Skip to main content
Log in

Assessment of antibacterial effects of flavonoids by estimation of generation times in liquid bacterial cultures

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Antibacterial activities of various flavonoids, a group of natural plant substances, have been reported previously, however, there are contradictory data, published by various authors, regarding sensitivity of particular bacterial species to these compounds. These problems arose apparently because of using different methods by various researchers. Here we tested sensitivity of several bacterial species (Gram-positive: Bacillus subtilis, Micrococcus luteus, Sarcina sp. and Staphylococcus aureus; and Gram-negative: Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella enterica, Serratia marcescens and Vibrio harveyi) to various flavonoids: genistein and daidzein (isoflavones), apigenin (a flavone), naringenin (a flavanone) and kaempferol (a flavonol) by measurement of generation times of bacteria in liquid cultures. The presented results indicate that this simple method is adequate for unambiguous assessment of sensitivity of bacterial strains to flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aljancic I., Vajs V., Menkovic N., Karadzic I., Juranic N., Milosavljevic S. & Macura S. 1999. Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida: antimicrobial activity. J. Nat. Prod. 62: 909–911.

    Article  PubMed  CAS  Google Scholar 

  • Anagnostopoulos C.S.J. & Spizizen X.X. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741–746.

    PubMed  CAS  Google Scholar 

  • Azuma Y., Onishi Y., Sato Y. & Kizaki H. 1995. Effects of protein tyrosine kinase inhibitors with different modes of action on topoisomerase activity and death of IL-2-dependent CTLL-2 cells. J. Biochem. 118: 312–318.

    PubMed  CAS  Google Scholar 

  • Bashir A.K., Abdalla A.A., Wasi I.A., Hassan E.S., Amiri M.H. & Crabb T.A. 1994. Flavonoids of Limonium axillare. Int. J. Pharmacogenet. 32: 366–372.

    Article  CAS  Google Scholar 

  • Belas R., Mileham A., Cohn D., Hilmen M., Simon M. & Silverman M. 1982. Bacterial luminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Boege F., Straub T., Kehr A., Boesenberg C., Christiansen K., Andersen A., Jakob F. & Kohrle J. 1996. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J. Biol. Chem. 271: 2262–2270.

    Article  PubMed  CAS  Google Scholar 

  • Chang Y.C., Nair M.G. & Nitiss J.L. 1995. Metabolites of daidzein and genistein and their biological activities. J. Nat. Prod. 58: 1901–1905.

    Article  PubMed  CAS  Google Scholar 

  • Constantinou A., Mehta R., Runyan C., Rao K., Vaughan A. & Moon R. 1995. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod. 58: 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Cushnie T.P.T. & Lamb A.J. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Erturk O. 2006. Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia 61: 275–278.

    Article  Google Scholar 

  • Furuya E.Y. & Lowy F.D. 2006. Antimicrobial-resistant bacteria in the community setting. Nature Rev. Microbiol. 4: 36–45.

    Article  CAS  Google Scholar 

  • Havsteen B.H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Therapeut. 96: 67–202.

    Article  CAS  Google Scholar 

  • Jensen K.F. 1993. The Escherichia coli “wild types” W3110 and MG1655 have rph frame shift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J. Bacteriol. 175: 3401–3407.

    PubMed  CAS  Google Scholar 

  • Klein G., Żmijewski M., Krzewska J., Czeczotka M. & Lipińska B. 1998. Cloning and characterization of the dnaK heat shock operon of the marine bacterium Vibrio harveyi. Mol. Gen. Genet. 259: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Landa P., Marsik P., Vanek T., Rada V. & Kokoska L. 2006. In vitro anti-microbial activity of extracts from the callus cultures of some Nigella species. Biologia 61: 285–288.

    Article  Google Scholar 

  • Miski M., Ulubelen A., Johansson C. & Mabry T.J. 1983. Antimicrobial activity studies of flavonoids from Salvia palaestina. J. Nat. Prod. 46: 874–875.

    Article  PubMed  CAS  Google Scholar 

  • Ohemeng K.A., Schwender C.F., Fu K.P. & Barrett J.F. 1993. DNA gyrase inhibitory and antibacterial activity of some flavones. Bioorg. Med. Chem. Lett. 3: 225–230.

    Article  CAS  Google Scholar 

  • Oksuz S., Ayyildiz H. & Johansson C. 1984. 6-Methoxylated and C-glycosyl flavonoids from Centaurea species. J. Nat. Prod. 47: 902–903.

    Article  PubMed  CAS  Google Scholar 

  • Parniske M., Ahlborn B. & Werner D. 1991. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J. Bacteriol. 173: 3432–3439.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Snyder R.D. & Gillies P.J. 2002. Evaluation of the clastogenic, DNA intercalative, and topoisomerase II-interactive properties of bioflavonoids in Chinese hamster V79 cells. Environ. Mol. Mutagen. 40: 266–276.

    Article  PubMed  CAS  Google Scholar 

  • Sun N.J., Woo S.H., Cassady J.M. & Snapka R.M. 1998. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod. 61: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Ulanowska K., Tkaczyk A., Konopa G. & Węgrzyn G. 2006. Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch. Microbiol. 184: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Verdrengh M., Collins L.V., Bergin P. & Tarkowski A. 2004. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 6: 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi T., Otsuka E. & Hagiwara H. 2001. Reciprocal control of expression of mRNAs for osteoclast differentiation factor and OPG in osteogenic stromal cells by genistein: evidence for the involvement of topoisomerase II in osteoclastogenesis. Endocrinology 142: 3632–3637.

    Article  PubMed  CAS  Google Scholar 

  • Yazdanyar A., Essmann M. & Larsen B. 2001. Genistein effects on growth and cell cycle of Candida albicans. J. Biomed. Sci. 8: 153–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Węgrzyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulanowska, K., Majchrzyk, A., Moskot, M. et al. Assessment of antibacterial effects of flavonoids by estimation of generation times in liquid bacterial cultures. Biologia 62, 132–135 (2007). https://doi.org/10.2478/s11756-007-0042-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0042-3

Key words

Navigation