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Experiments have been performed to verify power-optimized modal models of piezoelectric vibration harvesters

for microelectromechanical systems. Such harvesters can power a variety of sensors, and there have been recent

national workshops dedicated to harvesting. Detailed experimental results, including displacement histories and

electrical output, are provided over a range of frequencies and electrical loadings to comparewith (optimized)modal

models. The harvester geometry considered is that of a symmetric bimorph macroscale cantilever. Although some

experimental work for cantilevered bimorph harvesters has been published, key testing and/or device parameters

needed for model verification are missing and/or data at and near power optima (the most interesting operating

points) are not provided. Therefore, a detailed set of experiments was performed using power-optimized modeling

results to guide the testmatrix.Over the broad range of parameters tested, themodels accurately predicted all trends

and device performance away from device resonances (resonance and antiresonance frequencies). Near the

resonance frequencies, the model consistently underpredicts electrical performance, which is satisfactorily

attributed (and experimentally supported) to the well-known piezoelectric coupling nonlinearity in the large-strain

region. The data presented herein can serve as benchmark data to verify othermodeling efforts. The verifiedmodels

have been used to optimally design microelectromechanical system harvesters for commercial aircraft and

microfabrication is ongoing.

Nomenclature

Bf = modal forcing vector with elements Bf;k, kg
b = width of structure, m
C = damping matrix with elements Ckl, N � s=m
Cp = capacitive coefficient matrix with elements Cp;kl, F
c = elastic stiffness matrix with elements ckl, Pa
e = piezoelectric constant matrix with elements ekl,

C=m2

en = electrode numbering
f = frequency, Hz
i = current, A
K = modal stiffness matrix with elements Kkl, N=m
L = device length, m
M = modal mass matrix with elementsMkl, kg
m = mass per length, kg=m
Pout = power developed/extracted, W
q = charge vector with scalar value qj, C
Rl = electrical resistance, �
r = generalized relative displacement vector with

elements ri, m
t = thickness of device layer, m
V = volume, m3

v = voltage vector with elements vj, V
w = absolute displacement, m

wB = absolute base displacement, m
x = Cartesian coordinate, m
� = dimensionless time constant
" = permittivity matrix with elements "kl, F=m
�m = mechanical damping ratio
� = coupling coefficient matrix with elements �kl, N=V
� = electromechanical system coupling coefficient
� = density of device layer, kg=m3

 r = mechanical mode shape vector of elements  r;i
 v = electrical mode shape vector of elements  v;j
� = frequency ratio
! = frequency, rad=s
r = gradient operator

Subscripts

a = axial direction
ar = variable evaluated at antiresonance frequency
e = effective parameter
i = mechanical mode numbering
j = electrical mode numbering
k = matrix row index or vector index
l = matrix column index
mp = variable evaluated between resonances
n = electrode element numbering or piezoelectric element

numbering in the bimorph
opt = power-optimized variable
p = piezoelectric layer property
r = variable evaluated at resonance frequency
s = structural (nonpiezoelectric) layer property
t = thickness direction
tip = variable evaluated at tip of device

Superscripts

E = variable at constant electric field
l = material (piezoelectric) local coordinates
S = variable at constant strain
t = vector or matrix transpose
� = beam effective properties
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I. Introduction

S YSTEMS of ubiquitous, low-cost, self-organizing agents, or
nodes (distributedwirelessmicrosensor networks) have been the

research focus ofmultiple groups in recent years [1]. These networks
find application in many areas including building climate control,
warehouse inventory and supply chain control, identification and
personalization (RFID tags), the smart home [2], and structural
health monitoring (SHM). Amajor concern for these networks is the
power supply to each node [3]. The power requirement for these node
networks has been driven down and power consumption of tens to
hundreds of �W per node is predicted [2,4–6]. As a result, self-
powered nodes have become feasible and can be realized through the
conversion of ambient energy to usable electrical energy. Ambient
power sources (e.g., thermal gradients, vibration, fluid flow, solar,
etc.) have been investigated for long-term implementation of sensor
node networks and the research is reviewed by duToit et al. [7].
Harvesting mechanical vibrations is a viable source of power, well
matched to the needs of wireless sensor nodes, and is the focus of the
current research (mechanical vibrations occur pervasively in the
environment). Thiswork focuses on cantilevered resonant devices vs
the also common patch-type of harvester (refer toMoheimani [8] for
a survey of recent developments in vibration damping using
piezoelectric transducers). Specifically, a microelectromechanical
systems (MEMS) mechanical vibration energy harvester is desirable
for its small size, low cost, and on-chip integration with state-of-the-
art sensors.

An optimized, fully electromechanically coupled model has been
presented (refer to duToit et al. [7,9]). Although some experimental
work for cantilevered bimorph harvesters has been published [3,10],
key testing and/or device parameters needed for model verification
are missing and/or data at and near power optima (the most
interesting operating points) are not provided. Thus, the open
literature lacks sufficient experimental data for model verification.
This report focuses on experimental data obtained for a macroscale
cantilevered bimorph piezoelectric energy harvester. A detailed
implementation of the model (presented elsewhere) has been
included for the geometry of the test device. The implementedmodel
is verified by comparison to mechanical and electrical experimental
data so that it can be applied to device design or analysis problems.
The design of aMEMS-scale piezoelectric energy harvester has been
presented [9,11], developed with a concurrent microfabrication
process, using the verified models.

II. Modeling of Piezoelectric Vibration
Energy Harvester

A coupled electromechanical model for a cantilevered piezo-
electric structure has been presented [7,9,11], including the
optimization of the governing equations for maximum power
extraction at the resonances. Themodel is based on amodal analysis,
combined with the small-signal piezoelectric material constitutive
law. Each harvester has the following components: the cantilevered
beam structure, piezoelectric element(s), and electrodes. A proof
mass is included as it can be added to drive the natural frequency
down (as would be desired to harvest maximum available ambient
energy, for example, aircraft have maximum available energy in the
range of 0:1–1 kHz [12,13]). Two piezoelectric modes of operation
are possible for this configuration: the f3-1g mode and the
f3-3gmode. For the f3-1gmode, the strain is applied perpendicular to
the poling direction, whereas the strain is applied along the poling
axis for the f3-3g mode of operation. This analysis focuses on the
f3-1g mode of operation of a bimorph cantilever harvester because
the experimental device is operated in this mode.

For the piezoelectric bimorph harvester configuration, the active
elements can be connected in one of two ways (depending on the
poling of the elements): when the two piezoelectric elements are
poled in the same global direction, the device is connected in parallel.
When the two active elements are poled in opposite directions, the
device is connected in series. Both wiring options result in the same
power, but the series connection develops double the voltage and half

the current as compared to the parallel connection. This paper
focuses on this configuration for model implementation. The model
and optimization presented previously [7,9,11] is outlined in the next
section, before the model is adapted for the experimental bimorph
harvester connected in series.

A. Governing Equations and Optimization

In prior work, a coupled electromechanical model for a base-
excited cantilever beam with a mass at the free end is presented
[7,9,11]. The model can be obtained with an energy method
approach. The model is based on a modal decomposition of the
mechanical response of the system combined with the small-signal
linear constitutive law for piezoelectric materials. Themodel is fairly
general and has been implemented for f3-1g-mode bimorph
configurations (as herein) and f3-1g- and f3-3g-mode unimorph
configurations. A detailed analysis of the relationship between
poling direction, piezoelectric constants, and applied and developed
electric fields is included in [9]. The general multi-degree-of-
freedom (DOF) governing equations are

M �r� C _r�Kr ��v��Bf �wB (1)

� tr� Cpv� q� 0 (2)

The overhead dot indicates a time derivative, v is the voltage
developed, q is the charge, and r is the generalized relative
displacement. r is a vector whose length is determined by the number
of mechanical modes considered, whereas vectors v and q have
length equal to the number of electrode pairs. �wB is the absolute base
input acceleration, that is, the source of mechanical energy being
harvested. The mass (M), stiffness (K), coupling (�), capacitive
matrices (Cp), and forcing vector (Bf) are obtained from a calculus of
variations analysis:

M �
Z
Vs

 tr�s r dVs �
Z
Vp

 tr�p r dVp (3)

K �
Z
Vs

�
�xt 00r

�
t
cs

�
�xt 00r

�
dVs�

Z
Vp

�
�xt 00r

�
t
cE
�
�xt 00r

�
dVp

(4)

� �
Z
Vp

�
�xt 00r

�
t
et��r v� dVp (5)

C p �
Z
Vp

��r v�t"S��r v� dVp (6)

B f �
Z
L

0

m�xa� tr dxa �m
Z
L

0

 tr dxa (7)

 r is the mechanical modes,  v is the electrical modes (one for
each electrode pair), "S is the permittivity at constant stress, e is the
piezoelectric coupling constant, and the prime indicates a spatial
derivative. cE is the elastic stiffness of the piezoelectric material at
constant electric field, and cs is the elastic stiffness of the structure. �
is the density and V is the volume (subscripts p and s indicate a
property of the piezoelectric and structural elements, respectively).
Note that each mechanical mode and each electric mode (electrode
pair) corresponds to a degree of freedom. Lastly, a generalized
damping term, C_r has been added to include all sources of
mechanical damping, �m.
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When considering one beam mode (approximating the infinite
degree-of-freedom mechanical system as a single-degree-of-
freedom system) and a single electrode pair,‡ the governing
equations reduce to scalar equations. This allows for an extracted
power optimization to be performed in closed form. Because one
vibration mode is considered, the system will have a single natural
frequency. For a structure with an active/piezoelectric component,
the natural frequency depends on the electrical loading (electrical
boundary condition); in the case of the extreme electrical loadings of
short and open circuits, the natural frequency corresponds to the
resonance and antiresonance frequency, respectively. In the scalar
sensing equation, the charge can be related to the voltage through

v� Rl dqdt (assuming a purely resistive electrical load which is small
relative to the piezoelectric element leakage resistance) to obtain the
scalar governing equations. Because the structurewill generally have
more than one electrode pair (corresponding to multiple active
elements for the configuration considered here), the equations can
also be written in terms of effective electric parameters (as
determined in Sec. II.B):

M �r� C _r� Kr � �v��Bf �wB (8)

� _r� Cp _v�
1

Rl
v� 0 (9)

From these governing equations, the voltage developed and power
extracted can be calculated. The magnitudes (or half peak-to-peak
amplitude) of the voltage and power are frequently reported in the
literature [3,14,15] and this paper will follow that convention. A
closed form solution of the magnitudes for relative displacement,
voltage developed and power extracted§ can be obtained if harmonic
base excitation (wB) is assumed. The magnitude of the power is
calculated through jPoutj � jvj2=Rl:���� r

Bf �wB

����
� 1

K

����������������������
1� ����2

p
�������������������������������������������������������������������������������������������������������������������
��1 ��2� � 2�m��

2	2 � ��f1� �2g ��2���� 2�m�	2
p

(10)

���� v

Bf �wB

����
� 1

j�j
��2��������������������������������������������������������������������������������������������������������������������

��1 ��2� � 2�m��
2	2 � ��f1� �2g ��2���� 2�m�	2

p
(11)

���� Pout

�Bf �wB�2

����
� !1

K

��2�2

��1 ��2� � 2�m��
2	2 � ��f1� �2g ��2���� 2�m�	2

(12)

!1 �
���������������
�K=M�

p
is the resonance frequency corresponding to the first

mechanical mode of the structure (i.e., !r) and �� !
!1

is the

frequency ratio. �2 � �2=KCp is the system coupling term and
�� !1RlCp is the dimensionless time constant. The generalized
mechanical displacement should be multiplied by the mode shape
(which is normalized to a factor 2 at the tip) to convert it to the relative
displacement [9]. The next step is to optimize the power extracted,

which is detailed in duToit et al. [7]. The system can be analyzed at
short- and open-circuit conditions by letting the electrical load
resistance tend to zero and infinity, respectively. Two optimal
frequency ratios for maximum power generation are obtained, which
correspond to the resonance (subscript r) and antiresonance
(subscript ar) frequencies of the beam structure:

�r � 1 and �ar �
��������������
1� �2

p
(13)

The antiresonance frequency (!ar) is determined by the coupling
term. These resonant frequencies are clearly evident in the
denominators of Eqs. (10–12). Moreover, it should be noted that
when mechanical damping �m ! 0, the responses at resonances do
not approach infinity because of the electrical damping (resistor) in
the system, except for the short-circuit case (Rl � 0) �� 0) and
the open-circuit case (Rl �1) ��1). This is because no power
is dissipated through the resistor for these special cases. The power
can further be optimized with respect to load resistance to obtain an
optimal electrical load. This is achieved by optimizing the power
with respect to the dimensionless time constant � to obtain

�2opt �
1

�2

�1 ��2�2 � �2�m��2
��1� �2	 ��2�2 � �2�m��2

(14)

where �m � C=2M!1 is the damping ratio and is taken as constant in
the vicinity of!r and!ar. Noting that 2�m=�

2 
 1 formany systems/
devices, the power-optimal time constant � (or equivalent electrical
load) at the resonance and antiresonance frequencies, �r and �ar,
can be obtained from Eq. (14) as

�opt;r �
2�m
�2

(15)

�opt;ar �
�2

2�m�1� �2�
(16)

Considering �opt in Eqs. (15) and (16), it can be seen (again noting
that 2�m=�

2 
 1) that the optimal resistance for power extraction at
resonance is much less than at antiresonance (Rlopt;r 
 Rlopt;ar).
Substituting the time constants obtained in Eqs. (15) and (16) into the
power Eq. (12) (with 2�m=�

2 
 1), the following approximation is
obtained for the maximum power at both the resonant and
antiresonant operating points:

jPoutjopt;r � jPoutjopt;ar �
B2
f���������
KM
p �w2

B

8�m
(17)

This result suggests that the power extracted under optimal
conditions at the two optimal frequencies (resonance and
antiresonance, respectively) are equal. Secondly, the piezoelectric
system coupling term (�2) cancels out of the power equation under
optimal conditions, for these cases where 2�m=�

2 
 1. In fact, the
only material properties that affect the maximum absolute power
developed here are the density and stiffness (short circuit for the
active material). This is a counterintuitive result which suggests that
the specific active material used (e.g., PZT-5A vs PZT-5H—refer to
[7]) has little effect on maximum power developed (under optimal
conditions). Thus, although power is in general a strong function of
coupling [via �2 in Eq. (12)], the optimum extracted power is
independent of the coupling, provided that 2�m 
 �2, which is
generally true. � (and thus electrical resistance), voltage and current,
important variables secondary to power, are strongly dependent on
the piezoelectric properties and operating point selection.

The expressions for displacement, voltage, and power given by
Eqs. (10–12) reveal some interesting characteristics. The electrical
damping ratio �e can be obtained from the mechanical displacement
Eq. (10) by setting the mechanical damping �m equal to zero to give

���� r

Bf �wB

����� 1

K

����������������������
1� ����2

p
�����������������������������������������������������������������������
�1 ��2	2 � ��1� �2� ��2	2�2�2

p (18)

‡In the bimorph, the two electrode pairs can be reduced to a single effective
pair, as shown in Sec. II.B.

§The average power developed will be 64% of the magnitude of the power.

1128 DUTOIT AND WARDLE

D
ow

nl
oa

de
d 

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ay

 5
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.2
50

47
 



At the resonance, �� 1, this would give an equivalent damping
ratio of

�e;r �
�2�

2
��������������
1� �2
p (19)

whereas at the antiresonance frequency,��
��������������
1� �2
p

, one obtains

�e;ar �
�2

2
��������������������������������
1� �2�1� �2�

p (20)

and between the two frequencies at ���mp �
�������������������
1� �2=2

p
one

obtains �e;mp � �2=4. The midpoint (between the resonance and
antiresonance frequency) is particularly interesting as this point
provides the maximum power density (power per device operating
volume). As a rough approximation, one may add the mechanical
and electrical damping to obtain the total damping and resulting
response, but more rigorously one should go through the basic
Eqs. (10–12) and (14). It is of interest to note that for the previously
mentioned cases where 2�m=�

2 
 1, the optimum time constants of
Eqs. (15) and (16) will combine with the electrical damping ratios
above to give the relations for maximum power:

�e;r � �m and �e;ar � �m
��������������
1� �2

p
(21)

for �� 1 and ��
��������������
1� �2
p

, respectively. Between these two
frequencies at �mp, one has

�e;mp �
�2

4
and �opt;mp �

1�������������������
1� �2=2

p (22)

The increased electrical damping at �mp reflects the ability of the
piezoelectric element to damp out the beam motions when tuned to
an appropriate value of � (i.e., electrical resistance Rl). Note further

that the power-optimal time constants (resistances) order themselves
as follows (again taking 2�m=�

2 
 1): �opt;r 
 �opt;mp 
 �opt;ar.
The corresponding optimum power at �mp becomes

jPoutjopt;mp �
B2
f���������
KM
p �w2

B

�2=2�1� 2�2�m=�2�
�������������������
1� �2=2

p
	2

(23)

where the piezoelectric system coupling term, �2, is clearly
important, in contrast to the trends at the resonances [see Eq. (17) and
discussion thereafter].

B. Test-Device Specific Model Implementation

The test device is a piezoelectric bender, which has a symmetric
bimorph cantilevered structure with no proof mass at the tip (refer to
Fig. 1). The device has two oppositely poled active elements and thus
four electrodes (two pairs), which are illustrated in Fig. 2 (left). To
account for the bimorph geometry while allowing the use of the
optimization scheme, a reduction scheme is presented to compute the
effective coefficients,Cp;e and �e, for Eqs. (8) and (9). First, the effect
of the piezoelectric element orientation needs to be discussed. The
orientation of the piezoelectric element is defined by the poling of the
element. Per convention, the material local coordinate xl3 direction is
always defined positive in the direction of poling. However, for
analysis, all parameters must be analyzed in the global coordinates
�x3; x2�, which can be chosen arbitrarily. When the local coordinates
of the element and the global coordinates do not align, adjustment of
the constitutive relations are necessary. It is assumed here that the
piezoelectric element local xl3 direction is either parallel or
antiparallel to the global x3 direction. In this case, the piezoelectric
constants (e31 for the bimorph analyzed herein) simply switches sign
when the element is poled in the �x3 (global) direction.

For the series electrical connection (see Fig. 2, right), the two
elements are oppositely poled, such that in bending opposite and
equal strains above and below the neutral axis generate electric fields
that are in the same direction. Referring to Fig. 2 (left), the bottom
piezoelectric element (2), is poled in the �x3 direction and thus the
negative of the piezoelectric constant should be used to determine the
coupling term �2. The next step is to determine the effective system
coupling and capacitive parameters in terms of the individual
piezoelectric element parameters � and Cp. The device is connected
to the electrical load by shorting the two center electrodes (e2 and e3),
and connecting the top (e1) and bottom electrodes (e4) across the
electrical load. The effective circuit is presented in Fig. 2 (right)
where the piezoelectric elements are represented as simple
capacitors. From this circuit, note that v1 � v2 � v and
q1 � q2 � q. Thus, the two sensing equations [from Eq. (2)] can
be summed and rewritten as

��1 � �2�r� �Cp;1v1 � Cp;2v2� � �2q (24)

Assuming that the bimorph is perfectly symmetric, �1 � �2 and
Cp;1 � Cp;2, as well as v1 � v2 and q1 � q2. Thus, the equations of
motion [Eqs. (1) and (2)] can be written in terms of piezoelectric
element 1 parameters (v1, q1, �1, and Cp1):

M �r� C _r� Kr � 2�1v1 ��Bf �wB (25)

b 
=

 3
1.

8 
m

m

Brass shim

t =
 0

.6
86

 m
m

Bond
layers

continuous

L = 55.0 mm 8.5 mm clamping length

Fig. 1 Planform of device (top) and a cross section of the individual

layers of the device (bottom).

e4

e3

e2

e1

v2

v1

Structural Layer

P

P

+

+

_

_

+

_

Rlv

v

_

+

v2+

_

v1+

_

q

q2

q1

Series Connection

v1 + v2 = v
q1 = q2 = q

x3

x2

Bimorph Configuration: Series Connection

Fig. 2 Electrical connections: symmetric bimorph configuration (left) with oppositely poled active elements. The series connection (right) is illustrated

with a simplified equivalent electrical circuit.
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2�1r� 2Cp;1v1 ��2q1 (26)

Now, because the elements are connected in series, the charge (and
current) through each element will be the same, q� q1. The current
is related to the charge through i� dq

dt
and the derivative of Eq. (26)

with respect to time can be taken. The voltages developed across the
individual elements will add (v� v1 � v2 � 2v1) and the current is
related to the voltage across the electrical load (assumed purely
resistive) through v� iRl, where Rl is the electrical load. Thus, the
equations of motion become

M �r� C _r� Kr � �1v��Bf �wB (27)

�1 _r�
1

2
Cp;1 _v�

1

Rl
v� 0 (28)

By comparison to Eqs. (8) and (9), the effective coupling is equal
to the coupling of the individual elements, �e � �1. The effective
capacitive term is one-half the capacitance of the individual
elements, Cp;e � 1

2
Cp;1, as expected for two identical capacitors

connected in series.With these effective parameters, the equations of
motion reduce to two scalar equations and the prior optimization
scheme can be used to determine the performance of the system. The
last step is to explicitly calculate the individual active element
parameters.

Because the developed strains are opposite above and below the
neutral axis, the electric fields developed in the active elements will
be in the same direction. The corresponding electric potential varies
from 0 at the top of each piezoelectric element, to�1 at the bottom of
each element. This is captured through the form of the electrical
mode shape,  v:

 v �

8<
:
�x3��ts2�tp�

tp
for x3 > 0 �corresponding to element 1�

�x3�ts2
tp

for x3 < 0 �corresponding to element 2�

(29)

The numbering of the active elements is indicated in Fig. 2 (left).
The resulting electric fields are

E��r v �

8<
:

1
tp

for x3 > 0
1
tp

for x3 < 0
(30)

From Fig. 2 (left), it can be seen that the bottom element will have
negative piezoelectric constant e31 as the poling direction is opposite
the global x3 direction. Conversely, the top element will have
positive e31. The coupling and capacitance terms were defined in
Eqs. (5) and (6). Note that the mechanical mode shape accounts for
the proof mass contribution (if present). Refer to [7] for the modal
analysis accounting for an off-axis proof mass. Calculating these
terms for the individual elements in the current geometry for each
element, the following is obtained:

�1 � �2 � e�31 0r�L�
�
tp � ts

2

�
b (31)

Cp1 � Cp2 �
"S�33bL

tp
(32)

 0r�L� is the spatial derivative of the mechanical mode shape
evaluated at the beam tip (with no proof mass present). All the
parameters necessary for the model implementation have now been
obtained. Next the device dimensions and material properties are
obtained and an experimental test matrix developed.

III. Experimental Procedures

The experimental setup is described and a model-informed test
matrix is established to measure the relevant material properties
(such as the piezoelectric constant) and to investigate the electrical
and mechanical performance of a macroscale piezoelectric vibration
energy harvester (Piezo Systems, Inc. T226-A4-503X). The device
was operated at a set of discrete base input frequencies and the
electrical and mechanical response was measured for varying
electrical loadings. The frequencies and electrical loads were
selected to ensure both resonance and off-resonance device
operation. These two operating regimes correspond to the large-
strain and small-strain operations of the piezoelectric material,
respectively. Voltage and transverse displacement data are
documented (graphically and tabulated), in addition to the frequency
and electrical loading at which the individual tests were performed.

A. Experimental Setup

Two performance measures are of interest when concerned with
model verification: the mechanical and the electrical performances.
In the mechanical domain, the parameter of primary interest is the
lateral tip displacement which is measured with a laser vibrometer
(Polytec PSV-300H). Full mode shapes were captured with the laser
vibrometer but are not reported herein. There are two electrical
parameters from which the electrical performance of the device can
be established: the output voltage and the power generated. The
voltage output can be measured directly. The power generation is
calculated from the output voltage and knowledge of the electrical
loading. In this project, a purely resistive electrical load is used to
simplify the calculation and measurement of the power. Last, the
resonant and antiresonant frequencies are of interest as these couple
both the mechanical and electrical domains. The experimental setup
is illustrated in Fig. 3.

B. Test-Device Dimensions and Material Properties

To minimize uncertainty in the modeling, the geometric
parameters of the device, as well as material properties, were
measured whenever possible. These parameters (summarized in
Table 1) were used in the model implementation. The test device
consists of two metallized (electroded) piezoelectric elements (PZT-
5A), separated by a brass shim. The piezoelectric elements are
oppositely poled, allowing for a series connection. The brass shim
serves as the electrical connect between electrodes e2 and e3. The
nickel electrode thicknesses are negligible [see Fig. 1 (bottom)].

The device was mounted on an electrostatic shaker with an
aluminum clamp of length 8.5 mm, width �45 mm, and thickness
�5 mm (see Fig. 4). A clamping pressure of 12.5 MPa, or 1800 Psi,
was applied (the clamping areawas 8:5 mm 
 31:8 mm), whichwas
controlled with a torque wrench. The length of the clamped device
was L� 55:0 mm. The leads were connected to the electrical load
resistance as illustrated in Fig. 2 (left).
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Fig. 3 Illustration of the experimental setup.
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All practical systems have damping. The damping affects the
system response, especially near the resonances. Direct measure-
ment of the mechanical damping ratio (�m captures all nonelectrical
damping) is necessary. This measurement must account for the
damping terms associatedwith the drag-force, structural, and support
damping terms [7]. Thus, a measurement scheme was developed for
the damping during a dynamic test by comparing the base and
absolute tip displacements. At the resonance frequency, and for
short-circuit conditions (zero electrical load), absolute tip displace-
ment, wtip, is related to the base displacement through (assuming
small damping) ����wtip

wB

�����BfM
1

�m
(33)

The ratio ofBf andM is simply dependent on the mode shape, r,
and is 0.783 for the current configuration (a cantilevered structure
without a proof mass). Thus, the mechanical damping is
conveniently related to the base and absolute tip displacements

through �m � 0:7830jwB=wtipj. Using this result, a mechanical
damping ratio of �m � 0:0178 is calculated from measured base and
tip displacements during a resonance (short-circuit) device operation
when the structure is excited at 2:5 m=s2.

Next, the material properties for the device are discussed. A
detailed description of the methods used for these tests are give by
duToit [9]. The material properties of interest are the elastic stiffness
(both for the structure and the piezoelectric elements), the
piezoelectric constant, and the permittivity. The average elastic
stiffness of the device can be computed from knowledge of the
device geometry and the resonance frequency (i.e., at short circuit).
Material properties for the individual layers cannot bemeasuredwith
ease for the device geometry under consideration. Thus, some
assumptions are necessary to infer all the material properties. The
published elastic stiffness (cE�11 � 66 GPa) and density
(�p � 7800 kg=m3) for the piezoelectric elements are used. Using
these properties, the density of the structural layer was calculated as
�s � 7165 kg=m3 and the elastic stiffness of the structural layer
(brass) is 100 GPa. The piezoelectric coupling is calculated from the
relative positions of the resonance and antiresonance frequencies. A
piezoelectric constant of e�31 ��14 C=m2 is obtained, which
compares well with the expected coupling of between �12 and
�17:5 C=m2 for a beam and plate, respectively (refer to [9], p. 89).
Permittivity is inferred through capacitance measurements made
with an impedance analyzer. The published bulk value of "T33 �
1800"0 F=m is confirmed through these tests. The permittivity at
constant strain is calculated from the published value, using the
determined piezoelectric constant, e�31 and the bulk value of the
piezoelectric constant relating strain to electric field,
d31 ��190 
 10�12 m=V. The value obtained was "S�33 � "T33�
d231c

E
11 � 1500"0 F=m. These results are summarized in Table 1, and

are compared to published results where available. Using these
properties for the device, the system coupling term �2 � 0:118.
Further, the key device parameters in Eqs. (8) and (9) are
M� 9:12 
 10�3 kg, C� 0:218 N � s=m, K � 4:10 
 103 N=m,
�e ��4:57 
 10�3 N=V, Bf � 7:14 
 10�3 kg, and Cp;e � 4:30

10�8 F.

C. Modeling- and Optimization-Informed Performance Tests

From the model development and analysis presented by duToit
et al. [7,9,11], a test matrix was developed to investigate key aspects
of the predicted device response. Two prospective operating points
were identified for piezoelectric energy harvesters. For low damping
and high piezoelectric coupling, these operating points are
approximately the resonance and antiresonance frequencies,
respectively. The model predicts that the power extracted at these
operating points should be equal. Thus, to verify the model,
experimental data are required for operation at both the resonance
and antiresonance frequencies, as well as away from these
frequencies. To accomplish this goal, two tests were performed: first,
the resonance and antiresonance frequencies are determined by
exciting the system at a spectrum of frequencies and measuring the
mechanical response (via a tip-displacement measurement with a
laser vibrometer). To obtain the resonance frequency, the short-
circuit electrical condition is enforced. For the antiresonance
frequency measurement, an open-circuit condition is applied.
Second, the device is driven at a constant base input acceleration
(2:5 m=s2) at various frequencies and under varying electrical loads.
The electrical response (via resistance and voltage measurements to
calculate power) and mechanical response are obtained. This test is
used to investigate the two device operating regimes: resonant

operation (driven at either resonance or antiresonance frequency)
and off-resonant operation.

IV. Model Verification

In this section, the measurement data for the test device are
presented and compared with the modeling results. First, the
positions of the resonance and antiresonance frequencies are
compared, as are the optimal electrical loadings (the electrical

Table 1 Material properties for test device [PZT-5A bimorph from

Piezo Systems, Inc. (T226-A4-503X)]

Material property Used Published Ref.

Published properties used

�p, kg=m
3 7800 7800 [16]

cE11, GPa
a 66 66 [16]

d31, m=V �190 
 10�12 �190 
 10�12 [16]
Measured properties

Device length (as acquired),
L, mm

63.5 63.5 [16]

Device length (clamped, as tested),
L, mm

55.0 —— ——

Device width, b, mm 31.8 31.8 [16]
Piezolayer thickness, tp, �m

b 270 270 [16]
Structure layer thickness, ts, �m

b 140 130 [16]
Device mass, g 10.564 —— ——

Capacitance (constant stress),
CTp , nF

52.8 59.1 ——

e31, C=m
2a �14 —— ——

Calculated properties

�s, kg=m
3 7165 9000 [9]

"T33, F=m 1800 
 "0 1800 
 "0 [16]
Elastic stiffness, structural layer,
cs, GPa

100 105 [9]

"S33, F=m
a 1500 
 "0 —— ——

aBeam effective parameters; refer to duToit [9], p. 89.
bFrom microscopy measurements with Zeiss microscope.

Brass bond pads

Marker line, structure 
is continuous

Gravity

Fig. 4 The clamped device mounted on the electrostatic shaker: front
view, or laser scan view (left), and side view (right). The indicatedmarker

line appears on the as-acquired device and is of no structural

consequence.
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loading required for maximum power generation at resonance and
antiresonance, respectively). Next, the overall response of the system
is investigated. Consistent with the preliminary model validation [7]
to work in the open literature, the correlation of the model to
experimental results depends on the operating regime (i.e., at or away
from resonance). The off-resonant and resonant operation results
(experimental and simulated) for the system are compared. It is found
that the model consistently underpredicts the electrical performance
of the device during resonance operation. This phenomenon is
investigated experimentally and the model deviation is explained by
observed nonlinear piezoelectric coupling at larger strain. Tabulated
experimental data are provided in the Appendix to supplement the
figures.

A. Resonance Frequency, Antiresonance Frequency,
and Optimal Resistances

The first comparison between the simulation and the measure-
ments is in the position of the resonance and antiresonance
frequencies. The measured results show the resonance and

antiresonance frequencies of fr � 106:5 to 107.8 Hz and far � 112
to 113.8 Hz, respectively. This is compared to the predictions of
fr � 106:8 Hz and far � 112:9 Hz. Given that published material
properties were used for the piezoelectric material elastic stiffness,
the results for the resonance frequency agree very well. The
antiresonance frequency is a function of the elastic stiffness of the
device and the piezoelectric coupling. This experimental value was
used to calculate the piezoelectric constant e�31.

The optimal electrical loading for maximum power extraction was
determined by exciting the device at either the resonance or
antiresonance frequencies and sweeping through electrical loads by
using discrete resistors (resistance measured using standard
multimeter). The base acceleration (2:5 m=s2) was held constant
during these tests by monitoring the base acceleration with the laser
vibrometer. The measured values for maximum power were Rl;r �
11 k� and Rl;ar � 100 k�. These again compare very well with the
predicted values of Rl;r � 10:0 k� and Rl;ar � 108 k�. These
results suggests that the model captures the overall response of the
structure at and around the resonances. The next step is to compare
the predicted and measured response (including voltage and power).
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a) Rl = 4.6 kΩ b) Rl = 11.8 kΩ

d) Rl = 52.9 kΩc) Rl = 19.5 kΩ

e) Rl = 91.0 k Ω f) Rl = 135.0 kΩ
Fig. 5 Predicted vs measured power plotted vs frequency for varying electrical loads. Base acceleration is held constant at 2:5 m=s2. fr � 107 Hz, and
far � 113 Hz.

1132 DUTOIT AND WARDLE

D
ow

nl
oa

de
d 

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ay

 5
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.2
50

47
 



B. Overall Device Response

First, the overall response of the system is presented. The power is
plotted vs varying frequency ratio for different electrical loads in
Fig. 5. It is clear that there are indeed two design points,
corresponding to the resonance frequency and the antiresonance
frequencywhere the power is very nearly equal. The predicted results
are in excellent agreement during off-resonant operation (in the
small-strain regime), but there is significant deviation from the
experimental results during resonant operation. The model
underpredicts the electrical response of the system during resonant
operation. The resonant and off-resonant operating regimes are
discussed in detail in the sections to follow.

C. Off-Resonant Operation

The electrical and mechanical response of the system during off-
resonant operation is now presented. The tabulated results are
included in the Appendix for the voltage generated, the power
generated, and the relative tip displacements. The voltage data are
presented in Fig. 6 where it can be seen that the model predicts the
device electrical response very well when operated away from the
resonance frequencies (refer to Figs. 6a, 6b, 6e, and 6f). In Figs. 6a
and 6f, the device is operated well away from the resonances and the
model and experimental data agree. In Fig. 6c, the driving frequency
was the resonance frequency. At low electrical loads, the deviation

between the measured and predicted response is pronounced.
However, at higher electrical loads, the electrical loading approaches
the open-circuit condition and the natural frequency of the device
shifts to the antiresonance frequency. Thus, the device is effectively
operated away from the resonances, and the simulations and
measured results align well. The converse is also true at
antiresonance, as seen in Fig. 6d. At low electrical loads, the natural
frequency corresponds to the resonance frequency, and the device is
effectively operated away from resonance. The simulated and
predicted results alignwell there. However, at higher electrical loads,
the device natural frequency coincides with the antiresonance
frequency, and the model consistently underpredicts the electrical
response. Similar trends are observable for Figs. 6b and 6e.

When comparing the power developed, as shown in Fig. 7, the
same trends in model agreement are observable. The power is
calculated from the square of the voltage and resistance
measurements and any errors in thesemeasurements will accumulate
(especially errors in the voltage measurements). It is observed that
the maximum power developed at the resonance frequency
(�590 �W) is slightly higher than at the antiresonance frequency
(�550 �W), in contrast with the equal power predicted by the
model. This disagreement is addressed in Sec. IV.E. In Fig. 7, the
sharp increase in resistance required for maximum power between
resonant and antiresonant operation [as discussed with Eqs. (15) and
(16)] should be noted.
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Fig. 6 Predicted vsmeasured response: voltage plotted against the electrical load at various input frequencies, corresponding to both off-resonance and

resonance/antiresonance frequencies. Base acceleration was held constant at 2:5 m=s2.

DUTOIT AND WARDLE 1133

D
ow

nl
oa

de
d 

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

M
ay

 5
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.2
50

47
 



Last, the predicted and measured mechanical response of the
system is compared using the tip displacement in Fig. 8. Again, the
same trends as above are observed: good correlation away from the
resonances, underprediction around the resonances. It would be
expected that the predicted relative tip displacement at resonance
frequency should agree with the measured tip displacement at the
low electrical load since, at low electrical loads, the short-circuit
electrical condition is approached. This is not observed because the
lowest electrical load at which a measurement was taken was
4:61 k�, which is a finite and not zero (short-circuit) condition. The
mechanical damping was measured at zero electrical load (no
piezoelectric coupling) and tip displacement aligns perfectly for this
condition because the damping was determined using the measured
tip and base displacement ratio.

D. Resonant Operation

From the previous section it is clear that the simulated response
differed from the measured response at or near the resonances. This
phenomenon was investigated in more detail, as summarized in
Table 2. The device was driven at the resonance and antiresonance
frequencies, respectively, while varying the electrical load. The
driving signal magnitude was adjusted for each measurement to
ensure that the base input acceleration was kept constant
( �wB � 2:5 m=s2) as before. Note that the power densities calculated

are based on both the device volume (stationary) and the operating
volume.

The electrical loadwas varied from 4:6! 167 k�. The simulated
and measured electrical responses are shown in Fig. 9. It is clear that
the model predicts the trends and locations of the power maxima
correctly, but the measured voltages are consistently high as
compared to the simulation. Because the power is a function of the
voltage squared, the errors in the power predictions are more
substantial. It is interesting to note that again the simulation and
measurements are in good agreement away from resonance (at high
electrical loading the natural frequency of the device corresponds to
the antiresonance frequency).

The simulated and measured results were also compared at the
antiresonance frequency. As with the resonance frequency
operation, the model consistently underpredicts the performance of
the device. However, away from the antiresonance frequency (for
low electrical loading), the correlation between the modeled and
measured performance is again excellent. The measured maximum
power at the antiresonance frequency was slightly lower than at
resonance. This was contrary to predictions that showed equal
maximum power at the resonance and antiresonance frequencies
should be obtained. Overall, the model predicts the response of the
device at resonances well (e.g., the optimal electrical loadings and
trends), except that the magnitudes of predictions are consistently
low for power and voltage.
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Fig. 7 Predicted vs measured response: power plotted against electrical load at various input frequencies, corresponding to both off-resonance and

resonance/antiresonance frequencies. Base acceleration was held constant at 2:5 m=s2.
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E. Unmodeled Piezoelectric Response

From the above discussion it is clear that the model predicts the
response of the device at off-resonant operation very well, but
generally underpredicts the electrical andmechanical response at the
resonances. This has been ascribed to the linear small-signal model
used to model the piezoelectric effect (in the constitutive relations).
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Fig. 8 Predicted vsmeasured response. Relative tip displacement plotted against electrical load at various input frequencies, corresponding to both off-

resonance and resonance/antiresonance frequencies. Base acceleration was held constant at 2:5 m=s2.

Table 2 Predicted vs experimental result for test device during

resonant operation

Resonance
frequency

Antiresonance
frequency

Parameter Measured Predicted Measured Predicted

Tip displacement, �m 151 120 140 114
Footprint area, cm2 17.5 17.5 17.5 17.5
Device volume, cm3 1.19 1.19 1.19 1.19
Operating volume, cm3 1.72 1.61 1.68 1.59
Voltage, V 2.63 2.05 7.04 5.68
Power, �W 586 356 545 354
Power density, �W=cm2a 33.5 20.3 31.1 20.3
Power density, �W=cm3b 493 299 460 298
Power density, �W=cm3c 341 221 324 223

aCalculated from the footprint area of a single device.
bCalculated from the volume of a single device.
cCalculated from the operating volume of a single device.
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Fig. 9 Predicted vs measured response at the resonance frequency

(107 Hz): voltage (top) and power (bottom) plotted vs electrical load for

constant base acceleration. Note that at high Rl , the device natural
frequency is at the antiresonance frequency and thus the natural

frequency is not excited.
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As an example, Crawley and Anderson [17] experimentally
documented the deviation of the piezoelectric constant, d (which is
inversely proportional to e), from the linearized model at varying
mechanical loadings (applied strain). It was shown that the
piezoelectric coupling d deviates by as much as a factor of 70%
increase at 100 � strain from the small-strain response. From the
optimization analysis, one can show that under optimal conditions,
the voltages developed at the resonance and antiresonance
frequencies, respectively, are proportional to the piezoelectric

coupling constant. This result can be obtained by evaluating Eq. (14)
at �r and �ar (assuming �m 
 1) and substituting into Eq. (11):

jvjopt;r �
1

2j�jBf �wB and jvjopt;ar �
�opt;ar
2j�j Bf �wB (34)

� is proportional to e according to Eq. (5). During resonant
operation, the mechanical response (tip displacement) of the device
is much larger than off-resonant operation, and the developed strains
in the piezoelectric elements are higher. At the base of the structure
and on the outer surfaces (farthest point from the neutral axis), a
maximum strain of �5 � strain at Rl � 4:61 k� and 70 Hz,
compared to �50 � strain at Rl � 11:8 k� and at the resonance
frequency at the same location. To investigate the nonlinear effect of
strain on the piezoelectric coupling coefficient qualitatively, the
device was excited at resonance and antiresonance frequency and the
input base acceleration was varied. During the resonance frequency
test, the electrical loadingwas kept constant atRl � 11:93 k� and at
Rl � 100:2 k� for the antiresonance test. The results are given in
Fig. 10. The small-signal piezoelectric constitutive law accurately
predicts the electrical response for small mechanical loading
(corresponding to a small base acceleration and small strain), but at
larger loadings/strains the electrical response deviates significantly
from the expected value. For a given input acceleration, the voltage
developed is higher than expected, indicating an increase in
piezoelectric coupling. One might expect better results when a more
appropriate value for the piezoelectric coupling is used, but it should
be noted that the constant was obtained from the relative positions of
the resonance and antiresonance frequencies, which were measured
at small base excitation levels (on the order of 0:04 m=s2) and
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Fig. 10 Voltage developed at resonance (top) and antiresonance

(bottom) frequencies for varying base input accelerations. Simulated

values use the small-strain (linear) piezoelectric coupling coefficient.

Table A1 Experimental results for 70, 95, 107, 113, 125, and 150 Hz tests for varying electrical loads

Resistance, k� 4.61 11.91 55.90 100.1 156.2 200.4

Frequency � 70 Hz, �wB � 2:5 m=s2

Voltage, V 0.074 0.179 0.515 0.594 0.621 0.629
Power, �W 1.20 2.73 5.01 3.87 2.86 2.37
Absolute tip displacement, �m 29.3 28.4 26.8 26.3 26.0 26.0
Base displacement,a�m �12:9 �12:9 �12:9 �12:9 �12:9 �12:9
Relative tip displacement, �m 16.4 15.5 13.9 13.4 13.1 13.1

Frequency � 95 Hz, �wB � 2:5 m=s2

Voltage, V 0.268 0.626 1.270 1.346 1.377 1.374
Power, �W 15.62 33.28 30.47 19.90 14.03 11.31
Absolute tip displacement, �m 49.1 46.8 36.9 35.2 34.8 36.4
Base displacement,a �m �7:02 �7:02 �7:02 �7:02 �7:02 �7:02
Relative tip displacement, �m 42.1 39.8 29.9 28.2 27.8 29.4

Resonance frequency � 107 Hz, �wB � 2:5 m=s2

Voltage, V 1.514 2.627 3.428 3.492 3.572 3.565
Power, �W 499.5 586.3 222.0 134.0 94.46 76.13
Absolute tip displacement, �m 208.0 151.0 82.6 77.0 76.6 75.9
Base displacement,a �m 0.00 0.00 5.64 5.64 5.64 5.64
Relative tip displacement, �m 208.0 151.0 88.2 82.6 82.2 81.5

Antiresonance frequency� 113 Hz, �wB � 2:5 m=s2

Voltage, V 0.533 1.339 4.992 7.039 8.435 9.093
Power, �W 61.86 152.3 470.7 544.5 526.6 495.2
Absolute tip displacement, �m 65.1 67.9 108.0 140.0 164.0 175.0
Base displacement,a �m �4:96 �4:96 0.00 0.00 0.00 0.00
Relative tip displacement, �m 60.1 62.9 108.0 140.0 164.0 175.0

Frequency � 125 Hz, �wB � 2:5 m=s2

Voltage, V 0.208 0.514 1.448 1.667 1.749 1.762
Power, �W 9.40 22.45 39.58 30.55 22.64 18.61
Absolute tip displacement, �m 20.4 21.2 27.2 29.2 30.0 30.1
Base displacement,a �m 4.05 4.05 4.05 4.05 4.05 4.05
Relative tip displacement, �m 24.5 25.3 31.3 33.3 34.1 34.2

Frequency � 150 Hz, �wB � 2:5 m=s2

Voltage, V 0.097 0.230 0.507 0.542 0.554 0.558
Power, �W 2.07 4.51 4.85 3.23 2.27 1.87
Absolute tip displacement, �m 6.50 6.69 7.47 7.59 7.64 7.65
Base displacement,a �m 2.81 2.81 2.81 2.81 2.81 2.81
Relative tip displacement, �m 9.31 9.50 10.3 10.4 10.5 10.5

aFor lowdamping, the absolute tip and base displacements are approximately in phase below the resonant frequency, approximately out of phase above the resonant frequency, and have an
approximate phase shift of 90 deg near the resonance frequency (where the relative displacement is large compared to the base displacement) [9].
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therefore small strains. Thus, the small-signal linear piezoelectric
constitutive model is not sufficient to describe the device response
during resonant operation.

The contribution of piezoelectric nonlinearity in the large-strain
regime at the base input acceleration of 2:5 m=s2 used in our tests
quantitatively supports the strain nonlinearity as the source of
voltage and power underprediction at the resonances. The voltage
and power underprediction (0.5 V and 200 �W) at resonance
(Rl � 11:93 k�) in Fig. 9 correspond to the difference measured in
Fig. 10 (top, for resonance) at 2:5 m=s2:0:5 V, which corresponds to
a 150% increase in power (200 �W).

Second, the nonlinearity also explains the observed lower
maximum power developed at antiresonance (as compared to
resonance); the model predicts these values should be equal [see
Eq. (17) and discussion] using the linear small-strain law. At
resonance, the maximum strain developed in the device is 10%
higher than at the antiresonance frequency. Thus, a higher
piezoelectric constant can be expected (due to the nonlinear
relationship between applied strain and this constant). The voltage is
proportional to the piezoelectric constant, and the power is
proportional to the voltage squared. Thus, this difference in strain can
easily translate into the 3% decline in piezoelectric constant required
to result in a 10% variation in the power developed.

Thus, piezoelectric large-signal vs small-signal constitutive
response adequately explains the model underprediction at the
resonances. Structural nonlinearity is not an explanation, given the
magnitude of the tip displacements at the resonances.

V. Conclusions

Experimental results for a piezoelectric vibration energy harvester
are obtained and presented here, focusing on resonant vibrating,
cantilevered devices that can be implemented inMEMS sensors. The
experimental investigation is necessitated by the lack of
comprehensive experimental results in the open literature, suitable
for model verification that addresses the key operating points of
resonance and antiresonance. A previously developed coupled
electromechanical model is implemented for the experimental
device. The obtained experimental results are used to verify the
developed coupled electromechanical model and a useful design tool
is obtained. The device response trends are captured through the
model, though the electrical performance near the resonances is
underpredicted. This is due to the nonlinear response of the
piezoelectric material. The verified model has subsequently been
applied to the design of a low-level, low-frequency MEMS-scale
piezoelectric energy harvester [11] with the knowledge that the
predicted optimal power will be very conservative due to the
unmodeled nonlinear piezoelectric response. Future work on this
research topic includes the fabrication and testing of an optimally
designed microfabricated piezoelectric vibration energy harvester
for aircraft SHM systems, as well as the investigation of alternative,
compliant configurations for low-frequency vibration energy
harvesters.

Appendix

Experimental results for the test device are presented in tabulated
form inTableA1. The signs of the base displacements account for the
correction necessary to calculate the relative displacements [9].
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