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Abstract

Engineering design can be thought of as a search for the best solutions to engineering problems.
To perform an effective search, one must distinguish between competing designs and establish
a measure of design quality, or fitness. To compare different designs, their features must be
adequately described in a well-defined framework, which can mean separating the creative and
analytical parts of the design process. By this we mean that a distinction is drawn between
identifying novel design concepts, or architectures, and the process of detailing or refining existing
design architecture. In the case of a given design architecture, one can consider the set of all
possible designs that could be created by varying its features. If it were possible to measure the
fitness of all designs in this set, then one could identify a fitness landscape and search for the best
possible solution for this design architecture. In this chapter, the significance of the interactions
between design features in defining the metaphorical fitness landscape is described. This highlights
that the efficiency of a search algorithm is inextricably linked to the problem structure (and hence
the landscape). Two approaches, namely, genetic algorithms and robust engineering design are
considered in some detail with reference to a case study on improving the design of cardiovascular
stents.

1 Introduction

1.1 Search domains

The term blue print continues to be used, figuratively at least, long after the original device ceased
to be widely used in engineering design.A blue print represented an expectation that the designer’s
intent would be faithfully reproduced in the finished artefact. It was not necessarily a plan of how
to make the object but might indicate why any modifications to the original design had been made.
Invariably these revisions of the blue print would be based on actual performance of the object and
thus improved designs were often the result of trial-and-error. That is to say, the design process
was heuristic.
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346 Design and Information in Biology

‘Blue prints’ for every living thing on earth, uniquely encoded in the form of deoxyribonucleic
acid (DNA), represent not only component parts but also their interrelationships within the total
organism. Under changing circumstance, genetic code is said to adapt in order to survive over suc-
cessive generations. This idea has been employed in engineering design process, notwithstanding
the great differences in the respective timescales, economies and technologies between nature and
engineering.

The description of an engineering system, embodied by its design, can be made on two levels:
the basic operating principle of the system, i.e. its specific technology and then, within that
technology, particular configurations of design features. Decisions made in the design process at
both these levels determine achievement, or otherwise, of successful function (the solution) for
a given application (the problem). For example, an innovative concept for a mechanism will not
be successful if inappropriate materials and geometry are chosen, and conversely a rather crude
mechanism can perform successfully if the detail is right. Parallels can be drawn with nature
such as in the design of an eye. At the technology level, design could relate to whether the eye is
of a refractive (e.g. human) or reflective (e.g. lobster) configuration. At the feature level, design
could relate to the values of lens dimensions and pupil shape that are assigned when the operating
principle is refractive. However, there are lower limits on the dimensions of a retinal eye, as at very
small scales it cannot function, i.e. there are parametric constraints. This example again highlights
that engineering design operates in two broad domains. Designs can be categorized in terms of
the technology used and then, within each technology, competing designs can be thought of as a
collection of features that are defined by design parameters, also called design factors.

In engineering at least, the process of designing a solution that utilises new technology is very
different to that for deciding design parameter values. The former is usually addressed as a problem
of creativity and the latter can be formulated as a mathematical search problem. Figure 1 illustrates
this distinction between design in the technology domain and design in the feature domain.

In other words, the description of an artefact and the process by which its description is arrived
at are inextricably linked. This means that an integrated engineering design process must con-
currently create an operating principle and also identify workable design factor values, yet it
must employ different methods in the two domains.

Systematic mathematical search tools are practically limited to design in the feature domain due
to the difficulty of expressing creativity in a symbolic language. However, there are systematic
methods for proposing viable technologies that use knowledge of successful design solutions
(e.g. patents) to focus the search on a small number of operating principles for evaluation [1].
Essentially, these methods still rely on the creative ability of the designer to make a successful
interpretation in the context of the problem. In this chapter we shall operate in the feature domain
and consider it as a mathematical quest for improvement.

Feature domain 
(Frame layout) 

Technology domain 
(Cycle) 

Human power Lean-burn power 

Solar power 

Frame #2 Frame #3 Frame #1 

Figure 1: Abstract illustration of search within both technology and feature domains.
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Figure 2: Design space for three design factors with binary levels.

Mathematical search is viewed to take place within a design space defined by the number of
design factors and the set of possible values for them, rather than all possible solutions. This
defines the dimension and limits of the design space. For example, a system described by three
design factors XA, XB and XC , each having two possible values (e.g. 0 and 1), could be represented
as a point in a 3D design space, shown on a unit cube in Fig. 2.

An efficient search will rapidly converge on improved solutions regardless of the starting point.
An effective search will yield significant improvements over existing designs. This implies that a
good solution can be found without testing all possible solutions to the problem.

The above example describes a problem with discrete design factors. Each factor can take one
of two possible values, 0 or 1 and consequently there are 23 = 8 possible solutions. In practice,
design factors can be either discrete or continuous (e.g. take any value between 0 and 1). In the
latter case, the set of possible solutions ceases to be finite. The distinction between discrete and
continuous factors may not appear to be important, but in fact it can have a significant effect on
how the design space is searched. This will be discussed in more detail later on in Sections 2 and 3.
Design factors such as the length or weight of a component may be continuous, whereas the choice
of material for the component may be a discrete factor. However, even in this simple case, the
factors can be difficult to classify. The component may only be available in a fixed number of
lengths and weights and, conversely, if the material is defined by a factor such asYoung’s modulus,
it may be possible to consider the material specification as a continuous factor. In all cases it is
necessary to define the factors to accurately represent the problem to be solved. It may be the
case that it is possible to manufacture customized components, allowing factors to be expressed
as continuous, but this is an additional cost over and above the use of standard sizes. This needs
to be taken into account when searching the design space for acceptable solutions.

1.2 Why use mathematical models?

Major issues in the design of any engineering system include cost, quality, reliability and demand.
In this context, system optimisation can mean many things: minimising cost, improving reliability
and so on. Each of these objectives will almost certainly be in conflict, and seeking design
improvements that simultaneously satisfy them can therefore be a complicated process. Figure 3
outlines an example design scenario.

Systems that exhibit complex behaviour are often expensive to test during product develop-
ment. This can immediately rule out a trial-and-error approach.An alternative strategy is to develop
mathematical models of the system in order to gain understanding of the relationship between
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Figure 3: An example design scenario.

the design and its performance. Mathematically, the system is represented by an equation of
the form:

Y = f (X). (1)

The challenge here is to find f, in other words to find out how the inputs to the system (represen-
ted by X) affect the outputs of the system (represented by Y ), as indicated in Fig. 3. There are
two basic approaches to characterising f : physical modelling and empirical modelling. The latter
approach is known as a black box method as the details of the system are treated as entirely
unknown. A third way of characterising f, based on elements of both physical and empirical
modelling, is known as grey box modelling.

1.2.1 Physical modelling
Complex engineering systems are generally designed from the principles of physics. This leads
to mathematical models, often using differential equations, representing the system. An example
of this is the analogue electronic circuit design where characteristic equations exist for each
component of the circuit and these are combined to form banks of differential equations that
need to be solved to deduce the ideal behaviour of the system. The word ideal is important here
as these models are only approximations to the real system, and need refinement if they are to
reflect non-ideal behaviour such as manufacturing variation and losses due to electrical resistance,
friction or other, possibly unforeseen effects. These physical models are very important as the
mathematical theory behind them forms the basis of computer-aided engineering software such
as finite element analysis, computational fluid dynamics, and electronic circuit analysis. Software
that incorporates this type of analysis is referred to as a simulator, as it can be used to define a
physical system and simulate its behaviour on a computer.
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1.2.2 Empirical modelling
Physical systems can be tested to gather information about their behaviour. The field of experi-
mental design is concerned with the design of such tests in order to maximise the information
gained while minimising the size of the test. The test involves observing the system at a carefully
chosen set of design points, each point representing a particular set of design factor values.
Referring back to Fig. 3, this means observing response features Y, made on the system f while
varying the factors X . Once an experiment has been conducted, mathematical models are sought
that fit the data gathered. These models are approximations of f, sometimes written as f̂, and can
be used both to estimate the relationships between factors and responses and to predict the response
at untried factor values.

1.3 Building mathematical models

In general, whilst they both employ mathematics, physical and empirical modelling strategies
have historically been separate but are becoming more closely linked via grey box modelling. For
example, a computer model can be used to provide structural information on systems as a starting
point for experimentation [2], and estimates of variation in design factors and responses can be
used to make physical models more accurate.

In some cases, mathematical models of systems can themselves be complex, and systems are
often modelled with powerful computer simulators as described. Complex computer simulations
of systems can however be very costly in terms of computation time and in this case black-
box modelling can be used to construct simpler empirical models that are faster to evaluate,
this is known as the field of computer experiments. Such models are referred to as emulators,
meta-models, low-fidelity models or surrogates and their main characteristic is that they trade off
accuracy for speed (Fig. 4).

There is a close relationship between modelling and optimisation. The availability of mathe-
matical models of complex systems opens the possibility of fully exploring the design space of
all feasible combinations of factors to determine the best design, but even for small problems the
dimension of the search space can be high and optimisation can still be difficult.

Physical 
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Empirical
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Computer Simulation
using physical models

Y X

X

X 
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Computer
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Figure 4: System modelling summary.
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When considering the optimisation of a system or process there are several key decisions to be
made about the nature of the search that will ultimately determine the level of success achievable.

1. Parameterisation: The system must be described in terms of design factors, X (the para-
meters), so that mathematical methods may be used for experimental design, modelling (both
physical and empirical), and optimisation. The nature of each factor needs to be defined:
whether they are discrete or continuous variables, the operating range, etc. This is perhaps the
most important aspect of the formulation of a search and optimisation strategy as it determines
the set of all possible design solutions.

2. Experimental design:Any empirical model of the system needs information on how the system
responds to changes in design factor values. In neural network terminology this is referred to
as the training set. There may be additional constraints on any experiments to be conducted
on the system such as non-regular or non-feasible parts of the design space (constraints on
certain combinations of factor settings).

3. Modelling strategy: Any approximate model of the system needs to be accurate.
4. Objectives (or fitness functions): The objective, or combination of objectives, sometimes

referred to as the fitness function, is a statement of the goal of the optimisation process.
A typical example would be to maximise strength whilst minimising weight. Even in this
relatively simple case one can see that there is a trade-off to be made.

5. Numerical optimisation: Optimisation of the system (or a model of the system) can be either
global or local in nature. Local methods seek to improve on previous solutions by chang-
ing factor values gradually, while global methods explore the design space more fully by
making large changes to factor values. The two strategies can be combined by, for example,
performing several competing local searches each at different starting points. Many optimi-
sation algorithms exist, and choosing the right one for a given problem requires knowledge
of the complexity of the problem. For example, are the functions to be optimised linear or
non-linear? Similar consideration must be given to any constraints on inputs and outputs of
the system, which will also have a functional form.

All the above decisions on how to conduct the search combine to determine the set of possible
solutions that will be found. In fact it is the objectives that drive the optimisation process and
determine which are the most suitable methods to use. In the simple example of the strength/weight
trade-off, it may be desirable to explore sets of possible design solutions that place different
emphasis on the two objectives so that a light and weak solution is compared with a heavy and
strong one. If this is the case then it is preferable to have models of the system that can be adjusted
quickly and efficiently so that the solution space can be explored effectively.

Alternatively, it may be the case that the overall objective is well known and a direct search of
the system is appropriate. In this case modelling may be unnecessary, particularly if evaluations
of the system are inexpensive.

1.4 Design robustness and variability

An important part of the quality of any design is the ability to cope with unwanted variation or
noise. This may be in the form of variation in factor values, variation in manufacturing conditions
or variation in the use environment. In the context of design improvement, robustness means the
ability of a design to maintain performance in the face of such noise. In order to understand how
noise affects a particular design, one needs to first characterise the noise and then see how the
design behaves when subjected to it. Unfortunately this can significantly increase the burden of
testing, as design factors need to be varied on both a macro-scale, to search for an improved
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design, and a micro-scale, to identify how small changes in factor values affect performance.
More detailed discussion of noise and robustness in design can be found in [3].

In terms of mathematical search, the design improvement problem changes from a deterministic
problem, where exact factor values yield exact responses, to a more probabilistic formulation,
where factor values are defined by statistical distributions and propagated through the system.
Single response values then become response distributions that need to be optimised. Such a
response distribution is most simply characterised by taking its mean and variance. Where pre-
viously the design improvement goal would be to maximise the response, now the goal might be,
for example, maximising the mean of the response and minimising the variance of the response,
this particular problem formulation is referred to as the dual response method [4].

The scenario just described, to minimise the variation in performance for a given level of input
noise, is known as a parameter design problem. If one could imagine having control over the
amount of noise the system is subject to, for example, by specifying more accurate (and more
costly) components, an alternative problem formulation could be to find a design that meets given
targets of response variation for minimum cost. This is known as a tolerance design problem.
Modern search strategies recognise that parameter design and tolerance design are linked and that
good design solutions can only be reached by considering them simultaneously.

2 Fitness landscapes and interactions

2.1 Feature domains and design performance

The previous section introduced the concept of the feature domain in order to characterise compet-
ing engineering design solutions. A design is decomposed first into features and then into design
factors that define the design space. Each design can then be thought of as a point in the design
space, which represents the full set of possible design solutions associated with the specified
engineering problem. In order to compare different designs, specific performance characteristics,
or responses, must be defined such as weight, strength, power output and so on. These responses,
taken together, describe the overall fitness of the design for its intended purpose. If one could
imagine knowing the full set of performance characteristics for every design in the design space
then this would define the performance space, representing the same set of design solutions from
the perspective of design performance, rather than design factor values. Figure 5 describes this
for the simple case where there are two design factors, {xA, xB}, and two responses, {yA, yB}.

Figure 5: Design and performance spaces.
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Of course it is easy to visualise such a case when there are only two design factors and two
responses. However the concepts described are still valid for more complicated examples and
can serve to describe techniques such as parameter design and tolerance design, mentioned in the
previous section, as well as other design methods such as design centring and yield optimisation
that we will not mention further here.

2.2 Fitness for multiple purposes

Beyond three dimensions, the limitations of visualisation mean that diagrams such as that pre-
sented in Fig. 2 can only provide a partial glimpse of n-dimensional design space. Representing
performance requires an additional dimension. Therefore, in practice, attempts to plot design
space search are abandoned for abstract mental images and instead simplified visualisations are
used to plot performance against a subset of one (or two) design factor(s) or perhaps another per-
formance objective. Indeed most engineering problems have more than one response to satisfy,
i.e. they are multiple objective problems.

Satisfying multiple objectives is a challenge faced by organisms too, as we shall see. Invariably,
due to interdependencies multiple objectives conflict with each other to the extent that as we
increase satisfaction of one objective this typically results in decreasing satisfaction with the
other objectives (Fig. 6).

Therefore compromise is usually inevitable for design confined to the parameter domain. Ignor-
ing an improved concept design as a means of settling the conflict, trade-off is thus inevitable
between multiple objectives and in parameter design two approaches are generally employed:

1. Selecting one of the main objectives and incorporating the others as constraints [5].
2. Employing a general ‘portmanteau’ unifying objective or utility function [6].

The utility function approach is often preferred for engineering robustness as it enables sensi-
tivity analysis whilst in some cases with the former approach there is no feasible region of design
space remaining after constraints are applied. The desirability function [7] is one such utility
function. It transforms or maps each response into a desirability variable and then combines them
geometrically into an overall desirability, D, which is effectively a continuous function of the
responses. Thus a multivariate problem is expressed as a univariate one.

In biology, the overall performance of an organism is expressed as its fitness, in terms of
its ability to survive and reproduce [8]. Fitness can be viewed as a utility function measuring
survivability or level of adaptation. This level of adaptation can be likened to the elevation of a
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Figure 6: Two performance objectives plotted against a design factor.
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Figure 7: Theoretical fitness landscape.

landscape (Fig. 7) in which the peaks are populated by the higher living organisms. Here design
factors and responses are combined in a single plot to indicate how adjusting the value of one
factor can change the fitness, which is composed of response values.

This fitness landscape is a mathematical concept, not a literal terrain, but this vivid metaphor
can be usefully manipulated. Imagine that the landscape is elastic and at the location for any
particular organism the terrain deforms when the living conditions or the fitness of a contingent
organism such as a predator, prey or parasite changes. Thus fitness has been termed a ‘red queen
effect’ [9], described as a never-ending race merely to sustain fitness level amidst co-adapting
competition. This notion is seen to apply to economic systems. Taking this further we envisage
that due to advances of competition the desirability (e.g. its utility function) of a product can
diminish whilst its performance remains unchanged.

Quality in human technology has an aspect roughly analogous to biological fitness [10] and
stress has been laid on quality loss functions [11] as a powerful measure of utility in engineering
problems. The general idea being that the ideal target product performance is one that incurs zero
loss to society in terms of the cost of, for example, environmental damage, maintenance, injury,
inconvenience or some other expense not directly related to the intended function of the product.
We now consider how the co-adaptation analogy might combine with the quality loss function in
dealing with the multiple objective optimisation of diesel engines.

The primary intent of a diesel-cycle internal combustion engine is to produce useful tractive
power. On each cycle of the engine most of the fuel is completely burnt and produces useful energy.
The remainder of the fuel is not completely burnt and therefore pollutants, such as particulate
(smoke) and unburnt hydrocarbon (HC) emissions, are present in the exhaust gases. In both cases
the quality loss function associated with these pollutants is ‘smaller-the-better’, as shown in Fig. 8.
Loss is assumed to be a quadratic function of each pollutant, such that L = ky2, where y is, say, the
mean output of a pollutant, k is a coefficient that specifies the quadratic curve and L is measured
in monetary units (e.g. British pounds (£)).

Engines from two rival manufacturers, A and B, are depicted above in relation to each other
for the two pollutants (i.e. two objectives): smoke (S) and hydrocarbons (HC). The performances,
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yS and yHC, of each engine can be measured fairly straightforwardly. However, we cannot precisely
define the quality loss functions for S and HC because the actual loss incurred for a given emission
of pollutant, in terms of damage to health and property, reduced fuel economy and so on, is
incalculable.

LHC = kHCy2
HC, (2)

LS = kSy2
S. (3)

But as competition contributes to the notion of a fitness landscape for organisms, so can compe-
tition help to define the quality loss functions in this case, as follows. Using the best performance
(benchmark, ‘BM’) for each pollutant, an arbitrary loss value, say £LBM, can be assigned to both
and thus kHC and kS, the coefficients of the two quadratic functions, determined from rearranging
eqns (2) and (3) respectively. Both pollutants are correlated as they are products of not-completely
burnt fuel, this enables a portmanteau objective to be calculated for each engine performance,
such as the overall ‘fitness’, total loss, L = LHC + LS. This loss changes if a new benchmark
performance is reached or if a difference in the cost weighting between S and HC emerges. There
is a trade-off relationship between the two pollutant emissions and determining quality loss func-
tions by virtue of competitive benchmarking penalises products that stand still [12]. Thus the
‘loss landscape’ for each pollutant behaves as if it were elastic, changing according to competitive
forces.

According to Goodwin [13] more sophisticated descriptions of landscapes tend to move away
from the use of such non-generic fitness functions and towards language such as attractors and
trajectories, attempting a unification of biology, mathematics and physics through the study of
complexity.

2.3 Multi-criteria decision making

Instead of combining individual objectives into a single fitness function, an alternative approach
is to keep each performance measure separate. This leads to the idea of a performance space,
described in Section 2.1, where it is then possible to show sets of competing design solutions.
This is useful in trade-off situations where one objective is in conflict with another. In order to
rank competing solutions, the idea of Pareto optimality [14] can be used, which involves the
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Figure 9: Pareto boundary.

concept of dominance, where one solution is said to dominate another if one or more of its
objective function values are better, and none are worse. This is graphically described in Fig. 9
which shows four design solutions, Y (1), . . . , Y (4), for a problem where the aim is to minimise
two design objectives, yA and yB, and Y represents some combination (or function) of the two
objectives, Y = f ( yA, yB).

The shaded area in Fig. 9 represents the region dominated by solution Y (2), therefore solution
Y (4) is said to be dominated by Y (2) as its values for both design objectives are worse. The dotted
curve shows an estimate of the Pareto boundary or Pareto front, which represents the set of all
non-dominated solutions. In this simple example, the Pareto front is assumed to be convex, but
this may not necessarily be the case. Armed with such information, a designer would be in a good
position to decide how to trade off one objective against another in the search for the design factor
values which represent the best design solution.

2.4 Coupling and search

The key to understanding the scope of natural selection theory depends on understanding the
structure of the fitness landscape explored by an adapting population. For example, whether it
is smooth and single-peaked, rugged and multi-peaked, or just completely random. One must
also consider the mechanism by which the population adapts. The fitness landscape of Fig. 7 is
composed of two design factors and a fitness function, all of which can vary their values on a
continuous scale. If a population is described in binary terms, such as a genetic encoding, then the
design space becomes discrete and the relationship between one design and its nearest neighbour
in design space is not well defined. One could say that the geometry of the search space has been
weakened or even destroyed and therefore search strategies need to cope with this.

Genotype spaces are vast. Consider organisms with N different genes each of which has two
versions, or alleles, 1 and 0. For a haploid population, such as that of E. coli, there are apparently
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3000 genes [9]; therefore genotype space is 23000 or 10900. For a diploid population such as in
plants that may have 20,000 genes then genotype space is 22000×22000 = 1012000. Therefore let
us consider walks across simpler fitness landscapes.

A genotype with three genes, N , each having two alleles, A, has AN = 8 possible genotypes –
{000}, {001}, {010}, …, {111}. Each genotype is ‘next to’ those that differ by changing any
one of the three genes to the alternative allele value. Figure 10 shows fitness values arbitrarily
bestowed on each genotype. The arrows point uphill to fitter neighbours.

An adaptive walk on this random fitness landscape only moves to a fitter variant from amongst
the three immediate neighbours. In some cases these walks end at local peaks, e.g. {101} and
{110}, as shown in Fig. 11.

In this simple example there is one global best peak and two local peaks but in a large genotype
space the number of local peaks on a random landscape is 2N/(N + 1). Hence for N = 100 there
are more than 1028 local peaks. Thus adaptive search on random landscapes is difficult because
finding the global peak by uphill search becomes almost impossible. Searching the entire design
space could feasibly exceed even the most generous estimates of the age of the universe unless
more intelligent methods exist. Figure 10 also highlights the lack of geometry of problems posed
in this way as the position of each genotype is plotted arbitrarily (in this case to echo the shape
of the fitness landscape in Fig. 7).

From any initial arbitrary point on a landscape, adaptive walks reach local peaks in a number
of steps. The expected length of such walks to local peaks are very short (lnN) as any initial point
is very close to one of the local peaks, which trap the adapting population and prevent further

(5)
{100} 

(9)
{101}

(3)
{111} (4)

{010}

(9)
{110} 

(12)
{011}

(3)
{001}

(2)
{000}

Figure 10: Genotype space (showing fitness values of each genotype).
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Figure 11: Fitness landscape showing walks of genotype space.
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Figure 12: Effect of epistasis on the ruggedness of a fitness landscape.

search for distant higher peaks. Moreover, the higher the fitness, the more difficult it is to find
improvement, as each step upward requires twice as many options being searched. However, real
landscapes are not random, they are correlated, i.e. nearby points tend to have similar heights.

Gene epistasis or epistatic coupling is where the contribution of one allele of one gene to overall
fitness of an organism depends in complex ways on the allele of other genes. Thus a network of
epistatic interactions might exist. The NK model [9] captures such networks, where K reflects the
degree to which nodes on the landscape interact. K = 0 represents total independence between
nodes. K = N − 1 represents the highest possible value of K where all nodes interact with each
other. In a more general sense, when 0 ≤ K ≤ N − 1 then the K genes assigned to interact with
each gene are chosen at random. In effect K alters the ruggedness of the landscape. When K = 0
we have a single smooth-sided peak and as K is increased – genes are more interconnected – more
conflicting constraints exist and so the landscape becomes more rugged with more local peaks
(Fig. 12).

Many rugged peaks occur because the best states of the shared epistatic inputs for one gene
will be different than for its partner and thus in conflict – there is no way to satisfy both as much
as if there was no cross-coupling between their epistatic inputs. In other words, as K increases
there are so many constraints in conflict that there are a large number of compromises rather than
a single best solution. As landscapes become more rugged, adaptation finds it more difficult to
make the crossing. K is like increasing the compression of a compressed computer program. With
K = 0 changing any gene can only change the genotype fitness by at most 1/N . Therefore the side
of the peak is smooth and from any random starting point the number of directions uphill reduces
by only one with each step. This dwindling of options is in sharp contrast to random landscapes
where the number of uphill options reduces by half at each step. Gradualism works only on such a
smooth single-peaked landscape. Thus as K increases the number of peaks increases, ruggedness
increases, peak heights drop and locality of search increases. More interestingly, at moderate
degrees of ruggedness, the highest peaks can be selected from the greatest number of critical
positions, i.e. high peaks have the largest surrounding slopes [9].

3 Some methods for design improvement

Here we describe and compare in some detail two methods for searching the design space for
improved designs. The first method, robust engineering design, is built on the traditional field of
design of experiments and has both a classical and a more modern approach. The second method
defines the search problem in more biological terms and uses genetic algorithms to search for
improvement.
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3.1 Robust engineering design

Robust engineering design (RED) seeks to make engineering products robust to variation in both
manufacture and use. A key aspect of RED is to understand the significance of each design factor
on system performance through a highly structured search (Fig. 12). Exposing the design to
representative noise conditions and subsequently observing its behaviour are fundamental to the
method. The design space can be searched directly, using physical prototypes or indirectly using
a representative model such as a simulation model. Some parallels can be drawn with the search
in genetic algorithms (GA) (see Section 3.2) but in general, for RED, very careful selection and
arrangement of design factor values is required.

Figure 13 shows three main stages in the RED methodology: experimentation, analysis and
design improvement, or optimisation. Experimentation involves choosing the type and size of an
experimental design plan that will be used to evaluate different designs. Depending on the type
of experiment chosen, the analysis stage interprets the results and provides information on the
relationship between the design factors and the responses. This information is carried forward to
the optimisation stage, where improved designs are sought. Choosing and executing an experiment
appears, on the face of it, to be the first step in applying RED methods. However, this can only
be done once the method of design improvement has been decided. The first step is in fact to
determine the design objectives. This will define how each design solution is judged and will
point to the type of analysis method and therefore the type of experiment required.

There is no single method for performing RED; rather, there are many different methods that
can be used in the three stages described. One important distinction between different methods
is whether a model is built to describe the relationship between factors and responses as part of

Experiment:
structured sample of

Design Space

Population of designs in
Feature Domain

Analysis:
(i) basic factor effects
(ii) modelling

Design Improvement

More
data

Figure 13: General RED procedure.
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the analysis stage (see Fig. 4, Section 1.3). This is sometimes referred to as model-based RED.
Another important distinction for experimentation is whether, for model-based RED, the structure
of the analysis model needs to be specified beforehand (model-based experimental design), or
whether the data collected is used to determine the model structure (model-free experimental
design).

3.1.1 ‘Classic’ RED
In relation to eqn (1), y = f (x), the ‘classic’ approach to RED assumes that a simple additive
relationship exists between the design factors (x) and some transformation, η, of the response
( y). That is, classic RED is ‘model first’ in that usually a first- or second-order polynomial is
budgeted to search the design space. An additive relationship is represented in eqn (4) for three
design factors:

η = g1(xA) + g2(xB) + g3(xC). (4)

It is important to note here that, in general, additivity with respect to η does not imply additivity
with respect to y [15]. ‘Additivity’ is so central to classic RED, that the avoidance of interactions
or cross terms (e.g. xAxC) between the chosen design factors is a dominant issue because they can
render the assumed model unreliable.

3.1.1.1 Orthogonal arrays An orthogonal array (OA) is a predetermined matrix commonly
used for coding the design factor levels to be used in a set of classic RED experiments (Table 1).
It is the experiment plan.

Each column of an OA represents the values a particular design factor will take. The allocation
of levels in each column is balanced with the other columns such that between any two columns
each factor level is paired an equal number of times with the levels of the other columns and
vice versa. The effect of this orthogonality is to search design space efficiently and also enable
the average value of η for each design factor level to be compared. Data is collected for each
experiment under discrete conditions of noise. Figure 14 illustrates the nature of the search and
also highlights how each design factor is tested evenly against changes in the levels of other design
factors.

From Table 1 it can be seen that, in terms of η, the average effect of design factor A at level 0
is calculated, according to the first column, as the mean η of the first two experiments (eqn (5)):

ηA0 = 1
2 (ηα + ηβ ), (5)

and so on for all factor levels yielding six mean design factor effects, which are all the permutations
of the two-value combination means from ηα , ηβ , ηγ , ηδ (illustrated in Fig. 15). For comparison

Table 1: Simple OA (L4).

Design Design Design High Low Data transformation
factor A factor B factor C noise data noise data (unspecified)

Experiment α 0 0 0 y11 y12 y13 y14 y15 y16 ηα

Experiment β 0 1 1 y21 y22 y23 y24 y25 y26 ηβ

Experiment γ 1 0 1 y31 y32 y33 y34 y35 y36 ηγ

Experiment δ 1 1 0 y41 y42 y43 y44 y45 y46 ηδ
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Figure 14: Balanced search of 3D-design space by OA.
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Figure 15: Mean design factor effects.

with Fig. 5, experiment δ could be described as A1 B1 C0 or design {110}; therefore, ηδ could
be expressed as ηA1B1C0 or more simply η110.

Consider predicting the value of ηjkl for an untried configuration xAj, xBk and xCl, where j, k
and l signify the levels of each design factor. From eqn (4) each of the three terms, e.g. g1(xA),
can be viewed as a contribution to η, and from Fig. 15 this can be developed into eqn (6):

ηjkl =
(
ηAj − µ + µ

3

)
+

(
ηBK − µ + µ

3

)
+

(
ηKl − µ + µ

3

)
= ηAj + ηBk + ηCl − 2µ. (6)

This is of more direct use with the OA for prediction than the more familiar general form of
eqn (4).

There is an underlying assumption inherent to the OA/additive prediction model combination
expressed in the above equations, i.e. the effects associated with all of the OA columns account
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for the system performance within acceptable confidence limits. In other words, any significant
design factors or interactions not handled by the columns that vary will corrupt the predictive
power of the classic RED method. Therefore design factors are carefully selected, grouped and
allocated to an OA in accordance with the additive model being used. In effect, these design factor
assignments centre on the issue of interactions.

3.1.1.2 Interactions Dealing with interactions in classic RED has two schools of thought. One
school [11] advocates saturating the OA columns with design factors or combinations of factors.
These assignments are judged to be independent of each other. The other school [16] allows some
columns to be unassigned, in effect allocating these degrees of freedom to tracking the effects of
potential interactions.

Modifying the general form of the simple additive model (eqn (4)) to include an interaction
term:

η = g1(xA) + g2(xB) + g3(xC) + g4

(
xA

xC

)
. (7)

This now means that with an incremental change in xA, say 	xA, the contribution to η, say 	η

is also dependent on xC and the coefficients g1, g3, and g4. Indeed, the net effect of 	xA on 	η

might be in the opposite direction to that without the interaction (eqn (4)). In such cases this is
termed negative or antisynergistic interaction, and if not included in the experiment plan, renders
predictions unreliable for yielding improvement. Where interactions boost the effect of the design
factors involved this is termed positive or synergistic interaction. The term superadditivity has
also been used to describe the effects of design factors boosted by interactions.

Interactions may, to some extent at least, be an artefact of the scale, units or metric, or distribution
of the original data. In such cases the interaction is considered to be transformable and a data
transformation, expressed as η above, is considered to offer the potential to improve additivity
[11, 17, 18]. Thus we seek a suitable transformation (eqn (8)).

η = h( y). (8)

3.1.1.3 Transformations In classic RED it is desirable, when relevant, to differentiate between
factor levels that most influence mean effects (location effects) and factor levels that minimise
variability (dispersion effects). Therefore the transformations used often seek to reflect both the
mean response and the variability in the response and are sometimes termed noise performance
measures.

In statistical terms data transformations attempt to enhance three statistical properties of the
data [16, 18, 19]:

1. independence between mean and variance of each experimental trial,
2. simplicity of the mathematical model and
3. normality of error distribution.

Non-linear transformations such as η = log( y) dominate those used, but have little effect unless
the ratio ymax/ymin of all the data is greater than two or three.

The signal-to-noise ratio (SNR) is a transformation that has been widely used in classic RED
although it does not escape statistical criticism [15, 19]. But it does help to simplify the analysis
and roughly demonstrates the statistical properties above. Moreover, it is linked to quality loss
functions such as eqn (2).
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For a set of quality characteristic readings, y1, y2, . . . , yn, the average quality loss, Q, is:

Q =
(

1

n

)
{L( y1) + L( y2) + . . . + L( yn)} = 1

n

n∑
i=1

yi. (9)

For a ‘nominal-is-best’ (NB) problem, where M is the target value and the mean is µ, it can be
shown that when n is large, Q approaches:

Q = k{(µ − M)2 + σ 2}, (10)

i.e. the quality loss has two components:

1. k(µ−M)2, an accuracy quality loss proportional to the deviation of the mean from the target;
2. kσ 2, a precision quality loss proportional to the mean squared deviation about the mean.

If Q is adjusted to bring the mean (µ) on target (M) then this first component will disappear
and the second will be modified by the adjustment. This represents a two-stage optimisation
philosophy [9], which is also addressed later in this chapter in model-based RED. The adjustment
is to increase each reading by M/µ, which adjusts Q to the quality loss after adjustment, Qa:

Qa = k

([
M

µ

]
σ

)2

= kM2
(

σ 2

µ2

)
. (11)

Attention need only be focused on (µ2/σ 2), since for a given quality characteristic, k and M
are constants. This is the SNR, and as σ 2 is the effect of noise factors and µ2 is the desirable part
of the data, then it can be viewed conceptually as the ratio of power of signal to power of noise.

Therefore, minimising Qa, the quality loss after adjustment (or sensitivity to noise), is equivalent
to maximising the inverse measure of variability proportional to mean, (µ2/σ 2). It also converts
what is in effect a constrained optimisation problem into an unconstrained one as there is only
one metric to optimise rather than two, however this conversion does not allow for a thorough
search of solution space, as described in Section 2.2. In view of Table 2, a log10 transformation
could improve the additivity of the main effects, although generally this is sometimes applied
thoughtlessly and is of questionable validity when it is. Thus, the SNRNB based on eqn (11) is
expressed in decibels as:

η = SNRNB(dB) = 10 log10

(
µ2

σ 2

)
. (12)

3.1.2 ‘Model-based’ RED
The goals of model-based RED are the same as for classic RED. The difference addressed here
is that experimentation is used to build and validate an empirical model of the system that will
then be used for engineering design. In the previous section there was some discussion about
interactions and their effect on designing experiments. In this section, interactions are considered
more generally as part of the experimental design and modelling problem.

We have already discussed the motivation for modelling when direct evaluation of the target
system is not possible or feasible given constraints on time and resources. In the case of robust
design the motivation for modelling is even stronger as we shall see.
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3.1.2.1 Definitions of robustness The subject of robustness in an engineering sense can cover
a wide range of concepts such as the ability of a system to cope with unexpected inputs or
failure of subsystems or components. The Santa Fe Institute, a research organisation committed
to understanding complexity, has a working list of definitions [20]. We repeat here one definition
of robustness which can be embodied by the following constrained optimisation problem:

1. attain a target level of performance, subject to
2. minimising variation around that target.

This is related to the SNR of the previous section, but by redefining the problem in this way
we retain generality over the problem and can look to the many algorithms available in numerical
optimisation to help solve this type of constrained optimisation problem, including GA, global
random search algorithms and local optimisation methods such as steepest descent. Of course
these algorithms require many evaluations of the system at different settings in their search for
optimal solutions, which is why emulators that are fast and accurate statistical models of systems
are important in this field.

3.1.2.2 Building accurate emulators By definition, the target system is complex and expensive
to evaluate. Complexity in this case means that the relationships between the design factors
themselves may be non-linear and in turn their relationship to the systems response(s) may also
be non-linear.

In the process of designing an experiment, an early decision to be made is whether to specify
the emulator model ahead of performing the experiment or not. If this is possible then it is natural
to ask the following question: ‘Given a particular emulator, and a fixed number of trials, what is
the best experimental design?’

By ‘best experimental design’ we mean a plan that will extract the maximum amount of infor-
mation for a given cost, in this case the number of trials in the experiment. This leads to the field of
optimal design, where certain characteristics of experimental design and model are optimised in
order to maximise the efficiency of the experiment. For example, given the following polynomial
emulator:

y = φ0 + φ1xA + φ2xB + φ3xAxB + φ4x2
A.

We could then ask the question: ‘What is the best 7-point design to identify this emulator?’
We can start with a set of seven points placed randomly with values in the range [−1, +1]

and optimise them with respect to the chosen desirable characteristic to find the best experiment
design. Figure 16 shows the results using D-optimal design theory, where the determinant of the
information matrix is maximised [21].

As we have discussed, it is generally the case that there is some knowledge of the system,
but often not enough to confidently rule out possible interactions between factors. Indeed, it is
often the case that even if there is some knowledge of interactions, these assumptions should be
tested via experimentation. So, given that it may not be possible, or even desirable, to specify a
particular model in advance of experimentation, the question to be asked becomes: ‘What is the
best experiment design for a fixed number of trials, given no prior assumptions on the model?’

In this case, the best experimental design is one that fills the design space in the most efficient
way. Two standard space-filling designs are latin hypercube sampling (LHS) designs [22], and
lattice designs [23]. These experimental designs seek to distribute observations evenly throughout
the entire design region. The rationale is that we do not know anything about the behaviour of
the system in the design region, so the best we can do is sample this space as evenly as possible.
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Figure 16: An example D-optimal experiment design.

Other strategies, such as sequential design methods, may also be useful as information gathered
by an initial experiment can be used to direct subsequent observations.

Using space-filling designs leads to the use of alternative emulator types, often referred to as
spatial models, which seek to characterise the response surface in terms of the distance between
observations.

These models do not require any assumptions on the relationships between factors to be made
prior to experimentation, and are generally more adaptive than polynomial models. Figure 17
shows an example LHS design with seven points and two factors.

From this brief discussion one can see that there is a strong relationship between experimental
design and modelling.

3.1.2.3 Emulator validation Once constructed, the emulator models need to be validated to
assess their accuracy. If it is not possible to conduct further trials, then statistical methods such as
generalised cross-validation can be used to estimate the accuracy of the emulators [24]. Otherwise
additional experiments can be conducted at previously untried settings and the results compared
with the equivalent emulator estimates to estimate prediction accuracy.

3.1.2.4 Using emulators for RED After conducting experiments and performing the emulator
building and validation process, the emulators can be used for RED. They can be evaluated directly
at any point within the design region. In addition sensitivity analysis on the emulators themselves
can be used to provide estimates of variability. The main advantage is that this can be achieved
quickly, with an evaluation taking seconds, or even less, to perform. This means that designers are
more inclined to perform what-if analysis, and a systematic search of the design space (e.g. using
a global optimiser) will be more likely to find a globally optimal solution to the design problem.
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Figure 17: An example LHS design.

3.2 Genetic algorithms

GA are founded on the theory of ‘survival of the fittest’ combined with the information exchange
processes of natural genetics [23, 24]. This information exchange, which is structured yet pseudo-
random, forms the basis of the search method. GA rely upon the assumption that in nature, complex
non-linear relationships between design factors have to be processed efficiently. Therefore the
system under investigation is considered to be a black box in which there are only two aspects of
interest, namely the coding of the design configuration and its performance or ‘fitness’. The GA
procedure is illustrated in Fig. 18.

The starting point is an initial random sample population but too small a sample size risks the
GA converging at a local optimum. Fixing of operator values in a GA is difficult as it depends
upon problem type, population size, coding and other issues. Thus, wide ranges of values are
quoted in the literature [25, 26].

For brevity, let us consider a simple example. An initial sample in a simple design experiment
comprising four two-level design factors could be coded as shown in Table 2.

Reproduction progresses typically in terms of giving the design configuration (string) with a
higher fitness a greater role in spawning a subsequent generation until fitness values converge at
a maximum value.

3.2.1 Matching
One method of matching is to allocate a higher probability of contribution to a dominant string
based on its percentage of the total fitness for the generation (‘sample’ in Fig. 18), as shown in
Table 3.
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Figure 18: General GA procedure.

Table 2: Initial random GA coding.

Design Design Design Design
factor A factor B factor C factor D Fitness

Experiment 1 0 1 1 0 31
Experiment 2 1 0 1 0 76
Experiment 3 1 1 1 1 48
Experiment 4 1 1 0 0 104

Table 3: Initial random GA coding with matching probability values.

Design Design Design Design
factor A factor B factor C factor D Fitness % of total

Experiment 1 0 1 1 0 31 12.0
Experiment 2 1 0 1 0 76 29.3
Experiment 3 1 1 1 1 48 18.5
Experiment 4 1 1 0 0 104 40.2

259 100.0
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Table 4: Crossover of the GA coding.

First generation (parents)
A B C D

Experiment 2 = 1 0 | 1 0
Experiment 4 = 1 1 | 0 0

Second generation (offspring)
A B C D

Experiment 2′ = 1 0 | 0 0
Experiment 4′ = 1 1 | 1 0

Strings selected for reproduction are entered into a mating pool. In Table 3, experiments 2 and
4 would have a relatively high probability of forming a mating pair based on their superior fitness.

3.2.2 Crossover
Crossover tends to pass on desirable traits. A position along the string is chosen as a crossover
point, say in between B and C in Table 5. Codes on either side of this crossover point are then
swapped between the mating pair, as indicated in Table 4 below.

3.2.3 Mutation
This plays a secondary but important role in producing a ‘random walk’ through design space by
virtue of an occasional alteration of the value of a design factor.

For example, if the first offspring in the second generation above underwent a random mutation
of design factor A then perhaps Experiment 2′ = {0000}. The incidence of mutations is generally
limited to the order of between one per thousand and one hundred per thousand crossover transfers.

In general, further generations would be evaluated until the improvement in fitness converged to
the desired level.As the generations unfold it enables the identification of successful combinations
of design factors to be identified. These schema or building blocks can then be fixed, which focuses
subsequent searches of design space.

3.2.4 Schemata and epistasis
Comparing the code for Experiment 2 and Experiment 4 in Table 3 reveals that two alleles are
common to both, namely, A1 and D0. This ‘coadapted’ set of alleles can be an indication of
significant epistasis (interaction) between the two design factors.

A schema is a template incorporating a metasymbol, ‘∗’, to represent all the strings that contain
the epistasis in question, i.e. {1**0} for this case. Furthermore, building blocks are particularly
fit, short schemata and play an important role in the GA. The matching operator tends to be biased
towards building blocks that possess higher fitness values thus ensuring their representation.
Crossover and mutation have the ability to promote new building blocks but this tends to diminish
with the crossover of similar strings. Building blocks tend to increase exponentially as a proportion
of the sample population as the search continues – a fact apparently unique to GA and called
implicit parallelism. Tracking the development of the best schema provides an estimate of the
rate of the convergence of the GA.

Thus coding of interactions, i.e. building blocks, is critical to the performance of the GA. For
example, simply placing the crossover between interacting alleles will destroy a schema.
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Table 5: Crossover of the GA coding with dominance.

First generation (parents including reserved diploid code)
A B C D

Experiment 2 = 1 0 | 1 0
1 –1 | –1 1

Experiment 4 = 1 1 | 0 0
–1 0 | –1 0

Second generation (offspring including reserved diploid code)
A B C D

Experiment 2′ = 1 0 | 0 0
1 –1 | –1 1

Experiment 4′ = 1 1 | 1 0
–1 0 | –1 0

3.2.5 Diploidy and dominance
A diploid code is based on the double-stranded chromosome of DNA as opposed to the single
strand of haploid organisms, which tend to be relatively uncomplicated life forms. The additional
strand provides a mechanism for remembering useful alleles and allele combinations.

Effectively the redundant memory of diploidy permits multiple solutions to the same problem
to be carried along with only one particular solution expressed. This helps the diploid population
to adapt more quickly, particularly to changes in environment over time, compared with haploid
coding.

Dominance identifies which allele takes precedence (is expressed) in genotype–phenotype
mapping. This mapping should be allowed to develop.

A three-alphabet or triallelic scheme, −1, 0, 1 combines allele information and dominance
mapping at a single position (Table 5). Here 0 dominates −1 and 1 dominates 0.

Comparing Table 5 with Table 4, the resultant code for offspring Experiment 4′ is {1111}
instead of {1110} due to the reserved allele D1 dominating D0. In addition, the reserved status
operator shields such alleles from harmful selection in a currently hostile environment. A famous
example is the peppered moth where the original white camouflage for lichen covered tree trunks
was held in abeyance whilst a black form dominated in areas where trees had been darkened by
the industrial revolution.

Mutation places a ‘load’ on the adaptive plan through its random movements away from the
optimal configuration. Therefore it is desirable to keep mutation rate as low as possible, consistent
with mutation’s role of supplying missing alleles and without affecting the efficiency of the
adaptive plan. Under dominance a given minimal rate of occurrence of alleles can be maintained
with a mutation rate that is the square of the rate required without dominance. In other words, the
robustness of search is enhanced by dominance.

3.3 Comparing model-based RED and GA for the design of cardiovascular stents

3.3.1 Background
It is common for human arteries to become blocked (a stenosis) by disease that can severely
restrict blood flow to vital organs. Mechanical cage-like devices, known as cardiovascular stents,
are often inserted to dilate these blockages and restore the blood flow. Unfortunately, without
the intervention of drugs there is a significant risk that a stented artery will become re-blocked
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Figure 19: Top: Guidant/ACS Multilink™ stent; bottom: Palmaz Schatz PS153™ stent [27].

(a restenosis). Numerous investigations have identified the flow pattern over the stent to be a key
factor and as a consequence elaborate stent patterns have been designed for less disruptive effects
on the blood flow. The two successful stent patterns in Fig. 19 can be seen to differ quite markedly,
which raises the question ‘Are there better untried stent pattern designs?’

Experimenting with new stent designs in live patients is not only a sensitive subject but it is
also very difficult to gather flow measurements. In vitro experiments are more workable but are
also time-consuming and costly. Therefore computer simulations are an attractive option in order
to test a large number of stent patterns.

A reasonable first approximation is to model say a 3 mm-diameter artery as an idealised cylinder,
however the ratio of overall size to important stent detail, typically 30, severely limits mesh
discretisation in the computational fluid dynamics (CFD) model (Fig. 20).

We can simplify this model in two ways in order to improve this meshing. Firstly, assuming
that the stent pattern is repeating, the model can focus on a single segment of the pattern (Fig. 21).

Secondly, as the stent diameter is much larger than the thickness of material it is made from,
then we can construct a flat model of the partial stent (Fig. 22).

Comparing Figs 20 and 22, the mesh discretisation and hence the fluid flow detail can be
observed to be much finer in the partial model for similar computer memory allocation.

3.3.2 Parameterisation for computer experiments
Stents employ a variety of patterns, some elaborate, and the inference is that there are thousands
of potential designs. In order to systematically explore the range of possibilities using computer
models we must ‘parameterise’ the pattern, i.e. identify a number of key features or design factors
that sufficiently capture the scope of stent design. Continuing our simple approach we can describe
the generic repeating stent pattern using five design factors, namely:

1. Strut thickness: The thickness of the material from which the stent is cut and having a range
of 0.08 mm to 0.10 mm.

2. Strut section ratio: Expressed as the ratio of width to thickness, ranging from 1 : 1 to 1.5 : 1.
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Figure 20: CFD mesh discretisation for full 3D-stent model of PS153™ [28].

Figure 21: Partial model of PS153™ stent cut from a full stent [28].

3. Pattern skew: See Fig. 23, defined by the relative position of the peak within one pitch
(distance 1.0). Thus a value of 0.5 defines a symmetrical curve and 0.9 produces distinct
asymmetry.

4. Repeating pattern: Specifies whether a longitudinally adjacent stent segment is merely a copy
or a mirror image of the existing segment, i.e. two levels.

5. Shape order: Defines the degree of curvature of a segment. Two levels were used.
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Figure 22: CFD mesh discretisation for partial model of stent.

0.5

0.9

1.0

Figure 23: Range of pattern skew.

Repeating pattern and shape order for a symmetrical pattern are illustrated in Fig. 24. The
pattern on the left has a sharper ‘1st order’ shape curve and is mirrored, whilst that on the right
is a smoother ‘2nd order’ shape curve copied longitudinally. Note that a copied pattern requires
a link for structural integrity.

Noise factors were also considered in the model. Firstly, the degree of strut embedding in the
artery wall, which has the effect of reducing the strut thickness in the CFD model. Secondly, the
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Figure 24: Effect of repeating pattern and shape order [28].

Table 6: Chromosome encoding of stent design.

Strut section ratio Strut thickness Pattern skew Copy Order

0 1 1 0 0 1 1 1 0

flow inlet angle to the partial stent model characterises the different flow conditions a stent design
will experience depending upon patient and location.

Flow velocities or wall shear stresses in a 3D-flow field need to be summarised succinctly in
order to quantitatively assess the performance of each stent design. We devised a scalar quantity
that averaged wall shear stress over the whole surface, termed dissipated power [28] that was
inspired by an observation that the diameter of arteries as they branch into smaller arteries do
so according to minimisation of energy losses rather than a conservation of total area. Thus a
minimum value for dissipated power was sought.

3.3.3 Genetic algorithms
Table 6 summarises the alleles used in the GA ‘chromosome’ for encoding stent designs. The
two alleles used for both strut section ratio and strut thickness have the capacity to represent four
values but only three are required. Therefore incorporating a dummy level renders the fourth value
in the allele sequence equal to the third. With this encoding the number of unique stent design
combinations possible is 288.

With such a short chromosome length and a high simulation cost, the GA parameter settings used
in order to avoid extreme local convergence were a population size of 10, crossover probability
of 0.75 and mutation probability of 0.02. In our search 11 generations passed before convergence
(Fig. 25), involving 20 mutations and 40 crossovers. A total of 27 unique designs were tested
under four noise conditions (a total of 108 CFD simulations), covering approximately 10% of the
design space available.

The stent design solution at convergence is defined as shown in Table 7.

3.3.4 Model-based RED
Following on from Section 3.1.2, a model-based RED approach using an emulator. This requires
the design and noise factors to be continuous parameters and so the two discrete design factors,
shape order (1st order) and repeating pattern (mirror), were fixed at the values already confirmed
to be the best in initial studies. Thus only 12 trials were necessary (Table 8) in order to predict
the response for any set of values for the three design factors and two noise factors.
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Figure 25: GA convergence [29].

Table 7: ‘Optimum’ design resulting from GA.

Parameter Value

Strut section ratio 1 : 1
Strut thickness 0.08
Pattern skew 0.5
Repeating pattern Mirror
Shape order 1st
Dissipated power (W2) 92.25 × 10−6

Table 8: Experimental plan – continuous factor setting [30].

Run no. Skew Thickness (mm) Width ratio Embedding (%) Inlet angle (degree)

1 0.65 0.087 1 36.36 60
2 0.57 0.089 3.55 7.27 0
3 0.79 0.093 1.73 21.82 10.91
4 0.72 0.095 2.45 50.91 54.55
5 0.54 0.1 2.09 43.64 32.73
6 0.9 0.098 3.91 58.18 27.27
7 0.68 0.091 4.64 14.55 43.64
8 0.86 0.096 2.82 65.45 21.82
9 0.5 0.08 1.36 0 16.36

10 0.83 0.082 4.27 72.73 5.45
11 0.76 0.084 5 29.09 38.18
12 0.61 0.086 3.18 80 49.09
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Figure 26: Emulator main effects plot (response values in W2) [30].

Table 9: ‘Optimum’ design resulting from RED.

Parameter Value

Strut section ratio 1 : 1.5
Strut thickness 0.08
Pattern skew 0.518
Repeating pattern Mirror
Shape order 1st
Dissipated power (W2) 91.07 × 10−6

The emulator is combined with a global optimiser in order to determine the values for the three
design factors that yield the lowest value for the sum of squares of the dissipated power at the
four noise factor settings. Assuming the same treatment for all four discrete factor settings this
equates to a maximum of 12 × 4 = 48 CFD simulations.

The results plotted in Fig. 26 show the main effects of the factors on the response and it can
be seen that the inlet angle noise factor and the strut thickness design factor both have non-linear
effects, which is of interest in identifying design solutions that are robust to noise.

The optimum configuration (Table 9) is very similar to that found by the GA but has a slightly
better performance.

3.3.5 Discussion
GA and RED treat noise and robustness differently. The use of two levels of noise (high and low)
for the GA immediately assumes that noise has a linear effect on the design response, whereas
the model-based RED shows that inlet angle has a non-linear effect.

The GA treats continuous design factors as discrete, which restricts the search for an improved
design and does not enable an understanding of how the design factors affect the response.
However, RED treats the continuous factors as continuous and searches a larger space of designs
as a result – but discrete factors must be considered separately. In addition RED provides insight
into the design problem through analysis, and this may aid the designer in understanding the
design problem and help in finding improved design solutions.
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(a)

(b)

Figure 27: Comparison of the two ‘optimum’ designs. CFD performance (dissipated power):
(a) GA = 92.25 × 10−6 W2; (b) RED = 91.08 × 10−6 W2.

Both the GA and the RED searches found improved designs, the RED design giving slightly
better results (Fig. 27).

It is also interesting to note that the GA search required 27 × 4 = 108 CFD simulations, whereas
the RED search required a maximum of 12 × 4 = 48 CFD simulations. In this medical engineering
example, the stent pattern has to accommodate variations in artery geometry between patients.
A more dynamic solution, if it were possible, would adopt whatever shape necessary in order to
minimise disruption to the flow for each patient.

A large design space is produced by the few design factors considered. However, neither GA
nor RED can search technology options, rather they are parameter searches for the improvement
of an existing working principle, in other words adaptation. The GA search converged effectively
within a few generations although choosing appropriate values for mutation and crossover was
an additional uncertainty in configuring the search.

These studies both highlight some of the challenges involved in automating the redesign process
and the importance of incorporating noise into the design process more generally. If sources of
noise are not taken into account, then an improved design will not necessarily be robust to them
and may fail as a result. The amount of time and resources available to the designer strongly
influences the search method. In this regard, the RED method is more efficient as it required
less design evaluations than the GA approach, and also achieved a marginally better result. The
method of coding a design and the choice of performance measure are critical to the success of
any strategy for design improvement. The use of dissipated power as a measure inspired by nature
and solely used for improving the design seems to work well.

4 Summary

The powers and limitations of the theory of natural selection are not fully understood even 140
years after Darwin’s thesis. How stripes and spots appear is not explained by natural selection
[13], it merely suggests that once there the pattern will stay if it offers an advantage. The popular
image of natural selection, tirelessly sifting for useful variations among random mutations as the
primary source of order, has in extreme cases led to a belief in gene survival as the principal driver
above that of the host species. Goodwin [13, 31, 32] insists that the gene’s eye view cannot be
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complete as some aspects of an organism’s form persist in spite of natural selection, not because
of it. In the early 20th century, Thompson [33, 34] raised the point that form was not selected,
it was inevitable, an argument not inconsistent with Darwin’s. Neither of these statements are
‘Lamarckian heresy’, i.e. the theory that evolution is a response to the environment. However,
whilst Thompson was unable to persuade most of his peers of the importance of form and pattern
formation, they have begun to remerge in the past two decades as an identifiable field of study.

The explosion in computer power has helped theoretical ideas about patterning that are dif-
ficult to test experimentally and the study of complex natural systems has begun to benefit
engineering design. Kauffman [9] highlights two limitations to neo-Darwinian theory without
self-organisation: Firstly, some systems change their behaviour massively with minor changes
to detail. Secondly, accumulation of minor improvements does not always hold. For example,
a maximally compressed computer program has no redundancy and therefore it is very fragile
to change. Hence starting with a long program becomes progressively more difficult to com-
press with an evolutionary search because as redundancy is squeezed out there are fewer and
fewer clues as to where to search next. Not only that but a minimal program cannot be found
by searching every possible configuration, as it could take aeons. Thus redundancy appears to
be an essential element in assembling complex systems by adaptive search, and the processes
of adaptation and product development are seen to be deeply similar. Therefore design factors,
objective function(s) and search methods are intimately linked on the fitness landscape topology,
and competition effectively renders the landscape elastic. Adaptive walks progressively worsen
on the more rugged landscapes that result from strong interactions between design factors. This
helps to explain why complex adaptive systems appear never to reach an endpoint.

What does this mean for the process of designing complex engineering systems?
Mechanisms of robustness are very different between nature and conventional engineering;

this is an issue of complexity. Engineering systems have tended to improve robustness through
added complexity, which therefore produces new sensitivities. This approach to robust design will
persist whilst we wait for the science of complexity to mature. Non-equilibrium may be more
prevalent in engineering systems than we realise. Therefore more consideration should be given
to the use of data transformations in design experiments to reveal hidden pattern. For example,
phase space plots in determining design factor levels dynamic systems or including a term for the
rate of entropy production for dissipative systems in key performance indicators. For optimising
complex systems, not only is it impractical to search the entire design space but the true best
design remains an unknown and so improvement is often a sufficient description and a realistic
goal under changing circumstances, and that is why the two words are used interchangeably in
engineering.

Which search methods should be employed in engineering design?
It is tempting to see the relevance of our favourite theorems in a complex problem but the no free

lunch theorems (NFL) [35] show that the average performance of any pair of algorithms across
all possible problems is identical. This means that if the structure of a problem is not incorporated
into a search algorithm then there are no formal assurances that it will be more effective than even a
random trial-and-error approach. Generally calculus-based, enumerative and random methods are
ruled out because they are too demanding of knowledge and time. We have been unable to consider
the full range of search methods based on natural phenomena such as simulated annealing, tabu
search and ant colony search [36]. Elements of these may be incorporated into improved search
methods and, notwithstanding the NFL theorems, a general theory of optimisation based on nature
may yet emerge.

Engineering design is not limited to searching parameter values for improvement. In engineering
design, improved global search, limited to the concept design level, has been made by classifying
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patented inventions so that an appropriate working principle can be matched to a given problem [1].
We have considered GA and there is a beauty in their global performance through local action.
The major shortcoming of GA is their complete dependence upon the ‘detectors’ (performance
measures) to determine the coding, which risks a search too inefficient for expensive engineering
experiments. In RED we have seen that optimisation is about finding the underlying system
function through physical and empirical modelling. In other words, information gathering is a
more overt aspect of RED than GA. Modelling and optimisation can therefore be closely related in
engineering design, which accords with the NFL theorems. Apparent conflict between additivity,
interactions, orthogonal search and fitness landscapes are tackled differently by RED and GA
methods. The issue of interactions needs to be addressed carefully. In classic RED the use of linear
models is dominated by additivity concerns, which restricts this approach to smaller regions of
design space than the model-based RED approach.

There are several criteria for engineering design algorithms that emerge from the above con-
sideration of search, namely:

1. Design factors often need to be coded as discrete values rather than remain as continuous
variables in order to configure a design space.

2. In practice, by optimisation we mean improvement by virtue of selecting the best solution in
the search space we have defined rather than the very best from all possible solutions.

3. A useful method for engineering improvement is a trade-off between the more general global
search methods and the specialised local search algorithms.

4. It is important to efficiently search a large number of possible solutions without getting stuck
at local optima.

5. Probabilistic rules dominate the decision process, which are enhanced when populations
rather than individuals form the basis of each search step.

6. Directed search approaches are favoured from amongst the many optimisation methods and
algorithms available to engineering, such as GA and RED.

Finally, one must consider the overall resources available and the complexity of the system under
investigation when embarking upon a search for an optimal design solution. If there are unlimited
resources for experimentation and the system is highly complex (and therefore difficult to model),
then a simple random search may prove effective. If only a few observations of system performance
are possible, then a more considered approach, involving a carefully designed experiment is likely
to be the most appropriate path to follow.
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