Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 20, 2013

Ongoing succession of biological soil crusts increases water repellency — a case study on Arenosols in Sekule, Slovakia

  • Sylvie Drahorad EMAIL logo , Daniel Steckenmesser , Peter Felix-Henningsen , Ľubomír Lichner and Marek Rodný
From the journal Biologia

Abstract

After soil surface disturbances biological soil crusts (BSC) cover rapidly the topmost soil millimeters. Depending on BSC age, development of soil water repellency, water infiltration and soil surface stability are influenced by this thin surface sealing. Within this study disturbed, early- mid- and late successional stages of BSC development were examined along a recovery transect. The results show an increase in water repellency and a decrease in water sorptivity and conductivity with ongoing BSC succession. Penetration resistance data shows very stable thin surface protection by cyanobacteria in early successional BSC that is non-repellent. Later successional stages show increased water repellency and lower water conductivity. We conclude that BSC development induces changes in surface structure and wettability. The soil surface wettability is strongly linked to the BSC community composition.

[1] Almog R. & Yair A. 2007. Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. Catena 70: 437–442. http://dx.doi.org/10.1016/j.catena.2006.11.01210.1016/j.catena.2006.11.012Search in Google Scholar

[2] Belnap J. & Gillette D.A. 1998. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J. Arid Environ. 39: 133–142. http://dx.doi.org/10.1006/jare.1998.038810.1006/jare.1998.0388Search in Google Scholar

[3] Belnap J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. In: Hydrol. Process. 20: 3159–3178. http://dx.doi.org/10.1002/hyp.632510.1002/hyp.6325Search in Google Scholar

[4] Dekker L.W., Doerr S.H., Oostindie K., Ziogas A.K. & Ritsema C.J. 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J. 65: 1667–1674. http://dx.doi.org/10.2136/sssaj2001.166710.2136/sssaj2001.1667Search in Google Scholar

[5] Doerr S.H., Shakesby R.A. & Walsh R.P.D. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51: 33–65. http://dx.doi.org/10.1016/S0012-8252(00)00011-810.1016/S0012-8252(00)00011-8Search in Google Scholar

[6] Drahorad S. & Felix-Henningsen P. 2012. An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability. J. Plant Nutr. Soil Sci. 175: 519–520. http://dx.doi.org/10.1002/jpln.20120002610.1002/jpln.201200026Search in Google Scholar

[7] Drahorad S., Felix-Henningsen P., Eckhardt K.-U. & Leinweber P. 2013. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid. Environ. 94: 18–29. http://dx.doi.org/10.1016/j.jaridenv.2013.02.00610.1016/j.jaridenv.2013.02.006Search in Google Scholar

[8] Fischer T.; Veste M., Schaaf W., Dümig A., Kögel-Knabner I. & Wiehe W. 2010. Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry 101: 165–176. http://dx.doi.org/10.1007/s10533-010-9464-z10.1007/s10533-010-9464-zSearch in Google Scholar

[9] Graber E.R., Ben-Arie O. & Wallach, R. 2006. Effect of sample disturbance on soil water repellency determination in sandy soils. Geoderma 136: 11–19. http://dx.doi.org/10.1016/j.geoderma.2006.01.00710.1016/j.geoderma.2006.01.007Search in Google Scholar

[10] Kidron G. 1999. Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process. 13: 1665–1682. http://dx.doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1665::AID-HYP836>3.0.CO;2-R10.1002/(SICI)1099-1085(19990815)13:11<1665::AID-HYP836>3.0.CO;2-RSearch in Google Scholar

[11] Kidron G.J., Yair A., Vonshak A. & Abeliovich A. 2003. Microbiotic crust control of run-off generation on sand dunes in the Negev Desert. Water Resour. Res. 39: 1108. http://dx.doi.org/10.1029/2002WR00156110.1029/2002WR001561Search in Google Scholar

[12] Kidron G.J.; Vonshak A. & Abeliovich A. 2009. Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surf. Process. Landforms 34: 1594–1604. http://dx.doi.org/10.1002/esp.184310.1002/esp.1843Search in Google Scholar

[13] Kidron G.J., Vonshak A., Dor I., Barinova S. & Abeliovich A. 2010. Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena 82: 92–101. http://dx.doi.org/10.1016/j.catena.2010.05.00610.1016/j.catena.2010.05.006Search in Google Scholar

[14] Lichner L., Hallett P.D., Feeney D., Ďugová O., Šír M. & Tesař, M. 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62: 537–541. http://dx.doi.org/10.2478/s11756-007-0106-410.2478/s11756-007-0106-4Search in Google Scholar

[15] Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N.& Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318. 10.2478/v10098-012-0027-ySearch in Google Scholar

[16] Lichner L., Hallett P.D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J. & Homolák M. 2013. Algae influence hydrophysical parameters of a sandy soil. Catena 108: 58–68 http://dx.doi.org/10.1016/j.catena.2012.02.01610.1016/j.catena.2012.02.016Search in Google Scholar

[17] Mager D.M. 2010. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biol. Biochem. 42: 313–318. http://dx.doi.org/10.1016/j.soilbio.2009.11.00910.1016/j.soilbio.2009.11.009Search in Google Scholar

[18] McKenna Neumann C., Maxwell C.D. & Boulton J.W. 1996. Wind transport of sand surfaces crusted with photoautotrophic microorganisms. Catena 27: 229–247. http://dx.doi.org/10.1016/0341-8162(96)00023-910.1016/0341-8162(96)00023-9Search in Google Scholar

[19] Rillig M.C. 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia 49: 395–399. http://dx.doi.org/10.1016/j.pedobi.2005.04.00410.1016/j.pedobi.2005.04.004Search in Google Scholar

[20] Rivera-Aquilar V., Montejano G., Rodriquez-Zaragoza S. & Duran-Diaz A. 2006. Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacan Valley, Puebla, Mexico. J. Arid Environ. 67: 208–225. http://dx.doi.org/10.1016/j.jaridenv.2006.02.01310.1016/j.jaridenv.2006.02.013Search in Google Scholar

[21] Soil Survey Division Staff 1993. Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 pp. Search in Google Scholar

[22] Thompson T.L., Zaady E., Huancheng P., Wilson, T.B. & Martens, D.A. 2006. Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts. Soil Biol. Biochem. 38: 1943–1955. http://dx.doi.org/10.1016/j.soilbio.2006.01.00210.1016/j.soilbio.2006.01.002Search in Google Scholar

[23] WRB 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. 2nd edition. FAO, Rome. Search in Google Scholar

[24] Zaady E., Kuhn U., Wilske B., Sandoval-Soto L. & Kesselmeier J. 2000. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol. Biochem. 32: 959–966. http://dx.doi.org/10.1016/S0038-0717(00)00004-310.1016/S0038-0717(00)00004-3Search in Google Scholar

[25] Zhang Y.M., Wang H.L., Wang X.Q., Yang W.K. & Zhang D.Y. 2006. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132: 441–449. http://dx.doi.org/10.1016/j.geoderma.2005.06.00810.1016/j.geoderma.2005.06.008Search in Google Scholar

Published Online: 2013-10-20
Published in Print: 2013-12-1

© 2013 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-013-0247-6/html
Scroll to top button