# Vitamin E & T-kininogen

坂本 亘\*1), 半田 洋\*2), 上原総一郎\*3)

Relationship between vitamin E and T-kiningen It is experimentally know that vitamin E enhances both humoral immune response and protection against micro-organism infection, but the mechanism has not been clarified. On the other hand, T-kiningen, a kinin precursor, cysteine proteinase inhibitor, and acute phase protein, is suggested to on the immune response, we investigated the relationship between vitamin E and Tkininogen in rat. T-kininogen level in rat serum was determined by single radial immunodiffusion using specific antiserum against T-kininogen. Vitamin E provides a potent stimulus in vivo for the production of T-kininogen, such as seen in lipopolysaccharide (LPS) administration. Namely, T-kininogen level in rat serum, that was given intraperitoneal injection of vitamin E for six days ranging from 1.5 mg to 25 mg per day, increased from  $758\pm218$  to  $3,220\pm263~\mu g$  protein/ml with an increase of vitamin E level in the serum  $(12.9\pm1.1 \text{ to } 38.8\pm6.2 \,\mu\text{g/ml})$ . Whereas normal and vehicle (polyethylene 60-hydrogenated castor oil)-received rats were 452±77 to 483±82 μg/ml of T-kiningen and  $7.4\pm0.7$  to  $7.2\pm0.9 \,\mu\text{g/ml}$  of vitamin E. In addition, vitamin E enhanced induction of T-kininogen by LPS administration. From these results, the pharmacological action of vitamin E on the immune response was discussed.

Wataru Sakamoto\*1), Hiroshi Handa\*2), Soichiro Uehara\*3)
\*1) Department of Biochemistry School of Dentistry,

\*2) The 2nd Department of Internal Medicine, School of Medicine, Hokkaido University
\*3) Internal Medicine, Tonan Hospital

key words: vitamin E, interleukin-1, LPS, T-kininogen, rat

ラット血漿中に存在する T-kininogen は HMW-, LMW-kininogens と同様に、キニン前駆体、thiol protease inhibitors などの機能を有する多機能蛋白質であるが1~3)、炎症に伴って増加する acute phase protein の一種でもある⁴)。最近、この T-kininogen の誘導をめぐって、macrophage 由来の monokines、ヒト表皮細胞や扁平上皮癌細胞(COLO-16) 培養液由来の cytokine、HSF [[ (hepatocyte-stimulating、factor [] )の関係が論じられている⁵,⁶)。

一方、vitamin E は macrophage、抗原抗体反応を介して生体防御に深く関与するとともに、発癌抑制作用を発揮することが報告されいる $7^{-80}$ . しかしながら、vitamin E がどのような作用機構で異物処理能、免疫応答能に関与しているのかまだ不明な点が多い。今回、筆者らは、生体防御と vitamin E の関連性を調べるために、vitamin E による T-kininogen 産生誘導について調べた。

### 方 法

#### (1) 実験動物

体重350~400gのウイスター系雄ラットを使用した.

# (2) 試験薬物

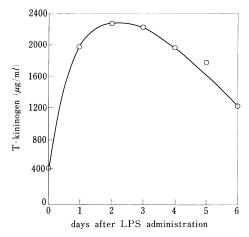
vitamin  $E(DL-\alpha$ -tocopheryl acetate, x-ザイ)は、その溶媒である HCO-60(polyethylene 60-hydrogenated castor oil, x-ザイ)で種々濃度(50 mg/ml, 20 mg/ml, 10 mg/ml, 3 mg/ml)に調整した後、各 0.5 ml をラット腹腔内に投与した。対照群(vehicle)は 0.5 ml の HCO-60を投与した。

lipopolysaccharide(LPS)は、 $E.\ coli$  よりフェノール抽出された serotype No. 0127: B 8 (Sigma 社, USA)、interleukin-1(IL-1)は、ヒト組換え IL-1 $\alpha$ (大日本製薬)を使用した.

(3) 血中 vitamin E, T-kininogen, 総蛋白質量の測定

心臓穿刺により採血し,血清を分離した後,vitamin  $E(\alpha$ -tocopherol)量を螢光法 $^{9}$ . T-kininogen 量は先に報告した T-kininogen の特異抗血清を用いる single radial immunodiffusion 法 $^{10}$ , 総蛋白質量は,Lowry 法 $^{11}$  で おのおの測定した.

### 結 果


# (1) LPS と血中 T-kininogen

免疫学的に定量した正常 ラット血中の T-kininogen 量は 437±45 μg/ml であった. 一方, ラット腹腔内に 100

<sup>\*1)</sup> 北海道大学歯学部生化学教室

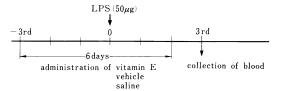
<sup>\*2)</sup> 同 医学部第二内科学教室

<sup>\*3)</sup> 斗南病院内科



☑ 1 changes with time in T-kininogen concentration in rat serum after administration of LPS

Four rats were used per time and analyzed individually. T-kininogen concentrations are indicated for the mean values of rats on each day after administration of 100  $\mu$ g LPS.


 $\mu$ g LPS を投与すると、血中 T-kininogen 量は図1に示すように、いちじるしく増加した。すなわち、投与後1日目で1,950、2日目で2,300、3日目で2,250、4日目で1,900、6日目で1,200  $\mu$ g/ml となった。

# (2) vitamin E と血中 T-kininogen

正常ラット血中の vitamin E 量は  $7.4\pm0.7~\mu g/ml$  であったが、1.5~mg, 5~mg, 25~mg/日の vitamin E 6 日間連続投与群ではおのおの  $12.9\pm1.1$ ,  $15.5\pm2.3$ ,  $38.8\pm6.2~\mu g/ml$  となり、血中 vitamin E 量は投与量とともに有意に増加した。一方、T-kininogen 量は、血中 vitamin E 量の上昇に伴い増加した。すなわち、1.5~mg6 日間連続投与のラット血中 T-kininogen 量は  $758\pm218$ , 5.0~mg で  $1823\pm613$ , 25~mg で  $3220\pm263~\mu g/ml$ と正常群に比して有意に増加した。なお、 $50~\mu g$  IL-1、50,  $100~\mu g$  各 LPS 1 回投与後 3 日目の血中 T-kininogen 量はおのおの  $1620\pm241$ ,  $1392\pm470$ ,  $2220\pm435~\mu g/ml$  であった(表 1).

## (3) LPS, vitamin E と血中 T-kininogen

表 1 に示したように、vitamin E は LPS と同様に血中 T-kininogen 量を増加させることが明らかになった。そこでつぎに、血中 vitamin E 量の上昇が LPS の T-kininogen 誘導上昇作用にどのように影響するのか調べた。vitamin E は図 2 に示したように、50  $\mu$ g LPS 投与 3 日前から屠殺前日まで 6 日間連続投与した。その結果、対照群である LPS+生食群、LPS+vehicle 群の血中 T-kininogen 量 は お の お の 1214±213、1222±306  $\mu$ g/ml であるのに対し、5.0 mg、10.0 mg、25.0 mg/日 vitamin E 投与群ではおのおの 2379±262、3221±263、



☑ 2 experimental procedure for determining the effect of vitamin E on T-kininogen-induction by LPS administration

3690±311  $\mu$ g/ml と有意に増加した。しかし、1.5 mg/日 投与群では血中 vitamin E 量が 13.1±2.1  $\mu$ g/ml と正常群(7.7±1.1  $\mu$ g/ml)より有意に増加しているにもかかわらず、LPS の T-kininogen 誘導作用に対する相加効果は観察することができなかった(表 2)

### 考察

vitamin E は、生体の免疫反応を賦活化し、感染防御や発癌抑制に関与すると報告されている $^{7,8)}$ . すなわち、マウス脾細胞免疫活性に関する研究から、Hoffeld $^{12}$ )は、vitamin E の免疫活性増強効果は vitamin E が 細胞膜の脂質過酸化を防止するためであると説明し、津田ら $^{13}$ は、vitamin E がリンパ球の幼若化能を促進するためであるとしている。

事実, Yasunaga et al<sup>14)</sup> は, マウス腹腔内に vitamin E を14日間投与すると, リンパ球の幼若化転換が促進されること, また, Corwin et al<sup>15)</sup> は, LPS によるリンパ球 幼若化反応が vitamin E により増強されることを立証している。一方, Schwartz et al<sup>8)</sup> は, vitamin E の発癌抑制作用は vitamin E が macrophage を刺激するためであろうと説明している。このように vitamin E はなんらかの形で免疫応答に関与していることは明らかであるが, monokine, cytokine の産生亢進を介してvitamin E が作用しているかどうか明確でない.

筆者らは、vitamin E のこの薬理学的作用を実証する一つの手懸りとして、monokines や cytokines により誘導される T-kininogen<sup>5,6)</sup> を指標にして、vitamin E の作用について研究した。その結果、1.5 mg/日から 25 mg/日の vitamin E 6 日間連続投与による血中 vitamin E 量の上昇は、血中 T-kininogen 量の上昇を誘導した。そして、その誘導は macrophage の活性化を介して行われている可能性を示唆した。事実、macrophage 活性化因子の一つ、LPS は血中 T-kininogen をいちじるしく上昇させるとともに、この上昇作用が vitamin E により 相加的に 増強させることがわかった。 Kageyama et al.<sup>16)</sup>は、すでに mRNA レベルで LPS の T-kininogen 誘導が肝臓で行われていることを証明している。それゆえに、vitamin E による T-kininogen 上昇作用は 肝臓での T-kininogen 合成亢進を反映していることになる。

|              |                                          | protein<br>(mg/ml) | $	ext{T-kininogen} \ (\mu 	ext{g/m}l)$ | $\begin{array}{c} \text{vitamin E} \\ (\mu \text{g/m} l) \end{array}$ |
|--------------|------------------------------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------|
| normal       | (n = 8)                                  | 66± 2              | $437 \pm 45$                           | $7.4 \pm 0.7$                                                         |
| vehicle*1)   | (n = 8)                                  | $67\pm~1$          | $483 \pm 82$                           | $7.2 \pm 0.9$                                                         |
| vitamin E*1) | $1.5  \mathrm{mg}  (n = 8)$              | $67\pm~2$          | $758 \pm 218$                          | $12.9 \pm 1.1$                                                        |
|              | 5.0  mg  (n = 8)                         | $67\pm~2$          | $1,823 \pm 617$                        | $15.5 \pm 2.3$                                                        |
|              | 25.0  mg  (n = 8)                        | $66\pm~3$          | $3,220 \pm 263$                        | $38.8 \pm 6.2$                                                        |
| IL-1*2)      | $50.0  \mu g  (n=8)$                     | $64\pm 3$          | $1,620 \pm 241$                        | N D*3)                                                                |
| LPS*2)       | $50.0  \mu \text{g}    ( \text{n} = 8 )$ | $63\pm 3$          | $1,392 \pm 470$                        | ND                                                                    |
|              | 100.0 $\mu$ g (n = 8)                    | $62\pm 2$          | $2,220 \pm 435$                        | ND                                                                    |

表 1 effect of vitamin E, IL-1 and LPS on total protein and T-kininogen levels in rat serum

- \*1) Each group of 8 male Wistar rats (350~400 g) received vitamin E or vehicle by intraperitoneal injection for 6 days. On 7th day, rat blood was obtained by cardiac puncture under light ethyl ether anesthesia, in order to measure T-kininogen in the serum.
- \*2) T-kiningen in rat serum was measured on the 3rd day after a single intraperitoneal injection of LPS or IL-1.
- \*3) ND: not determined.

表 2 effect of vitamin E on T-kiningen induced by LPS administration in rat serum

|                          |                                   |       | $protein \ (mg/ml)$ | T-kininogen (μg/ml) | vitamin E $(\mu { m g/m} l)$ |
|--------------------------|-----------------------------------|-------|---------------------|---------------------|------------------------------|
| normal                   | (n = 8)                           |       | 66± 2               | 452± 77             | $7.7 \pm 1.1$                |
| LPS (50 μg)              | +saline* (n =                     | 8)    | 61± 2               | $1,214 \pm 213$     | $7.0\!\pm\;0.9$              |
|                          | +vehicle* (n =                    | 8)    | 63 ± 3              | $1,222 \pm 306$     | $6.9 \pm 0.9$                |
|                          | +vitamin E*                       |       |                     |                     |                              |
|                          | $1.5\mathrm{mg}$ ( $n=$           | 8)    | 66± 2               | $1,292 \pm 413$     | $13.1 \pm 2.1$               |
| $5.0 \mathrm{mg}  (n=8)$ |                                   | 64± 1 | $2,379 \pm 262$     | $13.9 \pm 2.2$      |                              |
|                          | $10.0\mathrm{mg}$ ( $\mathrm{n}=$ | 8)    | 68± 2               | $3,221 \pm 263$     | $16.7 \pm 3.2$               |
|                          | 25.0 mg (n =                      | 8)    | 65± 3               | $3,690 \pm 311$     | $33.6 \pm 3.8$               |

<sup>\*</sup> Each group of 8 male Wistar rats (350 $\sim$ 400 g) received saline, vehicle or vitamin E by intraperitoneal injection for 6 successive days, and on the 4th day the rat were subjected to 50  $\mu$ g of intraperitoneal injection of LPS, as shown in Fig. 2. T-kiningen in rat serum was measured on the 3rd day after injection of LPS.

最近, Itoh et al.<sup>5)</sup> は, Freund's complete adjuvant をラット腹腔内に投与して調整した macrophage 実験から, 肝臓での T-kininogen 合成が macrophage を介して, それも macrophage が産生する monokines により誘導されることを示唆している. 事実, 筆者らも本研究において, monokine の一つ, ヒト組換え IL-1 の T-kininogen 誘導作用を観察することができた.

 来の cytokine, HSF II で強力な T-kininogen 誘導作用 が認められたと報告していることから, T-kininogen を めぐって vitamin E と cytokines, monokines の関係を 今後さらに検討する必要がある. いずれにしても, 今回 明らかにされた vitamin E の T-kininogen 誘導作用が E トの連用安全投与量(200~600 mg/日)E でも, その作用を発揮していることから, 生体防御に対する vitamin E の新しい薬理的作用が期待される.

vitamin E の供与ならびにその測定に際し、ご援助を 賜ったエーザイ株式会社に深謝致します.

## 文 献

- Okamoto, H., Greenbaum, L.M.: Isolation and structure of T-kinin. Biochem. Biophys. Res. Commun. 112: 701-708, 1983.
- Sakamoto, W., Satoh, F., Gotoh, K., Uehara, S.: Ile-Ser-bradykinin (T-kinin) and Met-Ile-Ser-bradykinin (Met-T-kinin) are released from T-kininogen by an acid proteinase of granulomatous tissues in rats. FEBS Lett. 219: 437-440, 1987.
- 3) Sueyoshi, T., Enjyoji, K., Shimada, T., Kato, H., Iwanaga, S., Bando, Y., Kominami, E., Katunuma, N.: A new function of kininogens as thiol-proteinase inhibitors: inhibition of papain and cathepsin B, H and L by bovine, rat and human plasma kininogens. FEBS Lett. 182: 193-195, 1985.
- 4) Cole, T., Inglis, A.S., Roxburgh, C.M., Howlett, G.J., Schreiber, G.: Major acute  $\alpha_1$ -protein of rat is homologous to bovine kininogen and contains the sequence for bradykinin. FEBS Lett. 182: 57-61, 1985.
- Itoh, N., Toyohara, T., Okamoto, H., Kawano, H., Mayumi, T., Hama, T.: Involvement of inflammatory leucocytes in hepatic induction of T-kininogen in rat. Inflammation 11: 345-353, 1987.
- 6) Baumann, H., Onorato, V., Gualdies, J., Jahreis, G.P.: Distinct sets of acute phase plasma proteins are stimulated by separate human hepatocyte-stimulating factors and monokines in rat hepatoma cells. J. Biol. Chem. 262: 9756-9768, 1987.
- Tenerdy, R.P., Methias, M.M., Nockels, G.L.: Vitamin E, immunity and disease resistance. Adv. Exp. Med. Biol. 135: 27-42, 1981.
- 8) Schwartz, J., Odukoya, O., Stoufi, E., Shklar,

- G.: Alpha tocopherol alters the distribution of Langerhans cells in DMBA-treated hamster cheek pouch epithelium. J. Dent. Res. 64: 117–121, 1985.
- 9) 阿部晧一,勝井五一郎:血清中のトコフェロールの螢光定量、栄養と食糧 28: 277-280, 1975.
- 10) Sakamoto, W., Yoshikawa, K., Handa, H., Uehara, S., Hiryama, A.: T-kininogen in rats with carrageenin-induced inflammation. Biochem. Pharmac. 35: 4283-4290, 1986.
- Lowry, D.H., Rosebrough, N.J., Farr, A.L., Randall, R.: Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275, 1951.
- 12) Hoffeld, J.T.: Agents which block membrane lipid peroxidation enhance mouse spleen cell immune activities in vitro: Relationship to the enhancing activity of 2-mercaptoethanol. Eur. J. Immunol. 11: 371-376, 1981.
- 13) 津田忠昭, 辻本真人, 大田喜一郎, 大畑雅洋, 竹中 徹, 前田治郎: リンパ球機能に及ぼすビタミンの影響. 医学のあゆみ 124: 764-766, 1983.
- 14) Yasunaga, T., Ohgaki, K., Inamoto, T., Hikasa, Y.: Effect of vitamin E as an immunopotentiation agent and its influence on tumor growth in mice. Arch. Jpn. Chir. 53: 312-323, 1984.
- Corwin, L.M., Schloss, J.: Influence of vitamin E on the mitogenic response of murine lymphoid cells. J. Nutr. 110: 916-923, 1980.
- 16) Kageyama, R., Kitamura, N., Ohkubo, H., Nakanishi, S.: Differential expression of the multiple forms of rat prekininogen mRNA after acute inflammation. J. Biol. Chem. 260: 12060– 12064, 1985.
- 17) Bieri, J.G., Corash, L., Hubbard, V.S.: Medical use of vitamin E. New Eng. J. Med. 308: 1063-1071. 1983.