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Abstract. This paper deals with some of the methodologies used to con-

struct polynomial surrogate models based on generalized polynomial chaos
(gPC) expansions for applications to uncertainty quantification (UQ) in aero-

dynamic computations. A core ingredient in gPC expansions is the choice of

a dedicated sampling strategy, so as to define the most significant scenarios
to be considered for the construction of such metamodels. A desirable feature

of the proposed rules shall be their ability to handle several random inputs

simultaneously. Methods to identify the relative ”importance” of those vari-
ables or uncertain data shall be ideally considered as well. The present work is

more particularly dedicated to the development of sampling strategies based on

sparsity principles. Sparse multi-dimensional cubature rules based on general
one-dimensional Gauss-Jacobi-type quadratures are first addressed. These sets

are non nested, but they are well adapted to the probability density functions
with compact support for the random inputs considered in this study. On the

other hand, observing that the aerodynamic quantities of interest (outputs)

depend only weakly on the cross-interactions between the variable inputs, it is
argued that only low-order polynomials shall significantly contribute to their

surrogates. This ”sparsity-of-effects” trend prompts the use of reconstruction

techniques benefiting from the sparsity of the outputs, such as compressed
sensing (CS). CS relies on the observation that one only needs a number of

samples proportional to the compressed size of the outputs, rather than their

uncompressed size, to construct reliable surrogate models. The results ob-
tained with the test case considered in this work corroborate this expected

feature.

Nomenclature

B Polynomial basis
c Chord length
CD Drag coefficient
CL Lift coefficient
CM Pitching moment coefficient
Cp Static pressure coefficient
C∗p1 Total pressure coefficient
D Parameters space dimension
E{·} Mathematical expectation
g Generic physical model
ĝ Surrogate model
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g Discretized computational model
gj Polynomial chaos expansion coefficient of the computational model
h Thickness
M∞ Free-stream Mach number
M Measurement matrix
n Number of cubature points
N Level of the cubature rule
p Total order of the polynomial surrogates
P Number of polynomials
PΞ Probability density function of the random input parameters
Pp[x] Polynomial set of total order p
r Thickness-to-chord ratio
Re Reynolds number
S Sparsity (the number of non-zero entries)
y Output quantities of interest
W Weighting matrix
α Angle of attack
βI Beta law of the first kind
β2 Kurtosis
δS Restricted isometry constant
ε Polynomial truncation error
γ1 Skewness
µ Mean
µ(Φ,Ψ) Mutual coherence
ϕ` `-th sensing vector
Φ Sensing basis
ψj j-th representation vector (polynomial chaos)
Ψ Representation basis
σ Standard deviation
Θ1 One-dimensional quadrature rule
Θ Cubature set
ξ Random input parameters
ω` `-th cubature weight
ξ` `-th cubature point in the parameters space

Subscript
j Index of the polynomial chaos
` Index of a cubature point

1. Introduction

Surrogate models are typically used to perform optimization or uncertainty quan-
tification (UQ) studies involving a complex modeling and simulation process, as
encountered in computational fluid dynamics (CFD) among other engineering sci-
ences applications. The principle of a surrogate model relies on an interpolation
or regression procedure to estimate a scalar or vector field using a sampling data
set constituted by carefully chosen outputs of the aforementioned complex process.
Since the latter is often computationally expensive to run, the surrogate model shall
be able to work out reliable estimates of its outputs at no extra computational costs
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except the evaluation of the surrogate itself. It should thus offer a non intrusive
alternative to expensive runs of a complex process in order to sweep across the
parameter space that influences it. When considering large parameter spaces, effi-
cient algorithms are needed to provide an accurate surrogate representation of such
parametric outputs. The kriging procedure [1] has gained a large attention over
the past decades due to its robustness, accuracy, and ability to provide an estimate
of the error done by the procedure; see the reviews by Kleijnen [2] or Bompard [3]
and references therein. It has been applied to the simulation of air flow around a
wing profile with the consideration of variable geometrical parameters in a previous
study [4].

The polynomial chaos (PC) expansion is also a powerful tool for constructing
spectral-like surrogate models of a parameterized process. A general methodology
based on the Galerkin method has originally been proposed by Sun [5] and Ghanem
& Spanos [6] for the computation of the PC coefficients of the solution of a parame-
terized partial differential equation (PDE). This original scheme is heavily intrusive
and has prompted the development of non-intrusive schemes, especially for PDEs
arising in fluid dynamic models [7]. Two approaches for computing the coefficients
of a PC expansion have usually been considered: (i) a projection approach, in
which they are computed by structured (i.e. Gauss quadratures) or unstructured
(i.e. Monte-Carlo or quasi Monte-Carlo sampling) quadratures; or (ii) a regression
approach, minimizing some error measure or truncation tolerance. Both techniques
suffer from some well identified shortcomings when the dimension of the param-
eter space, and the number of model evaluations alike, increase. Indeed, a PC
expansion of total degree p in D variable parameters contains (p+D)!

p!D! coefficients.
A direct way to compute them is to use a tensor product grid in the parameter
space requiring ND evaluations of the process, where the number N of evaluations
needed for one particular direction in that space is related to p. These ND runs
are very often unaffordable for large parameter spaces and complex configurations,
as in CFD for example. Fortunately, the Smolyak algorithm [8] defines sparse grid
quadratures involving O(N logD) points while preserving a satisfactory level of ac-
curacy. Consequently, collocation techniques with sparse quadratures or adaptive
regression strategies have been developed in order to circumvent this dimensionality
concern [9–12].

Other directions may be considered to deal with large parameter spaces. In the
work presented in this paper we aim at benefiting from the sparsity of the process
outputs themselves to reconstruct their PC representations in a non-adaptive way
[13, 14]. Indeed, we rely on the common observation that many cross-interactions
between the input parameters are actually smoothened, or even negligible, once
that have been propagated to some global quantities of interest processed from,
say, complex aerodynamic computations. We can therefore expect to achieve a
successful output recovery by the techniques known under the terminology of com-
pressed sensing (CS) [15, 16]. In this theory the reconstruction of a sparse signal
on a given, known basis requires only a limited number of evaluations at randomly
selected points–at least significantly less than the a priori dimension of the basis.
We thus resort to unstructured sampling sets to recover sparse outputs. We may
also resort to highly structured sampling sets, such as nesting sets in large param-
eter spaces. The objective in this case is to be able to enrich the surrogate models
by structured samples compatible with the structured samples used in a previous
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evaluation, without the need to re-evaluate the whole process. Classical nested
quadratures in one dimension go from a set of N points to a set of 2N ± 1 points
(for Fejér second rule [17]) or 2N − 1 points (for Clenshaw-Curtis rule [18, 19]),
such that nested rules involve sets of nodes of which dimensions n double each time
their so-called level N is incremented, n ∼ 2N . These sets can subsequently by
used with the Smolyak algorithm [8] to construct nested sparse sets in higher di-
mensions, together with adaptive strategies as developed by Gerstner & Griebel [20]
for example.

We will not consider nested rules in this paper though, leaving these develop-
ments to another publication. As invoked above, we rather focus on sparse multi-
dimensional cubature rules based on one-dimensional Gauss-type quadratures, on
one hand. These sets are non nested, but they are well adapted to probability den-
sity functions with compact supports for the input parameters considered in the
example addressed in this work. On the other hand, the ”sparsity-of-effects” trend
observed in complex simulations prompts the use of dedicated reconstruction tech-
niques benefiting from the sparsity of the outputs. Since only low-order polynomials
will significantly contribute to the output surrogates, one may infer from CS theory
that only a number of samples proportional to the compressed size of the output,
rather than the uncompressed size, is actually needed. In addition, these sampling
points should be chosen randomly–i.e. they are unstructured. Therefore we may
invoke sparsity patterns either for the input parameters or the output quantities of
interest, to construct polynomial surrogates of the latter.

The rest of the paper is organized as follows. Section 2 introduces the basic
configuration and CFD tools, namely a two-dimensional RAE 2822 transonic air-
foil [22, 23] and the Onera in-house elsA software [24, 25]. This example serves as
a guideline for the metamodeling techniques based on generalized PC expansions
introduced in the subsequent sections: construction by quadrature rules (struc-
tured grids in the parameter space) in section 3 or by compressed sensing (using
unstructured grids) in section 5, while the intermediate section 4 details the par-
ticular application of the former approach to the RAE 2822 airfoil. Some general
conclusions and perspectives are drawn in section 6.

2. Problem setup

We start by introducing the problem setup and the numerical tools used to solve
it. We consider a two-dimensional transonic flow around an RAE 2822 transonic
airfoil solved by steady-state Reynolds-Averaged Navier-Stokes (RANS) equations
together with a Spalart-Allmaras turbulence model closure [21]. The nominal flow
conditions are the ones described in Cook et al. [22] for the test case #6 together
with the wall interference correction formulas derived in [26, pp. 386–387] and
their slight modifications suggested in [27, p. 130] (see also the CFD verification
and validation web-site of the NPARC Alliance [23]). The nominal free-stream
Mach number M∞ = 0.729, angle of attack α = 2.31o, and Reynolds number
Re = 6.50 · 106 (based on the airfoil chord length c, fluid velocity, temperature
and molecular viscosity at infinity) arise from the corrections ∆M∞ = 0.004 and
∆α = −0.61o given in [27, p. 130] for the test case #6 outlined in Cook et al. [22],
for which M∞ = 0.725, α = 2.92o, and Re = 6.50 · 106.

2.1. Numerical nominal model. The nominal problem is discretized using a
769c × 193c mesh shown in Fig. (1) and Fig. (2), where the boundary at infinity
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was left intensionally far (at about 500c from the airfoil). These values proved to be
sufficient to avoid spurious reflection with the far-field boundary. The discretized
numerical solution is computed using the cell-centered finite volume CFD software
elsA [24, 25]. It is based on:

• Roe flux using a second order MUSCL scheme [28] (based on van Albada
limiter [29]) for the convective term of the RANS system;
• First order Roe fluxes for the advection term of the turbulent variable;
• Corrected second order diffusive terms based on the corrected mean of the

cell-centered gradients of the two adjacent cells (referred to as the ”5p cor”
approach);
• Source terms for the turbulent transport computed using the temperature

gradients at the center of the cells.

The flow is attached with a weak shockwave on the suction side. The contour plot
of the magnitude of the velocity are displayed on Fig. (3) and the static pressure
profile at the wall are displayed on Fig. (4). Given the large number of simulations
to run, the numerical parameters of the steady state algorithm proved to be essential
to insure a fast convergence. This was performed using the following:

• An implicite algorithm based on the Lower-Upper Symmetric Successive
Overrelaxation (LU-SSOR) scheme [30] using 4 relaxation cycles, increasing
the CFL number after 100 iterations to CFL = 50;
• A multigrid approach for the Navier-Stokes system over two grid levels with

two iterations on the coarser grid;
• A single fine level iteration for the turbulent equation alternating with a

multigrid iteration for the RANS system.

Once the numerical parameters have been fixed, the number of iterations is deter-
mined from the evolution of the resulting global forces. A number of 2000 iterations
(the discrete residuals of all equations and their decrease being checked at every
iteration) appeared to be acceptable. Hence this number of iterations has been
retained for all calculations so far. Further discussions on this issue are available
in Dumont et al. [4] (available on demand).

2.2. Definition of the uncertainties. The aim of this work is to characterize the
influence of uncertainties on the free-stream Mach number M∞, angle of attack α,
and thickness-to-chord ratio r = h/c on some aerodynamic quantities of interest,
such as the drag, lift, or pitching moment coefficients CD, CL, or CM , respectively.
These variable parameters are assumed to be independent and to follow Beta laws
of the first kind βI. Therefore their probability density functions (PDF) read:

βI(x; a, b) = 1[Xm,XM ](x)
Γ(a+ b)

Γ(a)Γ(b)

(x−Xm)a−1(XM − x)b−1

(XM −Xm)a+b−1
.

In the above Γ(z) =
∫ +∞

0
tz−1e−tdt is the usual Gamma function, and [Xm, XM ]

is the compact support of the random parameter X ∼ βI. The parameters a = b
as well as the bounds Xm, XM for the three variable parameters ξ1 = r, ξ2 = M∞,
ξ3 = α are gathered in the Table 1 below. This definition of uncertainties is part
of the FP7 UMRIDA Project (www.umrida.eu), which gathers a novel data base
of industrial challenges with prescribed uncertainties for the validation of UQ tech-
niques against this series of relevant industrial test cases [31]. We note in passing
that the βI model is the one arising from Jaynes’ maximum entropy principle [32,33]

http://www.umrida.eu
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Figure 1. Computational domain for the baseline configuration.

Figure 2. Close view of the mesh around the RAE 2822 aerofoil
for the baseline configuration.

when constraints on (i) the boundedness of the support [Xm, XM ], and (ii) the val-
ues of the averages E{log(X −Xm)} and E{log(XM −X)}, are imposed. Here and
in the subsequent developments the usual notation E{f(X)} =

∫
R f(x)PX(dx) for

X ∼ PX is employed.

3. Polynomial surrogates

The computation of the first moments (mean, standard deviation, skewness,
kurtosis...) of the aerodynamic quantities of interest when the variability of the
parameters above is accounted for, is done thank to surrogate models, or response
surfaces. We more particularly focus on polynomial surrogates in this study.
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Figure 3. Magnitude of velocity for the baseline RAE 2822 tran-
sonic airfoil at M∞ = 0.729, α = 2.31o, Re = 6.50 · 106.
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Figure 4. Static pressure coefficient Cp at the wall for the baseline
RAE 2822 transonic airfoil at M∞ = 0.729, α = 2.31o, Re = 6.50 ·
106, compared with the experiment results gathered on the CFD
verification and validation web-site of the NPARC Alliance [23]
(crosses).

Let g be a generic physical model involving D parameters ξ = (ξ1, ξ2, . . . ξD) ∈
I ⊆ RD, such that the quantity of interest y ∈ Y is given as:

y = g(ξ) .



8 É. SAVIN, A. RESMINI, AND J. PETER

a = b Xm XM

ξ1 4 0.97× r 1.03× r
ξ2 4 0.95×M∞ 1.05×M∞
ξ3 4 0.98× α 1.02× α

Table 1. Symmetric βI laws for the variable geometrical and op-
erational parameters.

Let Pp[x] be the set of D-dimensional polynomials with total order p with respect
to x ∈ RD. We first note that this set has cardinality #Pp[x] = P + 1 such that:

(1) P + 1 =
(p+D)!

p!D!
.

A polynomial surrogate model ĝp of order p for the model g is obtained as:

(2) g ≈ ĝp = arg min
π∈Pp[x]

1

2

∫
RD

|g(x)− π(x)|2dPΞ(x) ,

where Ξ ∼ PΞ is the marginal PDF of the random parameters Ξ with values in
I ⊆ RD. The accuracy of this approximation may be assessed considering the
limit of the mean-square norm E{|ĝp(Ξ)− g(Ξ)|2} as p → +∞. However such a
”convergence” does not necessarily holds, and it depends on the probability measure
PΞ.

There are otherwise several ways to construct response surfaces and surrogates:
embedded projection (this is the original spectral stochastic finite element method
of Sun [5] and Ghanem & Spanos [6] which is highly intrusive), non-intrusive pro-
jection (or collocation) [11, 12], kriging [1–3], etc.; see also Le Mâıtre & Knio [7]
for a detailed introduction. Regression is also an alternative, whereby an `2 opti-
mization problem is formed. For that purpose, a set of sampling points is needed
in order to discretize the minimization problem (2). It is assumed in the following
that these points are first chosen as the n integration points of a cubature rule
Θn = {ω`, ξ`}n`=1, which provides with positive weights {ω`}n`=1 and nodes {ξ`}n`=1

in RD such that for a smooth function x 7→ f(x) one can evaluate its average by:

(3)

∫
I
f(x) dPΞ(x) '

n∑
`=1

ω`f(ξ`) .

3.1. Regression approach. Using the foregoing cubature rule, the regression ap-
proach is formulated as a weighted least-squares minimization problem for the co-
efficients {cnj }Pj=0 of the polynomial surrogate ĝnp of g expanded on the monomials
{[x]j}pj=0 of partial total order j (i.e. [x]j = xj11 x

j2
2 · · ·x

jD
D with j1 + j2 + · · ·+ jD ≤

j). Let cn = (cn0 , c
n
1 , . . . c

n
P )T where P is given by Eq. (1), then:

cn = arg min
d∈RP+1

1

2
(y −Md)

T
W (y −Md) ,

where y = {y` = g(ξ`)}n`=1, [M ]`j = [ξ`]
j , and W = diag{ω`}n`=1; also aT stands

for the transpose of a. Numerous methods are available to solve this problem
whenever n ≥ P+1; we do not follow this approach in the subsequent developments
though. We are rather interested in the situation whereby n ≤ P + 1, and more
interestingly n� P . It is addressed subsequently in the section 5.
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3.2. Projection approach. We assume now that a polynomial basis B of L2(I, PΞ)
is available. Then we construct the polynomial surrogate ĝp of g by standard L2

projection on the finite dimensional subspace of L2(I, PΞ) spanned by the truncated
family of orthonormal polynomials up to the total order p denoted by Bp = {ψj}Pj=0,
where P is again given by Eq. (1). The orthonormalization of this basis reads:

(4)

∫
I
ψj(x)ψk(x)dPΞ(x) = (ψj , ψk)L2 = δjk .

Then ĝp =
∑P
j=0 gjψj where gj = (g, ψj)L2 , 0 ≤ j ≤ P . Using the cubature rule of

Eq. (3), these expansion coefficients are approximated by:

gj ≈ gnj =

n∑
`=1

ω`y`ψj(ξ`) , 0 ≤ j ≤ P .

This corresponds to the approximation ĝp ≈ ĝnp =
∑P
j=0 g

n
j ψj . Such representations

are referred to as polynomial chaos (PC) expansions in the dedicated literature,
provided that the variable parameters Ξ follow a multi-dimensional Gaussian (nor-
mal) distribution PΞ =

⊗D
d=1N (0, 1) [6, 7]. They are otherwise called generalized

polynomial chaos (gPC) expansions for other distributions [34,35].

3.3. Application to Uncertainty Quantification (UQ). Once the polynomial
surrogate model ĝnp has been derived, the first moments and/or cumulants of the
quantity of interest y can be computed using the cubature rule Θn and evaluations
{y`}n`=1 of the physical model g at these nodes. Indeed, for a regular function
y 7→ f(y) on Y one can estimate a mean output functional by:

E{f(y)} =

∫
I
f(g(x))dPΞ(x) '

n∑
`=1

ω`f(y`) .

The mean µ is obtained for f(y) = y, the variance σ2 is obtained for f(y) =
(y − µ)2, the skewness γ1 for f(y) = (y−µσ )3, the kurtosis β2 for f(y) = (y−µσ )4, etc.
More generally, the j-th moment mj is obtained for f(y) = yj , and may be used to
compute the characteristic function ΦY :

ΦY (u) =

∫
Y

eiu·ydPY (y) =

+∞∑
j=0

mj

j!
(iu)j ,

where by the causality principle (or transport of PDFs) for Y ∼ g(Ξ) one has:

PY (dy) =

∣∣∣∣dg−1

dy

∣∣∣∣PΞ(g−1(dy)) .

Sensitivity indices may be computed alike. Denoting by Id the set of indices cor-
responding to the polynomials of Bp depending only on the d–th variable parameter
ξd, the main-effect gPC-based Sobol’ indices are given by (see e.g. Sudret [36]):

Sd =
1

σ2

∑
j∈Id

g2
j ,

owing to the normalization condition (4). More generally, if Id1d2...ds is the set of
indices corresponding to the polynomials of Bp depending only on the parameters
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ξd1 , ξd2 , . . . ξds , the s–fold joint sensitivity indices are:

Sd1d2...ds =
1

σ2

∑
j∈Id1d2...ds

g2
j .

In the subsequent application to the two-dimensional configuration described in
section 2, we will consider the main-effect sensitivity indices Sd and the 2–fold joint
sensitivity indices Sd1d2 .

4. Application to the two-dimensional RAE 2822 transonic airfoil

From the previous analysis, we see that the main ingredients requested for the
construction of polynomial surrogates are the cubature rule Θn and the truncated
polynomial basis Bp, for n integration nodes and a multi-dimensional polynomial
total order p. In addition we have here D = 3 for the parameter space dimension.
Owing to the choices made for the variable parameters considered for this case
(see Table 1), we have ξ = (ξ1, ξ2, ξ3) ∈

∏3
d=1[X

(d)
m , X

(d)
M ] and PΞ =

⊗3
d=1 βI(4, 4).

Therefore the integration points should be chosen from a Gauss-Jacobi quadrature
rule, and the polynomial basis should be constituted by the multi-dimensional Ja-
cobi polynomials which are orthogonal with respect to the weight function x 7→
w(x) =

∏3
d=1(1− x2

d)
3.

4.1. Polynomial basis. The polynomial basis Bp adapted to the parameters PDF
PΞ is constituted by the three-dimensional Jacobi polynomials ψj , j = (j1, j2, j3) ∈ N3,
such that ‖j‖1 = j1 + j2 + j3 ≤ p. They are computed by:

ψj(x) =

3∏
d=1

ψjd(xd) , ‖j‖1 ≤ p ,

where {ψjd}jd≥0 is the family of one-dimensional orthonormal Jacobi polynomials
with respect to the weight function x 7→ w1(x) = (1− x2)3.

In the present study the polynomial surrogates ĝp constructed for the evaluation
of the drag, lift and pitching moment coefficients CD, CL and CM , respectively,
are truncated up to the total order p = 8. Therefore P + 1 =

(
p + 3

3

)
= 165 multi-

dimensional Jacobi polynomials are ultimately retained in those gPC expansions.

4.2. Cubature rules. One-dimensional Gauss-Jacobi quadratures ΘN
1 based on N

integration points are tailored to integrate on [−1, 1] a smooth function x 7→ f(x):
(5)∫ 1

−1

f(x)(1−x)a(1+x)bdx '
N−Nb∑
`=1

ω`f(ξ`)+

Nb∑
`′=1

ωN−Nb+`′f(ξN−Nb+`′) , a, b > −1 ,

such that this rule turns to be exact for polynomials up to the order 2N − 1 −
Nb. Here Nb is the number of fixed nodes of the rule, typically the bounds ±1.
Depending on the choice of Nb, different terminologies are used:

• Nb = 0 is the classical Gauss-Jacobi rule;
• Nb = 1 is the Gauss-Jacobi-Radau (GJR) rule, choosing ξN = −1 or ξN = 1

for instance;
• Nb = 2 is the Gauss-Jacobi-Lobatto (GJL) rule, choosing ξN−1 = −1 and
ξN = 1 for instance.
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Gauss−Jacobi quadrature

Figure 5. Gauss-Jacobi quadratures for 0 ≤ a = b ≤ 10, N = 10
and Nb = 0. The blue dots correspond to a = b = 3 for which the
Jacobi weight function x 7→ w(3,3)(x) is identified with the βI(4, 4)
PDF up to a normalization constant.

Since in our case we have chosen a total order p = 8, N = 10 GJL points are
needed to recover exactly the orthonormality property (4) for the corresponding
one-dimensional Jacobi polynomials. Indeed N should be defined such that 2N −
3 ≥ 16 in this situation. The 10–points Gauss-Jacobi rules are illustrated on Fig. (5)
for various values of the parameters a = b of the Jacobi weight function x 7→
w(a,b)(x) = (1 − x)a(1 + x)b, and the 10–points Gauss-Jacobi-Lobatto rules are
illustrated on Fig. (6). The blue dots correspond to a = b = 3 and thus pertain to
the βI(4, 4) PDF. The reason why we include the boundary nodes in the quadrature
rule stems from the fact that the basic engineering practice would consider the
evaluation of the physical model g at the bounds of the support of the variable
parameters. The main advantage of using Gauss-Jacobi quadratures is that they
do not add integration points for the increased order a + b induced by the weight
function w(a,b). The Clenshaw-Curtis rule [18] for example is typically suited for
polynomials of order N −1, yet higher orders are actually achieved in practice [19].
Thus if one uses N nodes from this rule to compute the left-hand side of (5) an
exact evaluation is achieved for polynomials up to the order N−1− (a+b), instead
of 2N − 3 with a GJL rule. However, the latter does not have the nesting property
of the former.

Multi-dimensional quadratures (cubatures) may subsequently be obtained by
tensorization and/or sparsification of these one-dimensional rules. Firstly, a multi-
dimensional tensorized grid is obtained by the straightforward product rule:

(6) Θn =

D⊗
d=1

ΘN
1 .

It contains n = ND grid points, i.e. n = 1, 000 for the present Test Case (N =
10, D = 3). Of course the order N could be adapted depending on the d–th
variable parameter. Secondly, a sparse cubature rule can be derived thank to the
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Figure 6. Gauss-Jacobi quadratures for 0 ≤ a = b ≤ 10, N = 10
and Nb = 2. The blue dots correspond to a = b = 3 for which the
Jacobi weight function x 7→ w(3,3)(x) is identified with the βI(4, 4)
PDF up to a normalization constant.

Smolyak algorithm [8]. The so-calledN–th level, D-dimensional sparse grid ΘD,N is
obtained by the following linear combination of product formulas for the nodes [37]:

(7) ΘD,N =
⋃

N+1≤‖j‖1≤N+D

Θj1
1 ⊗ · · · ⊗ΘjD

1 .

For example, if N = 5 and D = 3 one has n = 99 for the total number of grid
points using a one-dimensional GJL quadrature Θj

1 as the generating rule, and:

Θ3,5 = Θ2
1 ⊗Θ2

1 ⊗Θ2
1 + Θ2

1 ⊗Θ2
1 ⊗Θ3

1 + Θ2
1 ⊗Θ3

1 ⊗Θ3
1 + perm.

By a direct extension of the arguments devised by Novak & Ritter [38] or Heiss &
Winschel [39], it can be shown that such a N–th level, D-dimensional sparse rule
based on the GJL one-dimensional rule is exact for D-dimensional polynomials of
total order 2N − 3. The total number of integration points of the rule is given for
D � 1 and N fixed by the estimate n = O( (2D)N

N ! ) (see e.g. Novak & Ritter [38]
and references therein; the dual estimate for D fixed and N � 1 is n = O( (2N)D

D! )),
which typically outperforms the product rule with n = ND for D ≥ 4. It is
gathered in the Table 2 below for various combinations (D,N). The sparse rule is
plotted in Fig. (8) for N = 10 and D = 2, and in Fig. (10) for N = 6 and D = 3
together with the corresponding product rule in Fig. (7) and Fig. (9), respectively,
for illustration purposes. We note that since the underlying one-dimensional GJL
rule is not nested, the multi-dimensional rules are not either. Also the weights of
the latter may be negative for some nodes although the underlying one-dimensional
rules have positive weights.

4.3. Results. The first four moments of the drag, lift, and pitching moment co-
efficients CD, CL, and CM , respectively, are gathered in the Table 3 below for
n = 103 = 1, 000 calls to the model g using the elsA software [24,25] with the 10–th
level full product rule (6). Table 4 gathers the same results using a 6-th level sparse
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HHH
HHN
D

2 3 4 5 6

2 4 8 16 32 64
3 8 20 48 112 256
4 17 50 136 352 880
5 29 99 304 872 2384
6 53 201 673 2082 6092
7 85 363 1337 4483 14072
8 133 647 2585 9293 31025
9 193 1079 4697 18143 64469
10 273 1769 8321 34323 129197

Table 2. The total number of grid points for the N–th level, D-
dimensional sparse rule based on the GJL one-dimensional rule.
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Tensorized 2D GJL cubature

Figure 7. 10–th level tensorized two-dimensional GJL cubatures
for a = b = 3 (n = 102).

rule (7) for which n = 201 from Table 2. The reasons why we have not used a 10–th
level sparse rule for a consistent comparison with the 10–th level product rule are
twofold. Firstly, for this case n = 1769, which is not competitive with the product
rule. Secondly, the gPC coefficients are observed to be sparse so that the higher-
order three-dimensional polynomials contribute only marginally to the surrogates.
This observation is elaborated further on in the subsequent section 5 dealing with
the sparse reconstruction approach we have applied invoking the theory of com-
pressed sensing. Using the 6-th level sparse rule we are able to integrate exactly
three-dimensional polynomials up to total order 9, hence reconstruct polynomial
surrogates ĝp′ up to total order p′ = 4, corresponding to P ′ + 1 =

(
p′ + 3

3

)
= 35

multi-dimensional Jacobi polynomials in those gPC expansions.
The main-effect sensitivity indices computed with the 10–th level product rule are

gathered in Table 5 below, while the joint sensitivity indices are gathered in Table 6.
Tables 7 and 8 display the same indices computed with the 6–th level sparse rule. It
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Figure 8. 10–th level sparse two-dimensional GJL cubatures for
a = b = 3 (n = 273).
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Figure 9. 6–th level tensorized three-dimensional GJL cubatures
for a = b = 3 (n = 63 = 216).

µ σ γ1 β2

CD 133.37e-04 34.128e-04 1.0237e+00 3.3030e+00
CL 72.274e-02 1.6695e-02 -9.6221e-01 3.0630e+00
CM -453.99e-04 32.239e-04 -5.7845e-01 2.3190e+00

Table 3. First four moments of the aerodynamic coefficients com-
puted by the 10–th level product rule with n = 103.

is clearly apparent from these results that the free-stream Mach number is the chief
parameter controlling the variability of the aerodynamic coefficients in the range
of analysis considered for this test case. We may also emphasize the discrepancies
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Figure 10. 6–th level sparse three-dimensional GJL cubatures for
a = b = 3 (n = 201).

µ σ γ1 β2

CD 133.38e-04 34.097e-04 1.0293e+00 3.2611e+00
CL 72.269e-02 1.6729e-02 -9.8175e-01 2.8678e+00
CM -453.96e-04 32.175e-04 -5.9533e-01 2.3885e+00

Table 4. First four moments of the aerodynamic coefficients com-
puted by the 6–th level sparse rule with n = 201.

between the sensitivity indices computed with a full and a sparse rule, although
their theoretical accuracy are different in the present case. These differences are
even more pronounced for the joint sensitivity indices. The sparse reconstruction
approach outlined in the next section yields sensitivities very comparable to the
ones derived with the product rule, at a much lower computational cost though.

ξ1 = h/c ξ2 = M∞ ξ3 = α

CD 0.081e-01 9.892e-01 0.008e-01
CL 0.034e-01 9.554e-01 0.286e-01
CM 0.269e-01 9.721e-01 0.000e-01

Table 5. Main-effect sensitivity indices of the aerodynamic coef-
ficients computed by the 10–th level product rule with n = 103.

The PDFs of the three aerodynamic coefficients considered in this study are
displayed on Fig. (11) through Fig. (13) and Fig. (14) through Fig. (16) using the
10–th level product rule and the 6–th level sparse rule, respectively. They were
estimated from Ns = 100, 000 evaluations of the gPC surrogates ĝnp and smoothing
out the resulting histograms by a normal kernel density function [40]. The means
are shown on the plots with vertical blue lines.

Finally, the mean total pressure coefficients C∗p1 along the profile are displayed
on Fig. (17) using the 10–th level product rule and on Fig. (18) using the 6–th
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ξ2ξ3 ξ1ξ3 ξ1ξ2

CD 0.021e-02 0.000e-02 0.172e-02
CL 0.036e-02 0.000e-02 1.221e-02
CM 0.007e-02 0.000e-02 0.089e-02

Table 6. Joint sensitivity indices of the aerodynamic coefficients
computed by the 10–th level product rule with n = 103.

ξ1 = h/c ξ2 = M∞ ξ3 = α

CD 0.052e-01 6.635e-01 0.007e-01
CL 0.033e-01 5.883e-01 0.195e-01
CM 0.256e-01 9.227e-01 0.002e-01

Table 7. Main-effect sensitivity indices of the aerodynamic coef-
ficients computed by the 6–th level sparse rule with n = 201.

ξ2ξ3 ξ1ξ3 ξ1ξ2

CD 0.138e-02 23.944e-02 0.847e-02
CL 0.287e-02 29.990e-02 1.510e-02
CM 0.085e-02 3.276e-02 0.582e-02

Table 8. Joint sensitivity indices of the aerodynamic coefficients
computed by the 6–th level sparse rule with n = 201.
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Figure 11. PDF of the drag coefficient CD computed by the 10–
th level product rule with n = 103.

level sparse rule. Error bars at ±σ, where σ is the standard deviation of the
C∗p1’s, are also shown, together with the nominal total pressure coefficient (dotted
line) obtained from a computation with the nominal parameters M∞ = 0.729,
α = 2.31o, Re = 6.50 · 106, and the nominal thickness-to-chord ratio. We observe
an unexpected drop of the standard deviation at x ' 0.36 locally at the suction side
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Figure 12. PDF of the lift coefficient CL computed by the 10–th
level product rule with n = 103.
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Figure 13. PDF of the pitching moment coefficient CM computed
by the 10–th level product rule with n = 103.

when the 6–th level sparse rule is used. This may be related to the negativeness
of some weights with sparse rules, however we have not been able to find a more
detailed explanation of this probable anomaly so far.

5. Non-adapted sparse reconstruction by `1–minimization

The results of the previous section, especially the main-effect and joint sensi-
tivity indices, suggest that only low-order interactions exist between the variable
parameters for their effect on the aerodynamic coefficients of interest. This indi-
cates that among the gPC coefficients to be computed for the construction of their
polynomial surrogates ĝp, the ones pertaining to the one-dimensional polynomials
(depending on a single variable parameter) dominate the others. Hence the vector
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Figure 14. PDF of the drag coefficient CD computed by the 6–th
level sparse rule with n = 201.
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Figure 15. PDF of the lift coefficient CL computed by the 6–th
level sparse rule with n = 201.

g = (g0, g1, . . . gP )T ∈ RP+1 of gPC coefficients of ĝp has many negligible compo-
nents, so that it is compressible in the terminology of the theory of compressed
sensing [15, 16, 41]. In this setting it is argued that only a number of samples pro-
portional to the compressed size, rather than the uncompressed size, of the sought
signal is needed in order to reconstruct it. This observation challenges the conven-
tional approaches to sampling or imaging according to Shannon’s theorem, which
states that the sampling rate (the Nyquist rate) must be at least twice the maxi-
mum frequency present in the signal. Compressed sensing, or compressive sampling
(CS), asserts that one can recover some signals from far fewer samples or measure-
ments than traditionally used in the widespread signal acquisition techniques. CS
relies on two principles to make this possible:
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Figure 16. PDF of the pitching moment coefficient CM computed
by the 6–th level sparse rule with n = 201.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

C
p

1

*

Mean ±σ

 

 

Mean

Nominal

Figure 17. Total pressure coefficient computed by the 10–th level
product rule with n = 103.

(1) Sparsity, which express the fact that many signals may have a concise rep-
resentation once they are expressed in a proper basis Ψ;

(2) Incoherence, which express the fact that signals having a sparse representa-
tion in a given basis Ψ are actually spread out in the domain in which they
are acquired. Or in other words, the sensing functions Φ used to probe the
signal have a dense representation in the basis Ψ.

The reconstruction procedure consists in correlating the signal with a small number
of predefined sensing functions (for example, sinusoids if one aims at computing
a Fourier transform) which are incoherent with the basis in which the signal is
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Figure 18. Total pressure coefficient computed by the 6–th level
sparse rule with n = 201.

sparse. It is non adapted because it identifies the sparsity pattern, that is the order
(location) of the negligible components of the signal in its sparsifying basis, and
the leading components at the same time. The procedure can therefore efficiently
capture the relevant information of a sparse signal without trying to comprehend
that signal [41]. This is clearly a much desirable feature for practical industrial
applications.

5.1. Theoretical background. We basically follow the introductory paper of
Candès & Wakin [41] in this short presentation of CS. The sparse signal to be
reconstructed is the polynomial surrogate model ĝp of total order p, for which in-
formation is obtained by recording n values of the model g:

(8) y` = 〈g, ϕ`〉 , 1 ≤ ` ≤ n .
Typically ϕ` is a sinusoid and y` is a Fourier coefficient if a Fourier transform is
applied, or a Dirac function ϕ`(x) = δ(x− ξ`) if the model g is evaluated at some
sampling point ξ`: y` = g(ξ`). This latter sensing procedure is the one considered
in this work. Letting Φ be the n × (P + 1) sensing matrix of which rows are the
vectors ϕ∗1, ϕ

∗
2, . . . ϕ

∗
n (a∗ is the conjugate transpose of a), the process of recovering

a discretized version g ∈ RP+1 of the model g from the observation of n outputs
y = (y1, y2, . . . yn)T reads:

y = Φg .

This problem is generally ill-posed whenever n < P + 1, but CS theory tells us
that a unique solution may be obtained if the vector g is sparse. This is actually
the case once the model g is expanded on the orthonormal basis constituted by the
polynomial chaos pertaining to the randomly variable parameters introduced in
section 2. This property is observed a posteriori for the present problem from the
results expounded in the foregoing section 4. Incidentally, it should be noted that
sparsity can be proved a priori for some parametric, possibly non-linear elliptic
and parabolic partial differential equations in a general framework; see Chkifa et
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al. [42] and references therein. However, the extension of these analyses to the
present RANS system supplemented with a turbulence closure model, not to say
the Navier-Stokes equations, does not seem actually feasible.

The discretized version of the model g in terms of the polynomial surrogate
ĝp reads g ≈ ĝp =

∑P
j=0 gjψj in its sparse representation on the basis Ψ ≡ Bp.

Applying the sensing procedure (8) to the polynomial surrogate yields:

(9) y = Mgn ,

where gn = (gn0 , g
n
1 , . . . g

n
P )T ∈ RP+1 is the sparse vector of the gPC coefficients

in the basis Ψ to be computed, and M is the so-called n × (P + 1) measurement
matrix given by [M ]`j = 〈ψj , ϕ`〉. Using ϕ`(x) = δ(x − ξ`) as done here, it is a
Vandermonde-type matrix with [M ]`j = ψj(ξ`). Again, Eq. (9) is ill-posed when-
ever n� P , unless the sparsity of the sought solution is accounted for. Regularized
versions of Eq. (9) exists for this case, which in turn ensure its well-posedness. Since
the polynomial chaos expansion truncated at the total order p is not complete for
the exact representation of g, a truncation error has also to be accounted for in the
solution process. Together with the sparsity of the gPC coefficients, this can be
accommodated by reformulating Eq. (9) as the following `1–minimization problem,
known as Basis Pursuit Denoising (BPDN) [43]:

(P1,ε) gn ≈ g? = arg min
h∈RP+1

{‖Wh‖1; ‖Mh− y‖2 ≤ ε} ,

for some tolerance 0 ≤ ε� 1 on the polynomial chaos truncation. The norms above
are defined by ‖h‖m = (

∑P
j=0 h

m
j )

1
m , and W is some diagonal weighting matrix.

Its role is to prevent the algorithm from biasing toward the non-negligible entries
of gn of which associated columns in M have large norms [13, 14, 44]. Now the
strategy for our present study is to solve (P1,ε) with n runs of the physical model
g significantly lower than the number of coefficients to be identified. CS shows
that it is achievable provided that the target gn is actually sparse, or nearly sparse
(compressive), and some constraints on the measurement matrix are fulfilled.

As already stated above, a key requirement for the successful recovery of a sparse
signal is incoherence between the sensing basis Φ and the representation basis Ψ.
It is quantified by the following mutual coherence 0 < µ(Φ,Ψ) ≤ 1:

(10) µ(Φ,Ψ) = max
1 ≤ j, k ≤ P + 1

j 6= k

|mT
jmk|

‖mj‖2‖mk‖2
,

where mj stands for the j–th column of M . It is a measure of how close to
orthogonality the measurement matrix is. Based on this coherency measure, the
following theorem from Candès & Romberg [45] asserts that if ĝp is sufficiently
sparse in Ψ, the recovery of its gPC coefficients by `1–minimization is exact.

Theorem 5.1. Assume that ĝp is S–sparse on the gPC basis Ψ, that is it has at
most S non-zero entries. Then if n sampling points {ξ`}n`=1 are selected at random
to form the measurement matrix M , and:

(11) n ≥ C · µ(Φ,Ψ) · S · logP

for some constant C > 0, the solution of (P1,0) is exact with ”overwhelming” (sic)
probability.

More precise results with structured random measurement matrices are given by
e.g. Rauhut & Ward [49]. It should be noted that the role of coherence in this
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result is transparent. The smaller the coherence is, the closer the measurement
matrix is to a unitary matrix, and the fewer sampling points are needed.

The previous Theorem 5.1 is however not entirely satisfactory from a prac-
tical point of view because (i) it does not allow for some truncation error, or
noisy/imprecise measurements; (ii) it does not deal with approximately sparse
(compressive) signals, for which a large subset of entries are negligible rather than
strictly zero. These shortcomings may be alleviated simultaneously as established
by Candès et al. [15]. To achieve this, a constraint on the measurement matrix M
needs be added to gain robustness in CS, the so-called restricted isometry property
(RIP, also quoted as uniform uncertainty principle). For each integer S ∈ N∗, the
isometry constant δS of M is defined as the smallest number such that:

(1− δS)‖hS‖22 ≤ ‖MhS‖22 ≤ (1 + δS)‖hS‖22
for all S-sparse vectors hS ∈ YS := {h ∈ RP+1; ‖h‖0 ≤ S}. Then M is said to
satisfy the RIP of order S if, say, δS is not too close to 1. This property amounts
to saying that all S–column submatrices of M are numerically well-conditioned, or
S columns mj1 ,mj2 . . .mjS selected arbitrarily in M are nearly orthogonal. The
following theorem by Candès et al. [15, 41] then states that (P1,ε) can be solved
efficiently:

Theorem 5.2. Assume δ2S <
√

2− 1. Then the solution g? to (P1,ε) satisfies:

‖g? − gn‖2 ≤ C0
‖gnS − gn‖1√

S
+ C1ε

for some C0, C1 > 0. Here gnS is gn with all but the S largest entries set to zero.

This result calls for several comments. First, it is more general than Theorem
5.1 since, if the signal is exactly S–sparse, gn = gnS and the reconstruction is exact
whenever ε = 0 (noiseless case). Second, it deals with all signals, not the S–sparse
ones solely. Third, it is deterministic and does not involve any probability. Lastly,
the bound

√
2 − 1 on δ2S is the one originally proposed by Candès & Wakin [41]

but it can be improved as proposed by e.g. Mo & Li [46]; such improvements are
an active field of research at present.

5.2. Application to the two-dimensional RAE 2822 transonic airfoil. We
now apply the foregoing CS procedure to the non-adaptive computation of the gPC
coefficients gn of the surrogate models ĝp for the aerodynamic coefficients CD, CL
and CM . We use n = 80 sampling points drawn at random following βI(4, 4) PDFs
as defined in section 2. This sampling set is displayed on Fig. (19) below. The
primary reason why we have chosen this sampling size is for its ease of use with
the multithreading setup of our CFD software elsA [24, 25]. However, the mutual
coherence for the present sampling set and representation basis is µ(Φ,Ψ) ' 0.93
and the sparsity of the polynomial surrogates is observed to be S ' 10 from the
results of the section 4. Thus Eq. (11) yields n & 50. A common observation is
that n & 4S ' 40 is usually enough for a successful recovery.

We subsequently apply BPDN (P1,ε) to compute gn. For that purpose we use
the Spectral Projected Gradient Algorithm (SPGL1) developed by van den Berg &
Friedlander [47] and implemented in the Matlab package SPGL1 [48] to solve this
`1–minimization problem. The tolerance was fixed at ε = 10−5 and we were able
to find a solution for all surrogates with this a priori choice without resorting to
cross-validation, for example. Further investigations should be carried on on this
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Figure 19. Sampling points used to non-adaptively compute the
gPC coefficients of the polynomial surrogates of CD, CL and CM
by `1–minimization.

topic, though. It should also be noted that no particular sampling strategy, such as
stratification, low-discrepancy series, or preconditioning, has been applied at this
stage to select the sampling set. Moreover, the weighting matrix W was selected
as the identity matrix. Alternative sampling and weighting strategies are outlined
in several recent works [13,14,44,49–52].

The mean and standard deviation of the drag, lift, and pitching moment coef-
ficients CD, CL, and CM , respectively, are gathered in the Table 9 below. The
main-effect sensitivity indices are gathered in Table 10, while the joint sensitivity
indices are gathered in Table 11. These results are very close to the ones obtained
by the 10–th level product rule. The PDFs of the aerodynamic coefficients consid-
ered here are displayed on Fig. (20) through Fig. (22). As for Fig. (11) through
Fig. (16), they were estimated from Ns = 100, 000 evaluations of the gPC surro-
gates ĝnp and smoothing out the resulting histograms by a normal kernel density
function [40]. The means are again shown on the plots with vertical blue lines. We
finally compare on Fig. (23) through Fig. (25) (in log scale) the PDFs computed
by the three approaches considered in this work. We observe that the 10–th level
product rule (with n = 1, 000 structured sampling points) and `1–minimization
(with n = 80 randomly selected sampling points) yield comparable results, but of
course at a much lower computational cost with this latter technique.

µ σ

CD 133.33e-04 34.052e-04
CL 72.271e-02 1.6703e-02
CM -453.95e-04 32.180e-04

Table 9. Mean and standard deviation of the aerodynamic coeffi-
cients computed by `1–minimization with n = 80 random sampling
points.
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ξ1 = h/c ξ2 = M∞ ξ3 = α

CD 0.080e-01 9.893e-01 0.008e-01
CL 0.032e-01 9.549e-01 0.289e-01
CM 0.268e-01 9.722e-01 0.000e-01

Table 10. Main-effect sensitivity indices of the aerodynamic co-
efficients computed by `1–minimization with n = 80 random sam-
pling points.

ξ2ξ3 ξ1ξ3 ξ1ξ2

CD 0.022e-02 0.000e-02 0.166e-02
CL 0.031e-02 0.003e-02 1.265e-02
CM 0.007e-02 0.000e-02 0.093e-02

Table 11. Joint sensitivity indices of the aerodynamic coefficients
computed by `1–minimization with n = 80 random sampling
points.
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Figure 20. PDF of the drag coefficient CD computed by `1–
minimization with n = 80 random sampling points.

6. Conclusions

In this paper we have addressed various methodologies with relevance to the
construction of polynomial surrogates for parameterized complex processes as en-
countered in CFD problems. The present work has been more particularly focused
on the development of dedicated sampling sets in the parameter space using either
structured or unstructured grids. These techniques were illustrated with the exam-
ple of an RAE 2822 airfoil in the transonic regime considering variable geometrical
(the thickness-to-chord ratio) and operational (the free-stream Mach number and
angle of attack) parameters.

Firstly, multi-dimensional sparse cubature rules based on one-dimensional Gauss-
Jacobi rules have been used for uncertainty quantification of this two-dimensional
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Figure 21. PDF of the lift coefficient CL computed by `1–
minimization with n = 80 random sampling points.
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Figure 22. PDF of the pitching moment coefficient CM computed
by `1–minimization with n = 80 random sampling points.

aerodynamic computation. The quantities of interest are the usual drag, lift, and
pitching moment coefficients for which polynomial surrogates are sought for using
the aforementioned sampling sets as learning sets. More particularly, Gauss-Jacobi-
Lobatto points have been considered since the probability density functions of the
variable parameters have finite supports. Indeed, the engineering practice would
typically include the boundary points of the parameter space in the learning sets.

Secondly, observing a posteriori that the aerodynamic quantities of interest are
sparse in that parametric space, when projected on the multi-dimensional orthog-
onal polynomials associated to the parameters probability density functions, an
`1–minimization procedure has been applied in the framework of the theory of
compressed sensing. The latter allows to recover the expansion coefficients of the
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Figure 23. Comparison of the PDFs of the drag coefficient CD
computed by the 10–th level product rule (n = 1, 000, black
curve), the 6–th level sparse rule (n = 201, green curve), and
`1–minimization (n = 80, red curve).
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Figure 24. Comparison of the PDFs of the lift coefficient CL com-
puted by the 10–th level product rule (n = 1, 000, black curve), the
6–th level sparse rule (n = 201, green curve), and `1–minimization
(n = 80, red curve).

quantities of interest at a much lower computational cost than the sparse grids
addressed in the first approach. Unstructured sampling points are needed in this
process, selecting them randomly in the parameter space. Their number is typically
less than the dimension of the polynomial space where the surrogates are sought
for, and thus typically much less than the number of points of the multi-dimensional
sparse rules that may be used for a given level of accuracy. The `1–minimization
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Figure 25. Comparison of the PDFs of the pitching moment co-
efficient CM computed by the 10–th level product rule (n = 1, 000,
black curve), the 6–th level sparse rule (n = 201, green curve), and
`1–minimization (n = 80, red curve).

procedure is non-adaptive in the sense that it identifies both the amplitude of the
leading expansion coefficients and their order. It thus constitutes a promising direc-
tion for future developments in practical applications for more complex geometries
and flows, where adaptive strategies within the parametric space, weighted mini-
mization, or preconditioned sampling sets may be needed.
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numerical errors with non intrusive UQ methods. UMRIDA Technical Report D2.3-12(9),

Onera, Châtillon (2014).

[5] Sun, T.-C. A finite element method for random differential equations with random coefficients.
SIAM J. Numer. Anal., 16(6):1019-1035 (1979).

[6] Ghanem, R., Spanos, P.D. Stochastic Finite Elements: A Spectral Approach. Springer, New

York NY (1991).
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