Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2013

Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane

  • Guo-Quan Zhu EMAIL logo , Fa-Gang Wang , Hong-Sheng Tan , Qiao-Chun Gao and Yu-Ying Liu
From the journal Chemical Papers

Abstract

A number of poly(lactic acid-co-glycolic acid)/polyurethane (PLGA/PU) blend films with various PU mole contents were prepared by casting the polymer blend solution in chloroform. The surface morphologies of the PLGA/PU blend films were studied by scanning electron microscopy (SEM). The thermal, mechanical and chemical properties of the PLGA/PU blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests and surface contact angle tests. The results revealed that the introduction of PU could markedly modify the properties of PLGA films.

[1] Anderson, J. M., & Miller, K. M. (1984). Biomaterial biocompatibility and the macrophage. Biomaterials, 5, 5–10. DOI: 10.1016/0142-9612(84)90060-7. http://dx.doi.org/10.1016/0142-9612(84)90060-710.1016/0142-9612(84)90060-7Search in Google Scholar

[2] Angelova, N., & Hunkeler, D. (1999). Rationalizing the design of polymeric biomaterials. Trends in Biotechnology, 17, 409–421. DOI: 10.1016/s0167-7799(99)01356-6. http://dx.doi.org/10.1016/S0167-7799(99)01356-610.1016/S0167-7799(99)01356-6Search in Google Scholar

[3] Bai, L. Q., Zhu, L. J., Min, S. J., Liu, L., Cai, Y. R., & Yao, J. M. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049. http://dx.doi.org/10.1016/j.apsusc.2007.10.04910.1016/j.apsusc.2007.10.049Search in Google Scholar

[4] Bittner, B., Witt, C., Mäder, K., & Kissel, T. (1999). Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. Journal of Controlled Release, 60, 297–309. DOI: 10.1016/s0168-3659(99)00085-1. http://dx.doi.org/10.1016/S0168-3659(99)00085-110.1016/S0168-3659(99)00085-1Search in Google Scholar

[5] Blanco-Príeto, M. J., Besseghir, K., Zerbe, O., Andris, D., Orsolini, P., Heimgartner, F., Merkle, H. P., & Gander, B. (2000). In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres. Journal of Controlled Release, 67, 19–28. DOI: 10.1016/s0168-3659(99)00289-8. http://dx.doi.org/10.1016/S0168-3659(99)00289-810.1016/S0168-3659(99)00289-8Search in Google Scholar

[6] Cleland, J. L., Johnson, O. L., Putney, S., & Jones, A. J. S. (1997). Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Advanced Drug Delivery Reviews, 28, 71–84. DOI: 10.1016/s0169-409x(97)00051-3. http://dx.doi.org/10.1016/S0169-409X(97)00051-310.1016/S0169-409X(97)00051-3Search in Google Scholar

[7] Elbert, D. L., & Hubbell, J. A. (1998). Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chemistry and Biology, 5, 177–183. DOI: 10.1016/s1074-5521(98)90062-x. http://dx.doi.org/10.1016/S1074-5521(98)90062-X10.1016/S1074-5521(98)90062-XSearch in Google Scholar

[8] Ganji, F., & Abdekhodaie, M. J. (2010). Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydrate Polymers, 80, 740–746. DOI: 10.1016/j.carbpol.2009.12.021. http://dx.doi.org/10.1016/j.carbpol.2009.12.02110.1016/j.carbpol.2009.12.021Search in Google Scholar

[9] Göpferich, A., Peter, S. J., Lucke, A., Lu, L., & Mikos, A. G. (1999). Modulation of marrow stromal cell function using poly(d,l-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces. Journal of Biomedical Materials Research Part A, 46, 390–398. DOI: 10.1002/(SICI)1097-4636(19990905)46:3〈390::AID-JBM12〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1097-4636(19990905)46:3<390::AID-JBM12>3.0.CO;2-N10.1002/(SICI)1097-4636(19990905)46:3<390::AID-JBM12>3.0.CO;2-NSearch in Google Scholar

[10] Harjunalanen, T., & Lahtinen, M. (2003). The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. European Polymer Journal, 39, 817–824. DOI: 10.1016/s0014-3057(02)00279-3. http://dx.doi.org/10.1016/S0014-3057(02)00279-310.1016/S0014-3057(02)00279-3Search in Google Scholar

[11] Holzer, M., Vogel, V., Mäntele, W., Schwartz, D., Haase, W., & Langer, K. (2009). Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. European Journal of Pharmaceutics and Biopharmaceutics, 72, 428–437. DOI: 10.1016/j.ejpb.2009.02.002. http://dx.doi.org/10.1016/j.ejpb.2009.02.00210.1016/j.ejpb.2009.02.002Search in Google Scholar

[12] Houchin, M. L., Neuenswander, S. A., & Topp, E. M. (2007). Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. Journal of Controlled Release, 117, 413–420. DOI: 10.1016/j.jconrel.2006.11.023. http://dx.doi.org/10.1016/j.jconrel.2006.11.02310.1016/j.jconrel.2006.11.023Search in Google Scholar

[13] Ignatius, A. A., & Claes, L. E. (1996). In vitro biocompatibility of bioresorbable polymers: poly(l, dl-lactide) and poly(l-lactide-co-glycolide). Biomaterials, 17, 831–839. DOI: 10.1016/0142-9612(96)81421-9. http://dx.doi.org/10.1016/0142-9612(96)81421-910.1016/0142-9612(96)81421-9Search in Google Scholar

[14] Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21, 2475–2490. DOI: 10.1016/s0142-9612(00)00115-0. http://dx.doi.org/10.1016/S0142-9612(00)00115-010.1016/S0142-9612(00)00115-0Search in Google Scholar

[15] Jeong, J. H., Lim, D. W., Han, D. K., & Park, T. G. (2000). Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids and Surfaces B: Biointerfaces, 18, 371–379. DOI: 10.1016/s0927-7765(99)00162-9. http://dx.doi.org/10.1016/S0927-7765(99)00162-910.1016/S0927-7765(99)00162-9Search in Google Scholar

[16] Kondo, T., Sawatari, C., Manley, R. S. J., & Gray, D. G. (1994). Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively sub stituted methylcellulose. Macromolecules, 27, 210–215. DOI: 10.1021/ma00079a031. http://dx.doi.org/10.1021/ma00079a03110.1021/ma00079a031Search in Google Scholar

[17] Langer, R. (1995). 1994 Whitaker lecture: Polymers for drug delivery and tissue engineering. Annals of Biomedical Engineering, 23, 101–111. DOI: 10.1007/bf02368317. http://dx.doi.org/10.1007/BF0236831710.1007/BF02368317Search in Google Scholar

[18] Lio, K., Minoura, N., & Nagura, M. (1995). Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer, 36, 2579–2583. DOI: 10.1016/0032-3861(95)91204-k. http://dx.doi.org/10.1016/0032-3861(95)91204-K10.1016/0032-3861(95)91204-KSearch in Google Scholar

[19] Loo, S. C. J., Ooi, C. P., & Boey, Y. C. F. (2004). Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability, 83, 259–265. DOI: 10.1016/s0141-3910(03)00271-4. http://dx.doi.org/10.1016/S0141-3910(03)00271-410.1016/S0141-3910(03)00271-4Search in Google Scholar

[20] Loo, S. C. J., Ooi, C. P., Wee, S. H. E., & Boey, Y. C. F. (2005). Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials, 26, 2827–2833. DOI: 10.1016/j.biomaterials.2004.08.031. http://dx.doi.org/10.1016/j.biomaterials.2004.05.00110.1016/j.biomaterials.2004.05.001Search in Google Scholar PubMed

[21] Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. (2000). Utilization of poly(dl-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release, 67, 29–36. DOI: 10.1016/s0168-3659(99)00288-6. http://dx.doi.org/10.1016/S0168-3659(99)00288-610.1016/S0168-3659(99)00288-6Search in Google Scholar

[22] Nishio, Y., & Manley, R. S. J. (1988). Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules, 21, 1270–1277. DOI: 10.1021/ma00183a016. http://dx.doi.org/10.1021/ma00183a01610.1021/ma00183a016Search in Google Scholar

[23] Park, J. S., Park, J. W., & Ruckenstein, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydogels. Polymer, 42, 4271–4280. DOI: 10.1016/s0032-3861(00)00768-0. http://dx.doi.org/10.1016/S0032-3861(00)00768-010.1016/S0032-3861(00)00768-0Search in Google Scholar

[24] Park, B. J., Seo, H. J., Kim, J., Kim, H. L., Kim, J. K., Choi, J. B., Han, I., Hyun, S. O., Chung, K. H., & Park, J. C. (2010). Cellular responses of vascular endothelial cells on surface modified polyurethane films grafted electospun PLGA fiber with microwave-induced plasma at atmospheric pressure. Surface & Coatings Technology, 205, s222–s226. DOI: 10.1016/j.surfcoat.2010.07.087. http://dx.doi.org/10.1016/j.surfcoat.2010.07.08710.1016/j.surfcoat.2010.07.087Search in Google Scholar

[25] Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., & Zhang, J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering, 2, 9–29. DOI: 10.1146/annurev.bioeng.2.1.9. http://dx.doi.org/10.1146/annurev.bioeng.2.1.910.1146/annurev.bioeng.2.1.9Search in Google Scholar

[26] Rowlands, A. S., Lim, S. A., Martin, D., & Cooper-White, J. J. (2007). Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28, 2109–2121. DOI: 10.1016/j.biomaterials.2006.12.032. http://dx.doi.org/10.1016/j.biomaterials.2006.12.03210.1016/j.biomaterials.2006.12.032Search in Google Scholar

[27] Sawatari, C., & Kondo, T. (1999). Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules, 32, 1949–1955. DOI: 10.1021/ma980900o. http://dx.doi.org/10.1021/ma980900o10.1021/ma980900oSearch in Google Scholar

[28] Schliecker, G., Schmidt, C., Fuchs, S., Wombacher, R., & Kissel, T. (2003). Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. International Journal of Pharmaceutics, 266, 39–49. DOI: 10.1016/s0378-5173(03)00379-x. http://dx.doi.org/10.1016/S0378-5173(03)00379-X10.1016/S0378-5173(03)00379-XSearch in Google Scholar

[29] Steele, T. W. J., Huang, C. L., Widjaja, E., Boey, F. Y. C., Loo, J. S. C., & Venkatraman, S. S. (2011). The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomaterialia, 7, 1973–1983. DOI: 10.1016/j.actbio.2011.02.002. http://dx.doi.org/10.1016/j.actbio.2011.02.00210.1016/j.actbio.2011.02.002Search in Google Scholar PubMed

[30] Stolnik, S., Dunn, S. E., Garnett, M. C., Davies, M. C., Coombes, A. G. A., Taylor, D. C., Irving, M. P., Purkiss, S. C., Tadros, T. F., Davis, S. S., & Illum, L. (1994). Surface modification of poly (lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 11, 1800–1808. DOI: 10.1023 /a:1018931820564. http://dx.doi.org/10.1023/A:101893182056410.1023/A:1018931820564Search in Google Scholar

[31] Sung, C. S. P., Smith, T. W., & Sung, N. H. (1980). Properties of segmented polyether poly(urethaneureas) based of 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules, 13, 117–121. DOI: 10.1021/ma60073a023. http://dx.doi.org/10.1021/ma60073a02310.1021/ma60073a023Search in Google Scholar

[32] Tanaka, H., Suzuki, Y., & Yoshino, F. (1999). Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 597–601. DOI: 10.1016/s0927-7757(98)00482-8. http://dx.doi.org/10.1016/S0927-7757(98)00482-810.1016/S0927-7757(98)00482-8Search in Google Scholar

[33] Thanki, P. N., Dellacherie, E., & Six, J. L. (2006). Surface characteristics of PLA and PLGA films. Applied Surface Science, 253, 2758–2764. DOI: 10.1016/j.apsusc.2006.05.047. http://dx.doi.org/10.1016/j.apsusc.2006.05.04710.1016/j.apsusc.2006.05.047Search in Google Scholar

[34] Vey, E., Roger, C., Meehan, L., Booth, J., Claybourn, M., Miller, A. F., & Saiani, A. (2008). Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polymer Degradation and Stability, 93, 1869–1876. DOI: 10.1016/j.polymdegradstab.2008.07.018. http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.01810.1016/j.polymdegradstab.2008.07.018Search in Google Scholar

[35] Yoon, S. D., Park, M. H., & Byun, H. S. (2012). Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-coacrylamide) particles. Carbohydrate Polymers, 87, 676–686. DOI: 10.1016/j.carbpol.2011.08.046. http://dx.doi.org/10.1016/j.carbpol.2011.08.04610.1016/j.carbpol.2011.08.046Search in Google Scholar PubMed

[36] Zhu, G. Q., Wang, F. G., Gao, Q. C., Li, G. C., & Wang, P. (2011). Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group. Chemical Papers, 65, 483–489. DOI: 10.2478/s11696-011-0032-3. http://dx.doi.org/10.2478/s11696-011-0032-310.2478/s11696-011-0032-3Search in Google Scholar

[37] Zou, M. X., Wang, S. J., Zhang, Z. C., & Ge, X. W. (2005). Preparation and characterization of polysiloxane-poly(butyl acrylate-styrene) composite latices and their film properties. European Polymer Journal, 41, 2602–2613. DOI: 10.1016/j.eurpolymj.2005.05.038. http://dx.doi.org/10.1016/j.eurpolymj.2005.05.03810.1016/j.eurpolymj.2005.05.038Search in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0438-1/html
Scroll to top button