.1 below. [35] 

Table 4.1: Classical Algorithm vs. Genetic Algorithm 

Derivative-based Algorithm Genetic Algorithm 

Creates a single point at each iteration. The 

sequence of points approaches an optimal 

solution.  

Generates a population of points at each 

iteration. The best point in the population 

approaches an optimal solution.  

Selects the next point in the sequence by a 

deterministic computation.  

Selects the next population by computation 

which uses random number generator. 

4.5 Genetic Algorithm Toolbox in MATLAB 

The GA options provided by the toolbox in MATLAB are summarized in Table 4.2 below. 

Table 4.2: GA options in MATLAB 

Step Genetic Algorithm Option 

Creation Uniform, feasible 

Fitness scaling Rank-based, proportional, top (truncation), 

shift linear 

Selection Roulette, stochastic uniform selection 

(SUS), tournament, uniform, remainder 

Crossover Arithmetic, heuristic, inter­mediate, 

scattered, single-point, two-point 

Mutation Adaptive feasible, Gaussian, uniform 

Plotting Best fitness, best individual, distance 

among individuals, diversity of population, 

expectation of individuals, max constraint, 

range, selection index, stopping conditions 
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It is possible to specify: 

- Population size  

- Number of elite children  

- Crossover fraction 

- Migration among subpopulations 

- Bounds, linear, and nonlinear constraints for an optimization problem.  

It is also possible to carry multiobjective optimization using the GA Toolbox in MATLAB, 

and the following options can be specified along with the ones specified above: 

- Pareto fraction 

- Distance measure across individuals 

Table 4.3 below shows the available options for multiobjective optimization using GA. 

Table 4.3: Mutlitobjective GA Option 

Step Multiobjective Genetic Algorithm 

Option 

Creation Uniform, feasible 

Fitness scaling Rank-based, proportional, top (truncation), 

linear scaling, shift 

Selection Tournament 

Crossover Arithmetic, heuristic, inter­mediate, 

scattered, single-point, two-point 

Mutation Adaptive feasible, Gaussian, uniform 

Plotting Average Pareto distance, average Pareto 

spread, distance among individuals, 

diversity of population, expectation of 

individuals, Pareto front, rank histogram, 

selection index, stopping conditions 

 

In this project, a GA is used to optimize control surface deflections to minimize the Sum 

of Absolute Values of Hinge Moments. The GA provides the optimum combination of 

control surface deflections and extracts its expected Sum of Absolute Values of Hinge 

Moments from the trained ANN. 
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5 Static Aeroelasticity 

Aeroelasticity is the study of the interaction between inertial, aerodynamic and structural 

forces (see Fig. 5.1) on aircraft, other vehicles and buildings [36]. If airplane structures 

were perfectly rigid, there would be no aeroelastic problems. Because modern aircraft are 

very flexible, they are subject to various undesirable phenomena such as divergence, 

flutter, limit cycle oscillations, vortex shedding, etc... 

 

Figure 5.1: Aeroelasticity [36] 

Static Aeroelasticity is the study of mutual interactions between elastic and 

aerodynamic forces and their influence on the airplane. It includes: 

- Load distribution: The influence of elastic deformations of the structure on the 

distribution of aerodynamic pressure over the aircraft structure.  

- Divergence: It occurs at the divergence speed above which a lifting surface deflects 

under condition where no statically stable equilibrium condition exists; the 

deformation increases to a point of structural failure.  

- Control system reversal: A condition occurring in flight at a speed called the control 

reversal speed, at which the intended effect of displacing a given component of the 
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control system are nullified or reversed by elastic deformations of the structure. 

[37] 

5.1 Longitudinal and Lateral stability  

An HWB, or FSW, or any aircraft put in a state of equilibrium by adjusting control inputs 

is flying in a trimmed condition. For an airplane to be in equilibrium for a particular flight 

condition, the sum of all the forces and moments on it must be equal to zero [38]. For an 

airplane in a straight and level flight (see Fig. 5.2), the lift equals the weight, the thrust 

equals the drag, and there is no net rotating moment.  

 

 

Figure 5.2: Equilibrium flight [38] 

If there is an atmospheric turbulence so that the aircraft is disturbed, the airplane will no 

longer be in equilibrium. If the forces and moments on the aircraft in this condition tend to 

increase the angle of attack, the aircraft will be statically unstable and its motion will 

diverge from equilibrium (see Fig. 5.3). However, if the aircraft tends to hold the disturbed 

position, then the aircraft has neutral static equilibrium (see Fig. 5.4).  

 

 

Figure 5.3: Statically unstable airplane [38] 
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Figure 5.4: Neutral static stability [38] 

Finally, if restoring forces and moments are generated by the airplane that tend initially to 

bring it back to its equilibrium straight and level condition, the aircraft will be statically 

stable.  

 

5.1.1 Longitudinal Stability 

Longitudinal stability and control is concerned with an airplane’s pitching motion. Figure 

5.5 shows how pitch equilibrium is achieved for an airplane. [38] 

 

Figure 5.5: Longitudinal stability: Pitch equilibrium [38] 

To fly in particular equilibrium condition, the control surfaces are trimmed to particular 

angles, such that the total moment about the airplane center of gravity is zero.  
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5.1.2 Lateral and Directional Stability 

Lateral stability relates to an airplane’s rolling motion, and directional stability is 

concerned with an airplane’s yawing motion. Because lateral and directional stability are 

interrelated, they are sometimes referred to as lateral stability [38]. In the usual directional 

equilibrium condition, an airplane flies so that the yaw angle is zero as shown in Fig. 5.6.  

An airplane is said to possess lateral static stability if after being subject to a disturbance 

that rolls it to some bank angle, it generates forces and moments that tend to reduce the 

bank angle and restore the equilibrium flight condition.  

 

Figure 5.6: Static directional stability [38] 

5.2 Static Aeroelasticity in MSC Nastran  

5.2.1 Introduction 

Static aeroelastic problems involve the interaction of aerodynamic and structural forces on 

a flexible structure that leads to a redistribution of the aerodynamic loading as a function 

of airspeed. This aerodynamic load redistribution and resulting internal structural load and 

stress redistributions are important to the structural analyst. Also important is the 

probability of a static aeroelastic instability and divergence. The control systems analyst 

and the aerodynamicist are also concerned by the aerodynamic load redistribution and 

resulting modifications to aerodynamic stability and control derivatives.  

These concerns can be treated by the static aeroelastic capability in MSC Nastran through 

computation of aircraft trim conditions, with retrieval of structural responses, aeroelastic 
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stability derivatives, and static aeroelastic divergence dynamic pressures [39]. The static 

aeroelastic solution sequence (SOL 144) capabilities in MSC Nastran are:  

- The finite element models for the definition of the structure and aerodynamic 

loading, including information on the flight condition can be supplied by the user. 

- Stability and control derivatives are printed in the output (f06) file for every single 

flight condition (Mach number and dynamic pressure).   

- Aircraft trim conditions: A trim analysis is conducted to calculate unknown trim 

values and then carry out standard data recovery for each TRIM subcase defined in 

the Case Control section of the input data file. AEROF and APRES Case Control 

Commands can be used to acquire aerodynamic forces and pressures on the 

aerodynamic elements respectively.  

- A DIVERG Case Control command allows for static aeroelastic divergence 

analysis. The divergence is carried out for Mach numbers specified on the DIVERG 

Bulk Data entry. 

- Three matrices are available for altering the theoretically predicted aerodynamics. 

Correction factors can be input using WKK; experimental pressures can be input 

using FA2J and adjustments to the downwash; the effects of camber and twist, can 

be input using matrix W2GJ. [40] 

- Rigid/Flexible mesh concept. 

 

5.2.2 Aerodynamic Analysis in MSC Nastran  

MSC Nastran has implemented seven internal aerodynamic theories: [40] 

1. Doublet-Lattice subsonic lifting surface theory (DLM): It can be used for 

interfering lifting surfaces in subsonic flow. The theory was presented by Albano and 

Rodden in 1969. The theoretical basis of the DLM is linearized aerodynamic potential 

theory. The DLM is an extension of the steady Vortex-Lattice method to unsteady flow. 

2. ZONA51 supersonic lifting surface theory: It is a supersonic lifting surface 

theory that accounts for the interference among multiple lifting surfaces. It is an optional 

feature in MSC Nastran (available as the Aero II option). It is similar to the Doublet-Lattice 

method (DLM) in that both are acceleration potential methods that need not account for 

flow characteristics in any wake. 
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3. Constant Pressure Method for supersonic lifting surface theory: MSC’s 

acquisition of UAI brought with it the availability of another supersonic aerodynamic 

method entitled CPM (Constant Pressure Method). This method is available as an 

alternative to ZONA51 in that it provides the same basic functionality and uses the same 

user interface as the ZONA51 code. 

4. Subsonic wing-body interference theory (DLM with slender bodies) 

5. Mach Box method 

6. Strip Theory 

7. Piston Theory 

The following work, however focuses on Vortex-Lattice subsonic lifting surface theory. 

The relationships required to define a set of aerodynamic influence coefficients are the 

basic relationships between the lifting pressure and the dimensionless vertical or normal 

velocity induced by the inclination of the surface to the airstream. They include: 

- The downwash, 

{𝑤𝑗} = [𝐴𝑖𝑗]{𝑓𝑗/𝑞}         (10) 

 

- The substantial differential matrix of the deflections to obtain downwash, 

            {𝑤𝑗} = [𝐷𝑗𝑘
1 + 𝑖𝑘𝐷𝑗𝑘

2 ]{𝑢𝑘} +  {𝑤𝑗
𝑔

}                  (11) 

 

- And the integration of the pressure to obtain forces and moments,  

{𝑃𝑘} = [𝑆𝑘𝑗]{𝑓𝑗}         (12) 

Where, 

𝑤𝑗      = downwash 

𝐴𝑖𝑗(𝑚, 𝑘) = aerodynamic influence coefficient matrix as a function of Mach number (m) 

and reduced frequency (k) 

𝑓𝑗       = pressure on lifting element j 

q       = flight dynamic pressure 
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𝑤𝑗
𝑔

       = static aerodynamic downwash which includes the static incidence distribution 

that may arise from an initial angle of attack, camber, or twist. 

k    = reduced frequency, 𝑘 =  𝜔𝑏/𝑉 where ω is the angular frequency, b is a reference 

length and V is the free-stream velocity. 

𝑢𝑘    = displacement at aerodynamic grid points 

𝐷𝑗𝑘
1  , 𝐷𝑗𝑘

2  = real and imaginary parts of substantial differential matrix 

𝑆𝑘𝑗 = integration matrix 

The above three equations can be combined to give an aerodynamic influence coefficient 

matrix:  

[𝑄𝑘𝑘] = [𝑆𝑘𝑗][𝐴𝑖𝑗]
−1

[𝐷𝑗𝑘
1 + 𝑖𝑘𝐷𝑗𝑘

2 ]        (13) 

For different user-supplied Mach numbers and reduced frequencies, all aerodynamic 

methods can be used to compute S, D1 and D2 matrices. The A matrix is calculated by the 

Doublet-Lattice and ZONA51 theories. Then, the computation of the Q matrix is performed 

by matrix decomposition and forward and backward substitution. The remaining methods 

compute 𝐴−1 directly and use matrix multiplications to form Q. For static aeroelastic 

analysis, reduced frequencies are 0 as analysis is time independent. Equation 13 becomes:  

[𝑄𝑘𝑘] = [𝑆𝑘𝑗][𝐴𝑖𝑗]
−1

[𝐷𝑗𝑘]         (14) 

The above aerodynamic equations form the basis of the aerodynamic computations 

required for static aeroelastic analysis with some special purpose modifications made for 

the MSC Nastran implementation. 

For static aeroelasticity, the downwash relation of Eq. 11 becomes 

{𝑤𝑗} = [𝐷𝑗𝑘]{𝑢𝑘} + [𝐷𝑗𝑥]{𝑢𝑥} +  {𝑤𝑗
𝑔

}        (15) 
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Where: 

{𝑤𝑗} = vector of aerodynamic degrees of freedom (e.g. angles of attack) 

{𝑢𝑘} = vector of aerodynamic deformations (displacements) 

{𝑢𝑥} = vector of “extra aerodynamic points” used to describe aerodynamic control surface 

deflections and overall rigid body motions 

{𝑤𝑗
𝑔

} = an initial static aerodynamic downwash. It primarily includes the static incidence 

distribution that may arise form initial angle of attack, camber or washout. 

[𝐷𝑗𝑘] = substantial derivative matrix for the aerodynamic displacements  

[𝐷𝑗𝑥] = substantial derivative matrix for the extra aerodynamic points.  

The theoretical aerodynamic pressures are given by: 

{𝑓𝑗} = 𝑞̅[𝐴𝑗𝑗]
−1

{𝑤𝑗}                      (16) 

And, the aerodynamic forces can be written as: 

{𝑃𝑘} = 𝑞̅[𝑊𝑘𝑘][𝑆𝑘𝑗][𝐴𝑗𝑗]
−1

{𝑤𝑗} + 𝑞̅[𝑆𝑘𝑗]{𝑓𝑗
𝑒/𝑞̅}                 (17) 

The aerodynamic forces (from Eq. 17) can be transferred to the structural forces using the 

spline matrix and can be reduced to a-set to form the aerodynamic influence coefficient 

matrix 𝑄𝑎𝑎 as, 

[𝑄𝑎𝑎] = [𝐺𝑘𝑎]𝑇[𝑊𝑘𝑘][𝑆𝑘𝑗][𝐴𝑗𝑗]
−1

[𝐷𝑗𝑘][𝐺𝑘𝑎]       (18)                                                                                                                                     

The second aerodynamic influence coefficient matrix 𝑄𝑎𝑥 for forces at the structural grid 

points due to unit deflections of the aerodynamic extra points can be written as: 

[𝑄𝑎𝑥] = [𝐺𝑘𝑎]𝑇[𝑊𝑘𝑘][𝑆𝑘𝑗][𝐴𝑗𝑗]
−1

[𝐷𝑗𝑥]        (19)                                                                                                                                    

The complete equations of motion in the a-set degrees of freedom can be written as: 
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[𝐾𝑎𝑎 − 𝑞𝑄𝑎𝑎]{𝑢𝑎} +  [𝑀𝑎𝑎]{𝑈̈𝑎} =  𝑞[𝑄𝑎𝑥]{𝑢𝑥} +  {𝑃𝑎}       (20)                                                                                                                                   

Where,  

𝐾𝑎𝑎 = Structural stiffness matrix 

𝑀𝑎𝑎 = Structural mass matrix 

𝑃𝑎 = Vector of applied loads (Including mechanical, thermal, and gravity loads plus 

aerodynamic terms due to user input pressures and/or downwash velocities). 

Equation 20 is the basic set of equations used for static aeroelastic analysis. In the 

general case, rigid body motions are included in the equations to represent the free-flying 

characteristic of an air vehicle. This is addressed in MSC Nastran by a requirement that the 

user identify reference degrees of freedom equal in number to the number of rigid body 

motions using the SUPORT Bulk Data entry.  

In the current work, MSC Nastran’s structural finite elements were used to build the 

structural model. Geometric, structural, inertial and damping data were provided to MSC 

Nastran, and the structural stiffness, mass and damping matrices were generated for the 

aeroelastic analyses. Aircraft stability derivatives are then obtained from the loads and 

deflections.  

5.3 Hinge Moments 

During the preliminary design of a hydraulic or electric actuator system, it is necessary to 

estimate the hinge moments due to control surface deflections. The hinge moment is the 

moment acting about the hinge line of a control surface. In other words, it is the resistance 

that must be overcome to deflect a specific control surface. For a given airspeed and 

dynamic pressure, the hinge moment varies with the angle of attack and the amount of 

control surface deflection. 

A free control surface will float, in the static case, to the position where the control 

surface hinge moment is zero.  

𝐻𝑀𝑐𝑠 = 0                                                       (21) 
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A control surface hinge moment is usually expressed as the hinge moment 

coefficient or hinge moment derivative.  

𝐶𝐻𝑀 =
𝐻𝑀

𝑄∗𝑆∗𝑐
                                                     (22) 

where S is the reference area, Q the dynamic pressure, and c the moment arm of the 

control surface aft of the hinge line. 

If we assume that the hinge moment is a linear function of angle of attack and the control 

surface deflections then, 

𝐶𝐻𝑀𝑒
= 𝐶𝐻𝑀𝑒0

+ 𝐶𝐻𝑀𝛼
𝛼 + 𝐶𝐻𝑀𝛿𝑒

𝛿𝑒 + 𝐶𝐻𝑀𝛿𝑡
𝛿𝑡                         (23) 

Here, 𝛼 is the angle of attack (from angle for zero vehicle lift), 𝛿𝑒 is the elevator deflection, 

and 𝛿𝑡 is the deflection of the control tab. 𝐶𝐻𝑀𝛼
 is the hinge moment derivative due to the 

changes in the angle of attack. It is called the floating tendency, because an increase in the 

angle of attack usually causes the control surface to float upward. [41] 

The derivative 𝐶𝐻𝑀𝛿𝑒
represents the hinge moment by a deflection of the control and 

is called the restoring tendency, since the nose-down hinge moment generated by a positive 

control deflection tends to restore the control to its original position. The aerodynamic 

forces responsible for generating the hinge moments in the floating and restoring 

tendencies can be visualized in Figs. 5.7 and 5.8 below. 

 

Figure 5.7: Floating tendency of trailing edge control surfaces [41] 

 

 

Figure 5.8: Restoring tendency of trailing edge control surfaces [41] 
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The floating (or restoring) tendency represents the moment about the hinge line of the lift 

distribution acting on the control surface per unit angle of attack (or control deflection). 

Only the red-shaded portion of the lift distribution in Figs. 5.7 and 5.8 acts on the control 

surface and contributes to the hinge moments.  

Equation 23 above was derived assuming a linear system, however hinge moments are 

very difficult to determine. In fact, several factors can influence hinge moments including: 

[42] 

-  Nonlinearities in the wing-alone normal-force curve (versus angle of attack). 

-  Nonlinearities in the wing-alone longitudinal center of pressure curve (versus 

angle of attack). 

- Fin-fin interference. 

- Canard vortices (effects on aft surfaces) 

- Adverse fin-body interference 

- Gap effects. 

- Aeroelastic effects. 

- Fin-body interference (no body vortices). 

- Fin-body interference due to body vortices. 

- Fin trailing-edge shock-wave/boundary-layer interaction. 

- Fin choking 

One effect that is of importance is that of airfoil thickness ratio and thickness 

distribution which can have a significant effect on the center of pressure of fin normal 

force. Furthermore, vortices such as those of the body or canard fins passing in close 

proximity to the all-movable fin can significantly change its center-of-pressure position 

and normal force and hence its hinge moment. The nonlinearities resulting from higher 

angle of attack operation make the prediction of the control characteristics even more 

difficult. As a result, hinge moments are almost always measured in wind tunnels 

during the design stage to assure that the control surfaces will generate the desired trim 

and maneuverability within the hinge moment capabilities of the control actuators. 

As an initial figure of merit, the Sum of Absolute Value of Hinge Moment was chosen 

here, for control power to be minimized. 
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6 Proposed Approach 

The methodology used with the HWB [11] summarized below was also applied on the 

FSW. Because the HWB has a large number of control surfaces, the optimization process 

for appropriate allocation of control deflections to achieve minimum Sum of Absolute 

Values of Hinge Moments uses the following hypotheses.  

6.1 Hypotheses 

- Hypothesis 1 

MSC Nastran is used to generate a dataset, which includes the control surface deflections 

and the corresponding hinge moment values. With this data, an ANN is trained, and it 

accurately represents the static aeroelastic model behavior.  

- Hypothesis 2 

The trained ANN is then used as a surrogate model in the optimization process using a GA. 

The optimum control allocation is provided by the GA, and the Sum of Absolute Values 

of Hinge Moments corresponding to that control allocation is given by the trained ANN.  

- Hypothesis 3 

The Sum of Absolute Values of Hinge Moments and the control allocation from the 

optimization process is the optimum, which can be validated only by MSC Nastran.  

6.2 Initial Optimization Process 

The initial optimization process is displayed in Fig. 6.1 and described below.  

 

6.2.1 Dataset Generation using MSC Nastran 

The steps for generating the dataset using MSC Nastran are as follows: 

- Provide the BDF file with the multiple sets of deflections for all the control 

surfaces, except for the elevator and angle of attack. It needs to be kept in mind that 

the control deflections should not have values which are difficult or impossible to 
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attain in practice. Therefore, the control surface deflections were kept between            

-37.5 and +37.5 degrees.  

- Save those deflections in a separate file, as these are the design variables. 

- MSC Nastran performs trim analysis using SOL 144 for those specific deflections.  

- SOL 144 gives its output (including elevator deflection and AoA) in a F06 file 

along with all the other data.  

- Hinge moments are not direct outputs of MSC Nastran. Therefore, the values for 

hinge moments are extracted manually from the F06 file.  

- The objective function for the optimization is Sum of Absolute Values of Hinge 

Moments for all the control surfaces. 

 

Figure 6.1: Initial Optimization Schedule 

An issue with this process is that there can be any combinations of deflections for the 3 

control surfaces on the modified FSW. Therefore, a randomly distributed dataset is 

generated using Latin Hypercube Sampling (LHS) [43] over AELINK cards. AELINK [44] 

defines relationships among aeroelastic static trim variables (which specify rigid body 

motions to be used as trim variables in static aeroelasticity), and aerodynamic control 

surface deflections such that: 

𝑢𝐷 + ∑ 𝐶𝑖 𝑢𝑖
𝐼𝑛

𝑖=1 = 0.0         (24) 

Where: 

𝑢𝐷 = dependent variable 
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𝑢𝑖
𝐼  = independent variable 

The LHS method has a smaller variance with respect to other sampling methods 

such as Primitive Monte Carlo (PMC) sampling. These AELINK cards are generated using 

lhsdesign in MATLAB, which creates randomly spaced combinations with values between 

0 and 1. These values are then mapped to values between -1.2 and 1.2. The control surface 

deflections (INB and OUT) would be directly related to the elevator deflection and 

indirectly dependent on the AoA. Therefore, the BDF file with the AELINK cards, in lieu 

of the deflections, along with the BDF file of the FSW model were provided to MSC 

Nastran. A MATLAB script then reads the trim variables, and hinge moment for each 

individual control surface, storing the AELINK Cards, control surface deflections and 

hinge moments for post-processing and optimization. 

 

6.2.2 Data Segregation 

Because the relationship between the control surface deflections and Sum of Absolute 

Values of Hinge Moments is noisy, a small change in the control surface deflections could 

cause a significant change in Sum of Absolute Values of Hinge Moments, especially for 

the elevator. This makes it difficult to train the ANN between the inputs and the targets 

with small number of samples. However, to avoid training the ANN with unnecessary 

samples, one can simply target a space with an adequate number of samples. The goal of 

this work is to determine the best combination of control surface deflections to minimize 

the Sum of Absolute Values of Hinge Moments. So, the ANN needs to be accurate for 

samples with low Sum of Absolute Values of Hinge Moments. Therefore, instead of using 

the whole dataset for training the ANN, only those samples were used where the Sum of 

Absolute Values of Hinge Moments values were lower than the mean of Sum of Absolute 

Values of Hinge Moments for the complete dataset.  

6.2.3 Surrogate Model using an Artificial Neural Network 

Artificial intelligence with an ANN is used for the control allocation problem to determine 

the best set of control surface deflections for the Sum of Absolute Values of Hinge 

Moments minimization. The Sum of Absolute Values of Hinge Moments, which is the 

objective function is obtained from MSC Nastran SOL 144. However, SOL 144 is 
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computationally expensive and cannot be used during the optimization. Since ANN is a 

way of creating a surrogate model for costly objective functions that are usually dependent 

on a large number of inputs, it is suitable for estimating the objective function for the GA. 

In order to choose the best number of neurons to train the ANN, the root-mean-square error 

will be evaluated, and the ANN with the minimum error will be chosen.  

 

6.2.4 Optimization with Genetic Algorithm 

The trained ANN is used as the objective function by a GA to find an optimum. GA starts 

by making small changes in the individuals in the initial population to generate children 

using mutation, which allows for genetic diversity. The resulting optimum is corroborated 

against an MSC Nastran computation.  

 

6.2.5 Validation 

Because a surrogate model (ANN) is used as the objective function during the optimization, 

it is necessary to check whether the results obtained from the GA are feasible and physical 

or not. Thus, the Sum of Absolute Values of Hinge Moments obtained from the ANN must 

be validated. The optimum obtained from the optimization is then fed back into MSC 

Nastran, and the resulting Sum of Absolute Values of Hinge Moments is compared with 

the Sum of Absolute Values of Hinge Moments from the optimization.  

6.3 Improvements 

During the optimization, it is possible that the minimum might not be within the data set 

space used to train the ANN. This results in extrapolation by the GA and usually happens 

when the global minimum Sum of Absolute Values of Hinge Moments is lower than the 

minimum present in the data set. It is then necessary to improve the accuracy of the ANN 

outside the bounds of the dataset initially used to train the ANN.  

Our strategy is to increase the bounds of the data set gradually, as the process moves 

forward. This prevents the ANN from going outside its bounds every time an optimum set 

of control deflections is generated by GA. This process also helps to increase the number 

of samples for training ANN, which may even improve the network further.  
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As a result, the initial optimization process (Fig. 6.1) was improved to the one 

shown in Fig. 6.2. 

 

 

Figure 6.2: Improved Optimization schedule with Data Set Updating and Retraining of 

Neural Network 

In the new and improved optimization process, the minimum obtained from the GA is 

presumed to be just a local minimum that is highly dependent on the nature of the initial 

population, number of generations and the type of modifications GA makes to the initial 

population. After validation of the local minimum using MSC Nastran, the specific control 

surface deflections and their respective Sum of Absolute Values of Hinge Moments are 

added to the initial set of data used to train the ANN. So, now the new data set has (n+1) 

samples, where n is number of samples in the original data set. Then, using this new 

expanded data set, the neural network is trained again. This training will improve the 

bounds of the network, so that it can be more accurate in calculating the Sum of Absolute 

Values of Hinge Moments for the given control surface deflections. GA is then re-run using 

the solution from the last iteration as the new initial values of the variables. The process is 

continued until a final optimum is obtained.  
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7 Results 

The modified FSW case (see Sect. 2.2) was selected as a simple test case to learn more 

about the whole process. This proved to be a wise approach.  

7.1 Forward Swept Wing Aircraft Case 

The first analysis conducted on the modified FSW was to trim the airplane. SOL 144 is 

MSC Nastran’s solution executive sequence used for static aeroelastic trim analysis. It 

computes deflections, stresses, loads and hinge moments. Since only longitudinal motion 

was of interest in this study, the rudder was locked. The load case considered is a pull-up 

maneuver at 2.5-G, Mach number of 0.9 at sea level. The aeroelastic degrees of freedom 

required to trim the airplane include: angle of attack (AoA), pitch rate, normal load factor 

and pitch acceleration. Note that there is no pitch rate considered here [47]. Since only two 

free variables were needed to trim the airplane, the other variables were fixed to zero or to 

a specific value. The second step of the analysis involved the use of AELINK cards to trim 

the airplane. Instead of fixing the other control surfaces to a specific value, they were linked 

to one of the free variables (independent variables) by the relationship in Eq. 24 above.  

Two cases were studied. For the first case, the AoA and Elevator were free, and the 

ailerons were linked to the Elevator. In the second case, the AoA and inboard aileron were 

free; Elevator and outboard aileron were linked to Inboard aileron. For each of these cases, 

a set of 20 AELINK cards were randomly generated from Latin Hypercube Sampling 

within the range [-5, 5]. The control surface deflections and corresponding hinge moments 

were then computed using SOL144, and the results for the first case are displayed in Fig. 

7.1 for ascending values of the AoA. 

Figure 7.1 shows that the Sum of the Absolute Values of the Hinge Moments 

increases as the control surface deflections increase. To determine the set of control surface 

deflections to minimize the Sum of the Absolute Values of the Hinge Moments, the 

optimization process applied to the HWB [11] and described in Sect. 6.3 was also applied 
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to the FSW. A total of 1000 samples were generated with the AELINK cards using Latin 

Hypercube Sampling within the range [-1.2 1.2]. Each sample includes the control surface 

 

 

Figure 7.1: Control surface deflections and corresponding Hinge Moments for the first 

case on FSW aircraft: AoA and Elevator free 

deflections (ELEV, INB, OUTB) & AoA, and the corresponding Sum of Absolute Values 

of Hinge Moments. A segregation was conducted, removing the highest 50% of Hinge 

Moments, and the remaining 696 samples were used to train the ANN as described in Sect. 

6.2.2. Because there is no way to know a priori what number of neurons should be used 

for ANN training, a simple scheme was designed to determine this number. Only when a 

surrogate model with enough accuracy is designed can a reliable optimum be found with 

the GA. A common way to test a surrogate model is to evaluate its error at test points [45]. 

Here, the root-mean-square error defined in Eq. 25 and 26 is used. 

σ = √(∑ 𝑒(𝑖)2𝑁
𝑖=1 )/𝑁 ,                                              (25) 

Where N is the number of test points, and 
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𝑒(𝑖) = |
SAHM_nastran − SAHM_estimated

SAHM_nastran 
|                                     (26) 

 

The lower the root-mean-square error, σ, the more accurate the surrogate. The basic idea 

of the scheme is to train the ANN for different numbers of neurons (n) and choose the 

one with the minimum root-mean-square error, σ. There are two steps (see Fig. 7.2): 

 

Figure 7.2: Scheme to determine the number of neurons in the Neural Network. 

- Step 1: Train the ANN 

The remaining samples (696) after segregation were used to train the ANN with n number 

of neurons. The input data for the ANN was the three control surface deflections for each 

of the 696 samples, and the target was their respective Sum of Absolute Values of Hinge 

Moments. 

- Step 2: Test the ANN  

A new set of 500 samples was generated for testing, and the Sum of Absolute Values of 

Hinge Moments for the new set of samples were computed using both the ANN trained in 

Step 1 and MSC Nastran. The estimated Sum of Absolute Values of Hinge Moments from 

the ANN and the true Sum of Absolute Values of Hinge Moments from MSC Nastran were 

then used to compute the root-mean-square error. These two steps were carried out for 

different numbers of neurons ranging from 5 to 200 with a step size of 5. The plot for the 
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errors as a function of number of neurons is shown in Fig. 7.3. The minimum root-mean-

square error is obtained for 40 neurons. With this number of neurons, the training of the 

ANN is expected to be accurate. Figure 7.4 shows a comparison between the Sum of 

Absolute Values of Hinge Moments estimated from the trained ANN and the true Sum of 

Absolute Values of Hinge Moments from MSC Nastran. It can be seen that both values are 

in agreement. 

 

Figure 7.3: Root-mean-square error vs. Number of neurons. 

 

Figure 7.4: Estimated Sum of Absolute Values of Hinge Moments from ANN with 40 

neurons vs. True Sum of Absolute Values of Hinge Moments from MSC Nastran. 
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With the accurate ANN, the optimization described below was carried out by the 

GA with: 

Objective: minimize (|𝑆𝐴𝐻𝑀𝐸𝐿𝐸𝑉| +  |𝑆𝐴𝐻𝑀𝐼𝑁𝐵| +  |𝑆𝐴𝐻𝑀𝑂𝑈𝑇|) 

Subject to LB ≤ [ELEV, INB, OUB] ≤ UB  

The Sum of Absolute Values of Hinge Moments did not decrease over the course of the 

optimization as expected.  Also, the Sum of Absolute Values of Hinge Moments from 

ANN+GA did not match the Sum of Absolute Values of Hinge Moments from MSC 

Nastran during the validation step. More surprisingly, the Sum of Absolute Values of Hinge 

Moments from ANN+GA were all negative. This shows that the optimization failed as the 

Sum of Absolute Values of Hinge Moments used to train ANN were all positive, and the 

expected optimum was also supposed to be positive. The ANN was well trained with the 

best number of neurons (the one with the minimum error). Thus, the reason of the 

optimization failure is not related to the ANN, but to the optimization problem itself. After 

a detailed investigation, the cause of the optimization failure was found to be due to two 

different reasons. The first is that the training of ANN was directly between control surface 

deflections and Sum of Absolute Values of Hinge Moments. When different sets of control 

deflections used to train the ANN were given as input to the trained ANN, the output Sum 

of Absolute Values of Hinge Moments were positive. However, when the opposites of the 

same sets of control deflections were given as input, the output Sum of Absolute Values of 

Hinge Moments were negative. The trained ANN was supposed to always output a positive 

value, as the ANN target was the Sum of Absolute Values of Hinge Moments. To fix this 

problem, it was decided to train the ANN between the control surface deflections and all 

the individual components of Hinge Moments before summing their absolute values (see 

Fig. 7.5). 

 

 

Figure 7.5: Training ANN between the control deflections and all the components of 

Hinge Moments. 
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With the new way of training the ANN, the optimization objective (Sum of Absolute 

Values of Hinge Moments) was always positive as expected. However, when the 

optimization was conducted again, the Sum of Absolute Values of Hinge Moments and the 

control surface deflections from the optimization did not match the ones from MSC Nastran 

during the validation step. The reason was tracked down; the cause turned out to be the 

lack of satisfying the trim constraints in the optimization process.To understand that, it is 

necessary to have a different view at the steps involved in the optimization process shown 

in Fig. 7.6. 

 

Figure 7.6: Initial Methodology with control deflections as design variables. 

In Step 1, a set of AELINK cards is given as input to MSC Nastran SOL 144, which output 

the control surface deflections that trim the airplane and the corresponding Hinge 

Moments. In Step 2, the control surface deflections that trim the airplane and the 

corresponding Hinge Moments are used to train an ANN. In Step 3, the optimization is 

initialized. The control surface deflections are used as the optimization design variables 

with lower (LB= -30o) and upper bounds (UB= 30o) as constraints imposed on them. The 

ANN trained in Step 2 with the control surface deflections that trim the airplane is used to 

output the objective (Hinge Moments).  
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It was noticed that when an ANN is trained with a set of data in a certain range and 

with a specific feature, it can only be used for that kind of data. Because the ANN was 

trained with the control surface deflections that trim the airplane, the output Hinge 

Moments from that ANN would be reasonable if, and only, if the control surface 

deflections given as input trim the airplane. In this optimization process, there are only LB 

and UB constraints on control surface deflections and there is no way to constrain the GA 

to ensure that the optimum control surface deflections trim the airplane. So trim constraints 

must be added explicitly to the optimization process when control surface deflections are 

used as design variables so that the optimizer does not lead to a non-physical solution. 

Another way to make the optimization effective is to use a different set of 

optimization variables which have no constraints, for example the so-called AELINK 

variables in MSC Nastran. They are generated randomly using Latin Hypercube Sampling 

within [-1.2, 1.2]. From the previous remarks on the ANN behavior, if AELINK cards are 

used as design variables, the output Hinge Moments will be reasonable as long as the same 

LB and UB constraints ([-1.2, 1.2]) are applied on the variables. There is no need to add 

additional constraints, since there are none on the AELINK cards, as opposed to control 

surface deflections which trim the airplane. When using AELINK cards as design 

variables, the ANN must be trained between AELINK cards and Hinge Moments. Figure 

7.7 below shows both optimization processes. 

 

Figure 7.7: Optimization using AELINK cards (in green) vs. optimization using control 

surface deflections as design variables (in red). 

In the previous optimization process, ANN1 was trained between control surface 

deflections and Hinge Moments, whereas in the new optimization ANN2 is trained using 

the AELINK cards as the input and Hinge Moments as the output. There is no constraint 
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on AELINK cards as the control surface deflections trim the airplane. Using this new 

process, the optimization was conducted, and the results after 20 iterations are displayed in 

Fig. 7.8 and Table 7.1. 

 

Figure 7.8: Optimization results for FSW using the AELINK cards 

Table 7.1: Optimization results using AELINK cards. 

 Sum of Absolute Values of 

Hinge Moments (lb. ft) 

Minimum in the initial sample set 9931 

Optimized Sum of Absolute 

Values of Hinge Moments 

(ANN+GA) 

9817.4 

MSC Nastran Validation 9816.7 

%ERROR (between ANN and 

MSC Nastran) 
7.13e-003% 

 

Figure 7.8 shows that the Sum of Absolute Values of Hinge Moments estimated 

from the ANN is in agreement with the Sum of Absolute Values of Hinge Moments 

obtained from MSC Nastran. All the Sum of Absolute Values of Hinge Moments are 

positive, which was not the case when the control surface deflections were used as the 

design variables without imposing the trim constraints. This is one of the key findings of 
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this work. The minimum in the initial set of samples is 9931 lb. ft, and the optimized Hinge 

Moments from ANN+GA is 9816.7 lb. ft, which results in an improvement of 1.16%. Also, 

the error between ANN and MSC Nastran is 7.13e-003%, showing that the ANN is both 

accurate and well trained.  The AELINK cards were generated within [-1.2, 1.2], and the 

optimization was conducted within the same limits. To try and improve the result, the 

design space was increased to [-5, 5].  To keep the same density in the design space, more 

samples (5000) were generated. After segregation, 3465 samples remained, and they were 

used to train the ANN. The optimization was performed again, and the results are displayed 

in Table 7.2. 

Table 7.2: AELINK cards within [-1.2, 1.2] vs. AELINK cards within [-5 5]. 

 Aelink cards 
within 

[-1.2, 1.2] 

Aelink cards 
within  

[-5, 5] 

Minimum in the Initial Sample 
Set 9931 8530 

Optimized Hinge Moment 
(ANN+GA) 9817.4 8510 

MSC Nastran Validation 9816.7 8503 

%Error (ANN and MSC Nastran) 7.13e-003% 0.03% 

Improvement  
(final optimum vs. minimum in 

initial sample set) 
1.16% 0.31% 

 

When the range of samples is increased (i.e. AELINK cards within [-5 5] instead 

of [-1.2 1.2]) a better optimum, 8503 lb. ft, is found. The optimum for the previous design 

space (i.e. AELINK cards within [-1.2, 1.2]) was 9387 lb. ft. The Sum of Absolute Values 

of Hinge Moments decreased from 9817 lb. ft to 8503 lb. ft, an improvement of 9.41%. If 

the AELINK cards range were increased further to [-30, 30], and if ELEV is equal to 5o, 

then INB will be equal to 150o, which is not physically feasible. Consequently, the whole 

design space cannot be explored using AELINK cards. The control surface deflections, 

which unlike the AELINK cards are physical variables, have to be used as the design 

variables to cover the entire space, but the trim constraints must be added in the 

optimization problem. 

To run MSC Nastran SOL 144 for a symmetric pull-up maneuver, one requires two 

free variables which correspond to the two unconstrained degrees of freedom, vertical 
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acceleration and pitch rate. As a result, two different constraints must be enforced in the 

optimization to trim the airplane. Since the load factor (2.5-G) in the vertical (z) direction 

and the pitch rate (0.0) are known, they can be used to enforce the trim constraints. The 

resulting extended optimization process is described in Fig. 7.9.  

 

Figure 7.9: Extended optimization process including Load factor and Pitch rate 

constraints. 

In Step 1, a set of control surface deflections and an AoA (generated with Latin 

Hypercube Sampling) is given as input to MSC Nastran SOL 144, which outputs the load 

factor, the pitch rate required to trim the airplane and the corresponding Hinge Moments. 

In Step 2, the control surface deflections and AoA are used as inputs to train the ANN to 

output all the components of Hinge Moments, the load factor and the pitch rate. In Step 3, 

the optimization is initialized. The control surface deflections and AoA are used as the 

optimization design variables with lower and upper bounds ([-30o, 30o]) as constraints. The 

ANN trained in Step 2 outputs not only all the components of Hinge Moments required to 

compute the objective function (Sum of Absolute Values of Hinge Moments), but also the 

load factor and pitch rate to enforce the trim constraints. The optimization displayed in Fig. 

7.9 was conducted, and the results are shown in Fig. 7.10 and Table 7.3. 
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Figure 7.10: Optimization results using Load factor and Pitch rate constraints for FSW 

case. 

Table 7.3: Optimization results using Load factor and Pitch rate constraints for FSW case. 

DEFLECTIONS 

(deg.) 
ANN+GA 

Validation from 

MSC Nastran 

AoA 0.54 0.54 
Elevator 1.65 1.65 
Inboard 4.56 4.56 

Outboard -1.69 -1.69 
Load Factor (g) 2.50 2.50 

Pitch rate 0 0 
Sum of Absolute 

Values of Hinge 

Moments (lb. ft) 
9566.00 9567.20 

 

From Fig. 7.10, we see that the Sum of Absolute Values of Hinge Moments is 

converging as the number of iterations increases, meaning that an optimum is approached. 

Table 7.3 shows the optimum control surface deflections and their corresponding Sum of 

Absolute Values of Hinge Moments. The Sum of Absolute Values of Hinge Moments from 

ANN+GA is equal to the Sum of Absolute Values of Hinge Moments from MSC Nastran, 

and it converged. The load factor from ANN+GA is equal to the load factor from MSC 

Nastran and equal to 2.5-G. The pitch rate from ANN+GA is equal to the pitch rate from 

MSC Nastran and equal to 0.0. As a result, the optimum control surface deflections trim 

the airplane and are validated by MSC Nastran, showing that adding the trim constraints to 

the optimization process makes it robust.  
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Because the trim constraints were not applied in the HWB optimization from the 

previous work [11], it was decided to test the feasibility of the optimum control surface 

deflections obtained for the HWB full-span and half-span models using the improved 

formulation. 

7.2 Hybrid Wing Body Case 

To test the feasibility of the previous solutions, the optimum control surface deflections for 

both the HWB half- and full-span models (Table 7.4) [11] are given as input to MSC 

Nastran SOL 144, while leaving load factor and AoA as free variables.  

Table 7.4: Optimum control deflections for both half- and full-span models of the HWB. 

DEFLECTIONS 

(deg.) 
Half-Span Model Full-Span Model 

AoA 8.03 8.00 
Elevator  2.29 7.24 
Inboard 1 -11.45 3.70 
Inboard 2 30 15.78 

Outboard 1 29.08 -18.37 
Outboard 2 30.02 -20.36 
Outboard 3 30.03 -16.66 
Outboard 4 25.47 -17.06 

Rudder -10.98 -7.53 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 
1.20e+06 2.93e+06 

 

For the above control surface deflections, the resulting load factors from MSC Nastran to 

trim the airplane are 2.44 and 0.46 for the half- and full-span models, respectively. The 

samples used to train ANN were generated for a 2.5-G case, and the optimum solution was 

supposed to trim the airplane for the same load case, but this was not the case. The half-

span model is almost trimmed (2.44-G), and the full-span model is not (0.46-G). This 

shows that the trim constraints must be added in the optimization process even if the ANN 

is well trained.  

The new optimization process including the trim constraints described on Fig. 7.9 

was then applied to the HWB full-span model, and the results are displayed in Fig. 7.11 

and Table 7.5.  
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Figure 7.11: Optimization results using Load factor and Pitch rate constraints for the 

HWB Full model case. 

Table 7.5: Optimization results using Load factor and Pitch rate constraints for the HWB 

Full model case. 

DEFLECTIONS 

(deg.) 
ANN+GA 

Validation from 

Nastran 

AoA 8.44 8.44 
Elevator  8.34 8.34 
Inboard 1 -11.99 -11.99 
Inboard 2 -13.83 -13.83 

Outboard 1 14.92 14.92 
Outboard 2 37.16 37.16 
Outboard 3 36.18  36.18  
Outboard 4 32.65 32.65 

Rudder 0.19 0.19 
Load Factor 2.50 2.50 

PITCH rate 0 0 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 
2.69e+06 2.69e+06 

 

Table 7.5 shows the optimum control surface deflections and their corresponding 

Sum of Absolute Values of Hinge Moments. The Sum of Absolute Values of Hinge 
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Moments from ANN+GA is equal to the Sum of Absolute Values of Hinge Moments from 

MSC Nastran and is converged. The load factor from ANN+GA is equal to the load factor 

from MSC Nastran and equal to 2.5. The pitch rate from ANN+GA is also equal to the 

pitch rate from MSC Nastran and equal to 0.0. As a result, the optimum control surface 

deflections trim the airplane and are validated by MSC Nastran, showing that adding the 

trim constraints to the optimization process makes it robust.  

 

7.3 FSW Case Optimization using Stability Derivatives 

While working on the FSW case as described in Sect. 7.1, a new alternative method 

utilizing stability derivatives was developed to optimize Sum of Absolute Values of Hinge 

Moments. For a set of trim (steady) flight conditions (altitude, airspeed…), the control 

derivatives can be expected to be constant. Also, the aeroelastic performance of the aircraft 

is linearized about a given trim condition. The aeroelastic analysis MSC Nastran SOL 144 

was run for different AELINK cards and the same flight conditions, and the following 

control derivatives (Table 7.6) were found to be constant for this airplane.  

Table 7.6: Constant values of control derivatives. 

Variables AoA  𝑛𝑧 ELEV INB OUTB INBL OUTBL 

𝜕𝐶𝐿

𝜕𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 -6.4629 

 
0.0038 -0.5430 0.3074 0.3251 -0.3074 -0.3251 

𝜕𝐶𝑚

𝜕𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 -3.6671 

 
0.0027 0.3860 0.2993 0.2447 -0.2993 -0.2447 

 

The control derivatives being constant implies that they can be used to set up the trim 

equations that can be used in the optimization process to check whether a set of control 

surface deflections trim the airplane. There are two trim constraint equations: 

1) Forces in the vertical direction: 

 ∑𝑭𝒛 = 𝒏z∗ Weight (
𝜕𝐶𝐿

𝜕𝛼
𝛼 + 

𝜕𝐶𝐿

𝜕𝐸𝐿𝐸𝑉
𝐸𝐿𝐸V + 

𝜕𝐶𝐿

𝜕𝐼𝑁𝐵
𝐼𝑁𝐵 + 

𝜕𝐶𝐿

𝜕𝑂𝑈𝑇𝐵
𝑂𝑈𝑇𝐵 + 

𝜕𝐶𝐿

𝜕𝐼𝑁𝐵𝐿
𝐼𝑁𝐵𝐿 + 

𝜕𝐶𝐿

𝜕𝑂𝑈𝑇𝐵𝐿
OUTBL + 

𝜕𝐶𝐿

𝜕𝑛𝑧
𝑛𝑧−

𝐿𝑜

𝑞 𝑆
  + 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠) = 0                                 (27) 
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2) Moment about the y-axis:  

𝜕𝐶𝑚

𝜕𝛼
𝛼 + 

𝜕𝐶𝑚

𝜕𝐸𝐿𝐸𝑉
 𝐸𝐿𝐸𝑉 + 

𝜕𝐶𝑚

𝜕𝐼𝑁𝐵
 𝐼𝑁𝐵 + 

𝜕𝐶𝑚

𝜕𝑂𝑈𝑇𝐵
𝑂𝑈𝑇𝐵 + 

𝜕𝐶𝑚

𝜕𝐼𝑁𝐵𝐿
𝐼𝑁𝐵𝐿 + 

𝜕𝐶𝑚

𝜕𝑂𝑈𝑇𝐵𝐿
 𝑂𝑈𝑇𝐵𝐿+ 

𝜕𝐶𝑚

𝜕𝑛𝑧
𝑛𝑧   – 

𝑀𝑜

𝑞 𝑆𝑐
 +𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 = 0                           (28) 

Here, the accelerations (pitch, roll.) derivatives are all equal to 0. 𝑛𝑧 is the load factor and 

equals 2.5; the dynamic pressure q equals 1200 psf, the wing area S equals 400 sq. ft and 

the chord c equals 10 ft; 𝛼 is the angle of attack; 𝐿o= 𝑛𝑧 *weight and 𝑀o are the lift and 

moment that are not dependent on AoA and control surface deflections. 

Like the control derivatives, the hinge moment derivatives were also constant 

(Table 7.7). 

Table 7.7: Constant values of control derivatives. 

Variables AoA 𝑛𝑧 ELEV INB OUTB INBL OUTBL 

𝜕𝐸𝐿𝐸𝑉

𝜕𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 -7.2641 0.1249 227.7316 6.4863 8.7517 -6.4863 -8.7517 

𝜕𝐼𝑁𝐵

𝜕𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 12.5821 -0.0089 -0.3043 -22.3137 -3.5665 0.2024 0.2323 

𝜕𝑂𝑈𝑇𝐵

𝜕𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 11.0639 -0.0065 0.6696 -3.3739 -21.6621 0.1066 0.1609 

𝜕𝐼𝑁𝐵𝐿

𝜕𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 -12.5821 0.0089 0.3043 0.2024 0.2323 -22.3137 -3.5665 

𝜕𝑂𝑈𝑇𝐵𝐿

𝜕𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
 -11.0639 0.0065 -0.6696 0.1066 0.1609 -3.3739 -21.6621 

 

The constant hinge moment derivatives can be used to compute the Hinge Moments, just 

as the lift coefficients are used to compute the lift, or the moment coefficients are used to 

compute the moment. Knowing the hinge moment derivatives, the Hinge Moments are 

computed as: 

𝐻𝑀𝑥 = 𝑞(
𝜕𝐻𝑀𝑥

𝜕𝛼
𝛼 +

𝜕𝐻𝑀𝑥

𝜕𝐸𝐿𝐸𝑉
𝐸𝐿𝐸𝑉 +

𝜕𝐻𝑀𝑥

𝜕𝐼𝑁𝐵
𝐼𝑁𝐵 +

𝜕𝐻𝑀𝑥

𝜕𝑂𝑈𝑇𝐵
𝑂𝑈𝑇𝐵 +

𝜕𝐻𝑀𝑥

𝜕𝐼𝑁𝐵𝐿
𝐼𝑁𝐵𝐿 +

𝜕𝐻𝑀𝑥

𝜕𝑂𝑈𝑇𝐵𝐿
𝑂𝑈𝑇𝐵𝐿 +

𝜕𝐻𝑀𝑥

𝜕𝑧
𝑛𝑧)                             (29) 

where x is the Control Surface Deflection 

The updated optimization problem using this information is summarized in Fig. 7.12. 
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Figure 7.12: Optimization approach using stability derivatives. 

The first step of the new process is to run MSC Nastran SOL 144 once to extract the control 

derivatives and hinge moment derivatives. Those are used in Step 2 to set up the Hinge 

Moments and trim equations to conduct the optimization. This takes away the need to train 

an ANN. Using the new process, the optimization was conducted and the results are 

displayed in Fig. 7.13 and Table 7.8 below. 

 

Figure 7.13: FSW case optimization results using stability derivatives. 
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Table 7.8: FSW case optimization results using stability derivatives. 

DEFLECTIONS 
(deg.) 

Optimization 
with stability 
derivatives 

Validation 
from Nastran 

 
ANN+GA 

AoA 1.40 1.40 0.54 
Elevator  -0.30 -0.30 1.65 
Inboard  7.85 7.85 4.56 

Outboard  -0.31 -0.31 -1.69 
Load Factor 2.50 2.50 2.50 
PITCH rate 0 0 0 

Sum of Absolute 
Values of Hinge 
Moments (lb. in) 

6740.45 6740.45 9566.00 

 

Fig. 7.13 shows that the Sum of Absolute Values of Hinge Moments is converging 

as the number of iterations increases, meaning that an optimum is approached. Table 7.8 

shows the optimum control surface deflections and their corresponding Sum of Absolute 

Values of Hinge Moments. The Sum of Absolute Values of Hinge Moments from the 

optimization with the stability derivatives is equal to the Sum of Absolute Values of Hinge 

Moments from MSC Nastran. The load factor from the optimization with the stability 

derivatives is equal to the load factor from MSC Nastran and equal to 2.5. The pitch rate is 

also equal to the pitch rate from MSC Nastran and equal to 0.0. The third column of Table 

7.8 shows the earlier results obtained from ANN+GA optimization and presented in Table 

7.3. The optimum Sum of Absolute Values of Hinge Moments from the optimization with 

the stability derivatives is much better than that from ANN+GA.  

Another means of comparison between both optimization processes is the 

computational time. Tables 7.9 and 7.10 show the computational time for both methods. 

Table 7.9: Computational time with optimization process using ANN+GA. 

Operations Computational  Time 

Generate  samples More than 24h 

Train Neural Network, determine 

the best number of neurons 
10h 

Optimization, validation, retrain 

Neural Network at each iteration 

5-10 min /iteration 

8h-16 

Total 2-3 days 
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Table 7.10: Computational time with optimization process using stability derivatives. 

Operations Computational  Time 

Generate  samples 1 min 

Train Neural Network, determine 

the best number of neurons 

1 min 

Optimization, validation, retrain 

Neural Network at each iteration 

5-10 min 

Total 15 min 

 

From the Tables above, it can be seen that using the stability derivatives to optimize Sum 

of Absolute Values of Hinge Moments reduces the computational time from 2-3 days to 

less than 15 min. 

 

7.4 HWB Case Optimization using Stability Derivatives 

Next, the updated optimization process with the stability derivatives was applied to the 

HWB. The control derivatives as well as the hinge moment derivatives were again found 

to be constant for the HWB, implying that the optimization process described in Fig. 7.12 

can also be applied here. The results are presented in Fig. 7.14 and Table 7.11. 

 

Figure 7.14: HWB case optimization results using stability derivatives. 
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Table 7.11: HWB case optimization results using stability derivatives. 

DEFLECTIONS 

(deg.) 

Optimization with 

stability derivatives 

Validation from 

Nastran 

AoA 7.95 7.95 
Elevator  2.32 2.32 
Inboard 1 -0.54 -0.54 
Inboard 2 -20.76 -20.76 

Outboard 1 36.33 36.33 
Outboard 2 36.55  36.55  
Outboard 3 37.42 37.42 
Outboard 4 36.79 36.79 

Rudder 9.41 9.41 
Load Factor 2.50 2.49 
PITCH rate 0 0 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 

2.20e+06 2.19e+06 

 

From Fig. 7.14 the Sum of Absolute Values of Hinge Moments is converging as 

the number of iterations increases, meaning that an optimum is approached. Table 7.11 

shows the optimum control surface deflections and their corresponding Sum of Absolute 

Values of Hinge Moments. The Sum of Absolute Values of Hinge Moments from the 

optimization with the stability derivatives is equal to the Sum of Absolute Values of Hinge 

Moments from MSC Nastran, and it converged. The load factor from the optimization with 

the stability derivatives is equal to the load factor from MSC Nastran and equal to 2.5. The 

pitch rate is also equal to the pitch rate from MSC Nastran and equal to 0.0. The 

computational time was reduced from 4-5 days using ANN+GA to less than an hour using 

the stability derivatives. 

 

7.5 HWB Case: Optimization with Stability derivatives vs. 

ANN+GA vs. SOL 200 

A different process was developed by Jesse R. Quinlan at NASA Langley Research Center 

to conduct the same optimization on the HWB full-span model [50]. In this work, a 

conventional gradient-based optimization method was used to provide a means of 
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comparison for the ANN+GA optimization. To this end, the multidisciplinary optimizer 

MSC Nastran SOL 200 was used. Table 7.12 shows a comparison of the results between 

optimization with the ANN+GA, the stability derivatives and Quinlan’s results using SOL 

200. 

 

Table 7.12: HWB: Optimization with Stability derivatives vs. Neural Network vs. SOL 

200. 

DEFLECTIONS 

(deg.) 
ANN+GA 

Stability 

derivatives 
SOL 200 

AoA 8.44 7.95 7.73 

Elevator  8.34 2.32 9.17 

Inboard 1 -11.99 -0.54 -34.26 

Inboard 2 -13.83 -20.76 -17.73 

Outboard 1 14.92 36.33 13.25 

Outboard 2 37.16 36.55  10.34 

Outboard 3 36.18  37.42 28.78 

Outboard 4 32.65 36.79 -23.71 

Rudder 0.19 9.41 -25.39 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 

2.69e+06 2.20e+06 2.67e+06 

Computational Time 5 days 1 hour 5 days 

 

The above table shows that the method using stability derivatives gives a better minimized 

Sum of Absolute Values of Hinge Moments and computational time than SOL 200, the 

latter having similar results with ANN+GA. 

All the work performed so far is related to a specific flight condition (speed, altitude, 

load factor...). To take advantage of both the computational efficiency of the method using 

stability derivatives and the ability of an Artificial Neural Network to estimate functions 

with a large number of inputs, the next section presents a hybrid scheme combining both 

methods for the control allocation optimization of the HWB at variable flight conditions in 

pitching motion. 
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7.6 Hinge Moment Optimization for HWB for a Pull-up 

Maneuver at Various Flight Conditions  

To determine the optimal Sum of Absolute Values of Hinge Moment and control surface 

deflections for various flight conditions (speed, altitude, load factor...) the stability 

derivatives method and ANN+GA method were combined together. This will allow for the 

real-time, efficient deployment of the control surfaces to trim the airplane with the 

minimum power consumption in the event of a sudden change in the flight conditions due 

to turbulence or a decision of the pilot to fly at a different altitude, speed or load factor. 

The steps involved in this scheme are described in Fig. 7.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15: Hinge moment optimization for variable flight conditions in a Pull-up 

maneuver. 

The first step of the scheme in Fig. 7.15 is to construct a database of flight conditions 

(Mach, altitude, load factor) using Latin Hypercube Sampling. The load factor was 

generated within [-1.0, 2.5]. The Mach number and altitude were generated within the flight 

envelope of a long-range mission of the Boeing 777-200 LR shown in Fig. 7.16, which was 

adopted for the HWB for this study. The bold line in the middle is the operational Mach 

number at various altitudes, and the two lines on either side represent the lower and upper 

limits at which the control effectiveness is to be calculated [46]. 

 

Step 2: ANN Training 

Artificial Neural Network Training with flight conditions as input 

and Optimums as targets 

MSC 

Nastran 

SOL 144 

Stability 

derivatives, 

Hinge 

moment 

derivatives  

Flight conditions: 

Mach number & Altitude 

from 777 flight envelope;  

Load factor (-1.5 – 2.5-G)  

Control surface 

deflections & 

Sum of Absolute 

Values of Hinge 

Moments 

  

 

Optimization 

using GA 

Step 1: Collecting a set of 1000 derivatives & Optimization 
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Figure 7.16: Flight envelope of long range mission of 777-200 LR. 

The database was first populated with 1000 sets of flight conditions within the range 

described above using Latin Hypercube Sampling. Then, MSC Nastran SOL 144 was run 

to extract the set of control derivatives and hinge moment derivatives for each of the flight 

conditions. Those are used to set up the Hinge Moments and trim equations to conduct the 

optimization of the aircraft for each set of flight conditions using the Genetic Algorithm. 

This results in 1000 sets of optimized control deflections and Sum of Absolute Values of 

Hinge Moments corresponding to the 1000 sets of flight conditions. In the second step of 

the scheme, two ANNs were trained using the sets of flight conditions as input and the 

optimized control deflections and Sum of Absolute Values of Hinge Moments as targets. 

The trained ANNs can thus serve as response surfaces to estimate the real-time set of 

optimum control surface schedules while minimizing the power consumption at different 

sets of flight conditions for a pull-up maneuver. 

A first ANN with flight conditions (Mach, altitude, load factor) as inputs and Sum 

of Absolute Values of Hinge Moments as the target was trained. Different number of 

neurons between 50 -75 were tried with 95% samples for training and 5% for testing the 

network. Figure 7.17 below shows the training results of the best network with 60 neurons. 

 



70 

 

 

Figure 7.17: Training regression plot for 60 neurons for Sum of Absolute Values of 

Hinge Moments Training. 

A second ANN with flight conditions (Mach, altitude, load factor) as inputs and 

control surface deflections as the targets was also trained. Different numbers of neurons 

between 50-200 were tried with 95% samples for training and 5% for testing the network. 

Figure 7.18 below shows the training results of the best network with 150 neurons. The 

reason for the higher number of neurons with respect to the first ANN is that the size of the 

network had to increase to account for the increased number of targets: 8 control surface 

deflections and Angle of Attack (AoA) for the second ANN as opposed to only the Sum of 

Absolute Values of Hinge Moments for the first ANN. 

 

Figure 7.18: Training regression plot for 150 neurons for control surface deflections 

training. 
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To test the Neural Networks trained, random sets of flight conditions within the 

range of training were given as input to the ANNs, which output the corresponding control 

surface deflections and Sum of Absolute Values of Hinge Moments. These estimated 

results were validated through comparison with the optimized results from the GA. The 

results are presented in Table 7.13 for Mach = 0.65, Altitude = 18300 ft. and Load factor 

= 1.66. 

 

Table 7.13: Estimated results from the trained Neural Networks and validation with 

Genetic Algorithm for Mach = 0.65, Altitude = 18300 and Load factor = 1.66. 

DEFLECTIONS 

(deg.) 

Estimation from 

ANN 
Validation from GA Relative Errors (%) 

AoA 21.77 26.93 19.15 

Elevator  2.86 4.01 28.57 

Inboard 1 12.61 16.62 24.14 

Inboard 2 -30.37 -37.24 18.45 

Outboard 1 14.32 16.62 13.80 

Outboard 2 24.64 36.10 31.75 

Outboard 3 23.50  15.47  51.85 

Outboard 4 9.74 12.61 22.72 

Rudder 15.47 19.48 20.59 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 

9.92E+05 9.93E+05 0.10 

 

Table 7.13 above shows the same trend of values between the estimated results from the 

trained Neural Networks and the validated ones from the GA. However, the errors between 

those values are relatively high for the control surface deflections (20-30%) and low for 

the Sum of Absolute Values of Hinge Moments (0.1%). This shows that ANN training for 

Sum of Absolute Values of Hinge Moments is almost perfect as evidenced by the training 

regression plot on Fig. 7.17 above. This is not the case for the ANN training for control 

surface deflections as displayed on Fig. 7.18.  The ANNs training could, however, be 

further improved using the techniques listed in the Sect. 3.3.4.3 (Improve Neural Network 

Training and Avoid Overfitting). 
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7.7 Control Surface Deflection Schedule Optimization for 

HWB for a Steady Roll Maneuver using Stability 

Derivatives  

For a steady roll maneuver, the aeroelastic analysis MSC Nastran SOL 144 was run for 

different AELINK cards and the same flight conditions (Mach number, altitude, roll rate) 

and the hinge moment and control derivatives were again found to be constant. The hinge 

moment derivatives being constant implies that they can be used to compute the hinge 

moments using the following equation: 

 

𝐻𝑀𝑥 = 𝑞(
𝜕𝐻𝑀𝑥

𝜕𝑝
𝑝 +

𝜕𝐻𝑀𝑥

𝜕𝐸𝐿𝐸𝑉
𝐸𝐿𝐸𝑉 + ∑

𝜕𝐻𝑀𝑥

𝜕𝐼𝑁𝐵
𝐼𝑁𝐵1,2 + ∑

𝜕𝐻𝑀𝑥

𝜕𝑂𝑈𝑇𝐵
𝑂𝑈𝑇𝐵1,2,3,4 +

𝜕𝐻𝑀𝑥

𝜕𝑅𝑈𝐷𝐷𝐸𝑅
𝑅𝑈𝐷𝐷𝐸𝑅 +

𝜕𝐻𝑀𝑥

𝜕𝐸𝐿𝐸𝑉𝐿
𝐸𝐿𝐸𝑉𝐿 + ∑

𝜕𝐻𝑀𝑥

𝜕𝐼𝑁𝐵𝐿
𝐼𝑁𝐵𝐿1,2 + ∑

𝜕𝐻𝑀𝑥

𝜕𝑂𝑈𝑇𝐵𝐿
𝑂𝑈𝑇𝐵𝐿1,2,3,4 +

𝜕𝐻𝑀𝑥

𝜕𝑅𝑈𝐷𝐷𝐸𝑅𝐿
𝑅𝑈𝐷𝐷𝐸𝑅𝐿)                          (30) 

where x is the control surface deflection, p is the roll rate, ELEV is the right elevator and 

ELEVL is the left elevator 

 

For the same flight conditions (Mach=0.5, dynamic pressure= 1.769 psi and roll 

rate = 0.26 rad/s = 15 deg/s), two different sets of AELINK cards were used to test the 

accuracy of the results provided by Eq. 30. The first set of AELINK cards was chosen so 

that the right control surfaces can deflect independently of the left ones. The aircraft was 

then trimmed, and Table 7.14 below shows the control surface deflections and 

corresponding hinge moments. From Table 7.14, it can be seen that the deflections of the 

right control surfaces are different from those of the left control surfaces. The hinge 

moments corresponding to the control surfaces and calculated from MSC Nastran were 

also displayed. Those hinge moments were also computed using Eq. 30. Table 7.15 

displays the hinge moments computed from both MSC Nastran and Eq. 30, and it shows 

that the hinge moments from the equation are equal to the hinge moments from MSC 

Nastran. 
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Table 7.14: Control surface deflections and corresponding hinge moments for the first set 

of AELINK cards. 

Right Wing 

Control 

Surfaces  

Deflections 

(deg) 

Hinge 

Moment 

(E+06 lb.in) 

Left Wing 

Control 

Surfaces  

Deflections 

(deg) 

Hinge 

Moment 

(E+06 lb.in) 

Elevator  -13.94 1.025 Elevator  17.43 -0.800 
Inboard 1  7.15 -0.349 Inboard 1 -21.07 0.143 
Inboard 2 29.89 -0.677 Inboard 2 16.45 -0.264 

Outboard 1 21.85 -0.180 Outboard 1 -49.32 0.226 
Outboard 2 -12.99 0.003 Outboard 2 -53.15 0.169 
Outboard 3 46.64 -0.172 Outboard 3 32.08 -0.138 
Outboard 4 -26.16 0.079 Outboard 4 -32.85 0.071 

Rudder -2.29 0.012 Rudder  3.07 -0.023 

 Sum of Absolute Values of Hinge Moments = 4.331E+06 lb. in 

 

 

Table 7.15: Hinge moments from MSC Nastran vs. Hinge moments from Eq. 30. 

Right Wing 

Control 

Surfaces  

Hinge 

Moment 

from 

Nastran 

(E+06 lb.in) 

Hinge 

Moment 

from 

Equation 30 

(E+06 lb.in) 

Left Wing 

Control 

Surfaces  

Hinge 

Moment 

from 

Nastran 

(E+06 lb.in) 

Hinge 

Moment 

from 

Equation 30 

(E+06 lb.in) 

Elevator  1.025 1.025 Elevator  -0.800 -0.800 
Inboard 1 -0.349 -0.349 Inboard 1 0.143 0.143 
Inboard 2   -0.677   -0.677 Inboard 2 -0.264 -0.264 

Outboard 1 -0.180 -0.180 Outboard 1 0.226 0.226 
Outboard 2 0.003 0.003 Outboard 2 0.169 0.169 
Outboard 3 -0.172 -0.172 Outboard 3 -0.138 -0.138 
Outboard 4 0.079 0.079 Outboard 4 0.071 0.071 

Rudder 0.012 0.012 Rudder -0.023 -0.023 

 Sum of Absolute Values of Hinge Moments = 4.331E+06 lb. in 

 

The second set of AELINK cards was chosen so that the aircraft can achieve an 

antisymmetric, steady roll maneuver. The hinge moment derivatives for this set were equal 

to those of the first set, because the flight conditions remained the same. Tables 7.16 and 

7.17 show the control surface deflections to trim the aircraft and the corresponding hinge 

moments computed from both MSC Nastran and Eq. 30. 
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Table 7.16 shows that the control surface deflections of the right and left wing are 

antisymmetric to one another. Table 7.17 shows that the hinge moments from Eq. 30 are 

equal to the hinge moments from MSC Nastran, proving the accuracy of Eq. 30 to estimate 

the hinge moment values. 

Table 7.16: Control surface deflections and corresponding hinge moments for the second 

set of AELINK cards. 

Right Wing 

Control 

Surfaces  

Deflections 

(deg) 

Hinge 

Moment 

(E+06 lb.in) 

Left Wing 

Control 

Surfaces  

Deflections 

(deg) 

Hinge 

Moment 

(E+06 lb.in) 

Elevator  -20.93 1.528 Elevator  20.93 -0.909 
Inboard 1 10.69 -0.368 Inboard 1 - 10.69 0.213 
Inboard 2 24.69   -0.651 Inboard 2 - 24.69 0.369 

Outboard 1 53.10 -0.324 Outboard 1 - 53.10 0.223 
Outboard 2 -58.85 0.186 Outboard 2 58.85 -0.255 
Outboard 3 48.16 -0.168 Outboard 3 - 48.16 0.111 
Outboard 4  28.39 -0.077 Outboard 4  - 28.39 0.070 

Rudder 2.99 -0.046 Rudder - 2.99 0.046 

 Sum of Absolute Values of Hinge Moments = 5.545E+06 lb. in 

 

Table 7.17: Hinge moments from MSC Nastran vs. Hinge moments from Eq. 30. 

Right Wing 

Control 

Surfaces  

Hinge 

Moment 

from 

Nastran 

(lb.in) 

Hinge 

Moment 

from 

Equation 

(lb.in) 

Left Wing 

Control 

Surfaces  

Hinge 

Moment 

from 

Nastran 

(lb.in) 

Hinge 

Moment 

from 

Equation 

(lb.in) 

Elevator  1.528 1.528 Elevator  -0.909 -0.909 
Inboard 1 -0.368 -0.368 Inboard 1 0.213 0.213 
Inboard 2   -0.651   -0.651 Inboard 2 0.369 0.369 

Outboard 1 -0.324 -0.324 Outboard 1 0.223 0.223 
Outboard 2 0.186 0.186 Outboard 2 -0.255 -0.255 
Outboard 3 -0.168 -0.168 Outboard 3 0.111 0.111 
Outboard 4 -0.077 -0.077 Outboard 4 0.070 0.070 

Rudder -0.046 -0.046 Rudder 0.046 0.046 

 Sum of Absolute Values of Hinge Moments = 5.545E+06 lb. in 

 

For simplicity, the aircraft will be constrained to achieve an antisymmetric roll 

maneuver.  

The control derivatives being constant implies that they can be used to set up the lateral-

directional trim equations that can be used in the optimization process to constrain the 
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control surface deflections to trim the aircraft. The lateral-directional trim equations are the 

following: 

Side Force: 

𝐶𝑌  =   𝐶𝑌𝛽
𝛽 + ∑ 𝐶𝑌𝑥

𝑥 + 𝐶𝑌𝑝

𝑝 𝑏

2 𝑉
+  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑒𝑟𝑚𝑠                 (31) 

 

Rolling Moment: 

𝐶𝑙  =   𝐶𝑙𝛽
𝛽 + ∑ 𝐶𝑙𝑥

𝑥 + 𝐶𝑙𝑝

𝑝 𝑏

2 𝑉
+  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑒𝑟𝑚𝑠                 (32) 

 

Yawing Moment: 

𝐶𝑛  =   𝐶𝑛𝛽
+ ∑ 𝐶𝑛𝑥

𝑥 + 𝐶𝑛𝑝

𝑝 𝑏

2 𝑉
+  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑒𝑟𝑚𝑠                (33) 

 

Here the accelerations (roll, yaw.) terms are all equal to 0 because of the steady maneuver. 

𝛽 is the sideslip angle;  
𝑝 𝑏

2 𝑉
 is the roll rate and 𝑥 represents the control surface deflections. 

To determine the control surface deflections to minimize the Sum of Absolute Values of 

Hinge Moments the optimization described below was carried out by a GA: 

Objective: min (∑|𝐻𝑀𝑥|) 

Subject to the lateral-directional trim equations described above, 

And LB ≤ x ≤ UB 

Where x are the control surface deflections, LB=-30◦ and UB=30◦ 

                          

The optimization was conducted for the same flight conditions: Mach=0.5, dynamic 

pressure= 1.769 psi and roll rate = 0.26 rad/s = 15 deg/s, and the results are presented in 

Fig. 7.19 and Table 7.18 below.  
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Figure 7.19: HWB optimization in a steady roll maneuver. 

 

Table 7.18: HWB optimization in a steady roll maneuver. 

DEFLECTIONS 

(deg.) 

Optimization with 

stability derivatives 

Validation from 

Nastran 

Sideslip 14.95 14.95 
Elevator  -5.05 -5.05 
Inboard 1 3.25 3.25 
Inboard 2 6.81 6.81 

Outboard 1 27.62 27.62 
Outboard 2 28.52  28.52  
Outboard 3 17.52 17.52 
Outboard 4 5.61 5.61 

Rudder -11.43 -11.43 
Roll rate 15.00 15.00 

Sum of Absolute 

Values of Hinge 

Moments (lb. in) 
1.97E+06 1.97E+06 

 

Fig. 7.19 shows that the Sum of Absolute Values of Hinge Moments is converging 

as the number of iterations increases, meaning that an optimum is approached. Table 7.18 

shows the optimum control surface deflections and their corresponding Sum of Absolute 

Values of Hinge Moments. The Sum of Absolute Values of Hinge Moments from the 

optimization with the stability derivatives is equal to the Sum of Absolute Values of Hinge 
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Moments from MSC Nastran. The roll rate, sideslip angle and control surface deflections 

from the optimization are also equal to the roll rate, sideslip angle and control surface 

deflections from MSC Nastran. As a result the optimum solution from the optimization is 

a valid and feasible solution. 

 

7.8 Hinge Moment Optimization for Various Flight 

Conditions in a Roll Maneuver  

The approach applied for a pull-up maneuver as displayed in Fig. 7.15 was extended to a 

roll maneuver case to determine the optimal Sum of Absolute Values of Hinge Moment 

and control surface deflections for various flight conditions (speed, altitude, roll rate...). 

The steps involved are displayed in Fig. 7.20 below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20: Hinge moment optimization for variable flight conditions in a roll 

maneuver. 

A first ANN with flight conditions (Mach, altitude, roll rate) as inputs and Sum of 

Absolute Values of Hinge Moments as the target was trained. Different number of neurons 

were tried, and Fig. 7.21 below shows the training results of the network with 75 neurons. 

 

Step 2: ANN Training 

Artificial Neural Network Training with flight conditions as input 

and Optimums as targets 

MSC 

Nastran 

SOL 144 

Stability 

derivatives, 

Hinge 

moment 

derivatives  

Flight conditions: 

Mach number & Altitude 

from 777 flight envelope  

Roll rate (5 – 20deg/s)  

Control surface 

deflections & 

Sum of Absolute 

Values of Hinge 

Moments 

  

 

Optimization 

using GA 

Step 1: Collecting a set of 1000 derivatives & Optimization 
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Figure 7.21: Training regression plot for 75 neurons for Sum of Absolute Values of 

Hinge Moments Training in a roll maneuver. 

A second ANN with flight conditions (Mach, altitude, roll rate) as inputs and 

control surface deflections as the targets was also trained. Different number of neurons 

were tried, and Fig. 7.22 below shows the training results of the network with 300 neurons. 

The reason for the higher number of neurons with respect to the first ANN is that the size 

of the network had to increase to account for the increased number of targets: 8 control 

surface deflections + Sideslip for the second ANN as opposed to only the Sum of Absolute 

Values of Hinge Moments for the first ANN. 

 

Figure 7.22:  Training regression plot for 300 neurons for control surface deflections 

training in a roll maneuver 

To test the Neural Networks trained, a few sets of flight conditions were given as input to 

the ANNs, which output the corresponding control surface deflections and Sum of 
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Absolute Values of Hinge Moments. These estimated results were validated through 

comparison with the optimized results from the GA. The results are presented in Table 7.19 

for Mach = 0.78, Altitude = 30200 ft. and Roll Rate = 20 deg/s. 

 

Table 7.19: Estimated results from the trained Neural Networks and validation with 

Genetic Algorithm for Mach = 0.78, Altitude = 30200 ft. and Roll Rate = 20 deg/s. 

DEFLECTIONS 
(deg.) 

Estimation from 
ANN 

Validation from GA Relative Errors (%) 

Sideslip 5.87 6.03 2.65 
Elevator  -4.74 -5.24 9.54 
Inboard 1 18.87 17.35 8.06 
Inboard 2 27.22 27.78 2.02 

Outboard 1 29.65 30.00 1.17 
Outboard 2 12.90 12.71 1.49 
Outboard 3 10.67  9.49  12.43 
Outboard 4 -4.59 -5.18 11.39 

Rudder -1.51 -1.46 3.31 
Sum of Absolute 
Values of Hinge 
Moments (lb. in) 

4.06E+06 4.04E+06 0.49 

 

Table 7.19 shows the same trend of values between the estimated results from the 

trained Neural Networks and the validated ones from the GA. However, the errors between 

those values are relatively low for both the control surface deflections and for the Sum of 

Absolute Values of Hinge Moments, with better results for Sum of Absolute Values of 

Hinge Moments. This shows that ANN training for Sum of Absolute Values of Hinge 

Moments is almost perfect as evidenced by the training regression plot on Fig. 7.21.  

For Mach = 0.78, Altitude = 30200 ft. and Roll Rate = 20 deg/s, MSC Nastran and 

GA were used to find the optimum control surface deflections and the minimum Sum of 

Absolute Values of Hinge Moments of 4.04E+06 lb.in. The trained ANNs were used to 

approximate the control surface deflections. The estimated control surface deflections from 

the ANN are close to the real ones from MSC Nastran and GA with 3-10% error. However, 

the estimated and true Sum of Absolute Values of Hinge Moments are almost equal, with 

0.49 % error, which shows the efficiency of the scheme presented.   The ANNs training 

could, however, be further improved using the techniques listed in the Sect. 3.3.4.3 

(Improve Neural Network Training and Avoid Overfitting). 
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8 Discussions 

The prior Artificial Intelligence procedure applied to the HWB case [11] for control 

allocation optimization in a 2.5-G pull-up maneuver was used to optimize a FSW test 

aircraft case. Our first attempt for optimization using an Artificial Neural Network resulted 

in failure. It failed for two primary reasons. First, the ANN that was trained using the 

control surface deflections as inputs and the Sum of Absolute Values of Hinge Moments 

as output resulted in negative values for Sum of Absolute Values of Hinge Moments during 

the optimization! It was then decided to train the ANN between the control surface 

deflections and all the components of Hinge Moments before summing their absolute 

values. This overcame the problem of the negative Sum of Absolute Values of Hinge 

Moments previously obtained during the optimization. However, the values of the control 

surface deflections leading to an optimal value for the Sum of Absolute Values of Hinge 

Moments were not able to trim the airplane for the specified 2.5-G. This implied that trim 

constraints were not being applied in the optimization process. Two different ANNs were 

next trained to enforce both the load factor and the pitch rate constraints in the optimization. 

This step lead to successful optimization.  

The optimum control surface deflections from the HWB also were only able to trim the 

airplane for 2.5-G after the trim constraints were added explicitly in the optimization. This 

suggests that even if the ANN is well trained and the data used for training the ANN 

satisfied the constraints on the optimization variables (control surface deflections trimming 

the airplane), those constraints must still be enforced in the optimization process to satisfy 

the requirements of the problem. This is a major finding and achievement of this research. 

A completely different process using stability derivatives was next developed to 

optimize the Sum of Absolute Values of Hinge Moments. This gave better results than the 

optimization methods using ANN+GA and SOL 200 in MSC Nastran, and the 

computational time was reduced from 3 days to less than 15 min for the FSW and from 5 

days to less than one hour for the HWB. This is another major achievement of this work. 

The use of stability derivatives implies a linear control effectiveness model. This is 
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probably valid if the control surface deflections at trim are not too large. The magnitude of 

the control deflections depends on the aircraft characteristics. There may be a control 

surface deflection limit where the effectiveness begins to enter a nonlinear region such as 

control reversal (for example, due to aeroelastic deformations, shock effects, flow 

separations), large rate amplitudes, or nonlinear aerodynamics. Thrust vectoring may also 

be a situation in which effectiveness in modulating forces and moments may not be 

accurately represented through simple control derivatives. In general, aircraft flight 

dynamics can also involve nonlinear derivatives. These nonlinear derivatives may be so 

small at nominal conditions or during gentle maneuvers, that they are negligible. However, 

they might become more important at off-nominal conditions or near the edge of the flight 

envelope. There are some control derivatives that are inherently nonlinear such as those 

involving the drag coefficient (Cd). For trimmed motion, Cd is important, and linear Cd 

derivatives are not adequate to deal with nonlinear drag characteristics. Cm derivatives also 

tend to be slightly nonlinear due to the nature of the downwash interacting with the 

horizontal tails. Some wind tunnel data actually shows that there is some nonlinearity in 

Cm vs. AoA. So the assumption of linear Cm derivatives may need to be validated against 

wind tunnel data or high-fidelity CFD. 

To take advantage of both the computational efficiency of the method using 

stability derivatives and the ability of Neural Network to estimate functions with large 

number of inputs, a hybrid scheme combining both methods was developed to provide a 

real-time estimate of the optimum control deflection schedules to trim the airplane and 

minimize the actuation power for changing flight conditions in a pull-up maneuver. The 

results show the same trend of values between the estimated results from the trained Neural 

Networks and the validated ones from the GA, which demonstrates the efficiency of the 

scheme. 

An antisymmetric, steady roll maneuver was performed on the HWB. The process 

using the stability derivatives was also employed for the control surface deflections 

schedule optimization for a steady roll maneuver with Mach=0.5, Dynamic Pressure= 

1.769 psi and Roll Rate = 15 deg/s. The optimized Sum of absolute Values of Hinge 

Moments and control surface deflections obtained from GA were equal to those obtained 

from MSC Nastran for the same flight conditions. The hybrid scheme combining both GA 
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and ANN was also applied for a steady roll maneuver, and the estimated results from the 

ANNs were in agreement with the true values from MSC Nastran and the GA. This 

demonstrates that the scheme can be used for a wide variety of aircraft configurations and 

other maneuvers for real-time, efficient deployment of the control surfaces to trim the 

airplane with the minimum power consumption in the event of a change in the flight 

conditions.  

Future work will include detailed studies of the range of applicability of the stability 

derivatives method, conducting asymmetric maneuvers (engine out and dynamic 

overswing) and adding actuator dynamics in terms of damping, stiffness and power 

consumption into the analysis to have a realistic fully aeroservoelastic MSC Nastran model 

of the HWB platform.
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