Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 3, 2013

Conducting polymer-silver composites

  • Jaroslav Stejskal EMAIL logo
From the journal Chemical Papers

Abstract

Preparations of hybrid composites composed of two conducting components, a conducting polymer and silver, are reviewed. They are produced mainly by the oxidation of aniline or pyrrole with silver ions. In another approach, polyaniline or polypyrrole are used for the reduction of silver ions to metallic silver. Other synthetic approaches are also reviewed. Products of oxidation of aniline derivatives, including phenylenediamines, are considered. Morphology of both the conducting polymers and the silver in composites displays a rich variety. Conductivity of the composites seldom exceeds 1000 S cm−1 and seems to be controlled by percolation. Interfacial effects are also discussed. Potential applications of hybrid composites are outlined; they are likely to extend especially to conducting inks, printed electronics, noble-metal recovery, antimicrobial materials, catalysts, and sensors.

[1] Afzal, A. B., Akhtar, M. J., Nadeem, M., Ahmad, M., Hassan, M. M., Yasin, T., & Mehmood, M. (2009). Structural and electrical properties of polyaniline/silver nanocomposites. Journal of Physics D: Applied Physics, 42, 015411. DOI: 10.1088/0022-3727/42/1/015411. http://dx.doi.org/10.1088/0022-3727/42/1/01541110.1088/0022-3727/42/1/015411Search in Google Scholar

[2] Afzal, A. B., & Akhtar, M. J. (2010). Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. Journal of Inorganic and Organometallic Polymers and Materials, 20, 783–792. DOI: 10.1007/s10904-010-9405-2. http://dx.doi.org/10.1007/s10904-010-9405-210.1007/s10904-010-9405-2Search in Google Scholar

[3] Afzal, A. B., & Akhtar, M. J. (2011). Investigation of ageing effects on the electrical properties of polayniline/silver nanocomposites. Chinese Physics B, 20, 058102. DOI: 10.1088/1674-1056/20/5/058102. http://dx.doi.org/10.1088/1674-1056/20/5/05810210.1088/1674-1056/20/5/058102Search in Google Scholar

[4] Afzal, A. B., & Akhtar, M. J. (2012). Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iranian Polymer Journal, 21, 489–496. DOI: 10.1007/s13726-012-0053-y. http://dx.doi.org/10.1007/s13726-012-0053-y10.1007/s13726-012-0053-ySearch in Google Scholar

[5] Alam, F., Ansari, S. A., Khan, W., Khan, M. E., & Naqvi, A. H. (2012). Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Functional Materials Letters, 5, 1250026. DOI: 10.1142/s1793604712500269. http://dx.doi.org/10.1142/S179360471250026910.1142/S1793604712500269Search in Google Scholar

[6] Alqudami, A., Annapoorni, S., Sen, P., & Rawat, R. S. (2007). The incorporation of silver nanoparticles into polypyrrole: Conductivity changes. Synthetic Metals, 157, 53–59. DOI: 10.1016/j.synthmet.2006.12.006. http://dx.doi.org/10.1016/j.synthmet.2006.12.00610.1016/j.synthmet.2006.12.006Search in Google Scholar

[7] Ansari, R., & Delavar, A. F. (2008). Sorption of silver ion from aqueous solutions using conducting electroactive polymers. Journal of the Iranian Chemical Society, 5, 657–668. DOI: 10.1007/bf03246147. http://dx.doi.org/10.1007/BF0324614710.1007/BF03246147Search in Google Scholar

[8] Atmeh, M., & Alcock-Earley, B. E. (2011). A conducting polymer/Ag nanoparticle composite as a nitrate sensor. Journal of Applied Electrochemistry, 41, 1341–1347. DOI: 10.1007/s10800-011-0354-4. http://dx.doi.org/10.1007/s10800-011-0354-410.1007/s10800-011-0354-4Search in Google Scholar

[9] Au, K. M., Lu, Z. H., Matcher, S. J., & Armes, S. P. (2011). Polypyrrole nanoparticles: A potential optical coherence tomography contrast agent for cancer imaging. Advanced Materials, 23, 5792–5795. DOI: 10.1002/adma.201103190. http://dx.doi.org/10.1002/adma.20110319010.1002/adma.201103190Search in Google Scholar PubMed

[10] Ayad, M. M., & Zaki, E. (2009). Synthesis and characterization of silver-polypyrrole film composite. Applied Surface Science, 256, 787–791. DOI: 10.1016/j.apsusc.2009.08.060. http://dx.doi.org/10.1016/j.apsusc.2009.08.06010.1016/j.apsusc.2009.08.060Search in Google Scholar

[11] Ayad, M. M., Prastomo, N., Matsuda, A., & Stejskal, J. (2010). Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance. Synthetic Metals, 160, 42–46. DOI: 10.1016/j.synthmet.2009.09.030. http://dx.doi.org/10.1016/j.synthmet.2009.09.03010.1016/j.synthmet.2009.09.030Search in Google Scholar

[12] Baibarac, M., Mihut, L., Louarn, G., Mevellec, J. Y., Wery, J., Lefrant, S., & Baltog, I. (1999). Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. Journal of Raman Spectroscopy, 30, 1105–1113. DOI: 10.1002/(SICI)1097-4555(199912)30:12〈1105::AID-JRS507〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-310.1002/(SICI)1097-4555(199912)30:12<1105::AID-JRS507>3.0.CO;2-3Search in Google Scholar

[13] Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapour sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 378, 94–98. DOI: 10.1016/j.colsurfa.2011.02. 002. http://dx.doi.org/10.1016/j.colsurfa.2011.02.00210.1016/j.colsurfa.2011.02.002Search in Google Scholar

[14] Bashyam, R., & Zelenay, P. (2006). A class of non-precious metal composite catalysts for fuel cells. Nature, 443, 63–66. DOI: 10.1038/nature05118. http://dx.doi.org/10.1038/nature0511810.1038/nature05118Search in Google Scholar

[15] Bedre, M. D., Basavaraja, S., Salwe, B. D., Shivakumar, V., Arunkumar, L., & Venkataraman, A. (2009). Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polymer Composites, 30, 1668–1677. DOI: 10.1002/pc.20740. http://dx.doi.org/10.1002/pc.2074010.1002/pc.20740Search in Google Scholar

[16] Blinova, N. V., Stejskal, J., Trchová, M., Ćirić-Marjanović, G., & Sapurina, I. (2007a). Polymerization of aniline on polyaniline membranes. Journal of Physical Chemistry B, 111, 2440–2448. DOI: 10.1021/jp067370f. http://dx.doi.org/10.1021/jp067370f10.1021/jp067370fSearch in Google Scholar

[17] Blinova, N. V., Stejskal, J., Trchová, M., Prokeš, J., & Omastová, M. (2007b). Polyaniline and polypyrrole: A comparative study of the preparation. European Polymer Journal, 43, 2331–2341. DOI: 10.1016/j.eurpolymj.2007.03.045. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.04510.1016/j.eurpolymj.2007.03.045Search in Google Scholar

[18] Blinova, N. V., Stejskal, J., Trchová, M., Sapurina, I., & Ćirić-Marjanović, G. (2009). The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer, 50, 50–56. DOI: 10.1016/j.polymer.2008.10.040. http://dx.doi.org/10.1016/j.polymer.2008.10.04010.1016/j.polymer.2008.10.040Search in Google Scholar

[19] Blinova, N. V., Bober, P., Hromádková, J., Trchová, M., Stejskal, J., & Prokeš, J. (2010). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International, 59, 437–446. DOI: 10.1002/pi.2718. http://dx.doi.org/10.1002/pi.271810.1002/pi.2718Search in Google Scholar

[20] Bober, P., Stejskal, J., Trchová, M., Hromádková, J., & Prokeš, J. (2010a). Polyaniline-coated silver nanowires. Reactive & Functional Polymers, 70, 656–662. DOI: 10.1016/j.reactfunctpolym.2010.05.009. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.05.00910.1016/j.reactfunctpolym.2010.05.009Search in Google Scholar

[21] Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010b). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j. http://dx.doi.org/10.1021/ma101474j10.1021/ma101474jSearch in Google Scholar

[22] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI: 10.1016/j.polymer.2011.10.025. http://dx.doi.org/10.1016/j.polymer.2011.10.02510.1016/j.polymer.2011.10.025Search in Google Scholar

[23] Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011b). The preparation of conducting polyaniline-silver and poly (p-phenylenediamine)-silver nanocomposites in liquid and frozen reaction mixtures. Journal of Solid State Electrochemistry, 15, 2361–2368. DOI: 10.1007/s10008-011-1414-8. http://dx.doi.org/10.1007/s10008-011-1414-810.1007/s10008-011-1414-8Search in Google Scholar

[24] Bober, P., Trchová, M., Prokeš, J., Varga, M., & Stejskal, J. (2011c). Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta, 56, 3580–3585. DOI: 10.1016/j.electacta.2010.08.041. http://dx.doi.org/10.1016/j.electacta.2010.08.04110.1016/j.electacta.2010.08.041Search in Google Scholar

[25] Borthakur, L. J., Sharma, S., & Dolui, S. K. (2011). Studies on Ag/polypyrrole composite deposited on the surface of styrene-methyl acrylate copolymer microparticles and their electrical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 22, 949–958. DOI: 10.1007/s10854-010-0242-4. http://dx.doi.org/10.1007/s10854-010-0242-410.1007/s10854-010-0242-4Search in Google Scholar

[26] Bouazza, S., Alonzo, V., & Hauchard, D. (2009). Synthesis and characterization of Ag nanoparticles-polyaniline composite powder material. Synthetic Metals, 159, 1612–1619. DOI: 10.1016/j.synthmet.2009.04.025. http://dx.doi.org/10.1016/j.synthmet.2009.04.02510.1016/j.synthmet.2009.04.025Search in Google Scholar

[27] Cao, Y., Smith, P., & Heeger, A. J. (1993). Counter-ion induced processibility of conducting polyaniline. Synthetic Metals, 57, 3514–3519. DOI: 10.1016/0379-6779(93)90468-c. http://dx.doi.org/10.1016/0379-6779(93)90468-C10.1016/0379-6779(93)90468-CSearch in Google Scholar

[28] Chang, S. J., Chen, K., Hua, Q., Ma, Y. S., & Huang, W. X. (2011). Evidence for the growth mechanism of silver nanocubes and nanowires. Journal of Physical Chemistry C, 115, 7979–7986. DOI: 10.1021/jp2010088. http://dx.doi.org/10.1021/jp201008810.1021/jp2010088Search in Google Scholar

[29] Chang, G.H., Luo, Y. L., Lu, W. B., Qin, X.Y., Asiri, A.M., Al-Youbi, A. O., & Sun, X. P. (2012a). Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catalysis Science & Technology, 2, 800–806. DOI: 10.1039/c2cy00454b. http://dx.doi.org/10.1039/c2cy00454b10.1039/c2cy00454bSearch in Google Scholar

[30] Chang, M. C., Kim, T. J., Park, H. W., Kang, M. J., Reichmanis, E., & Yoon, H. S. (2012b). Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Applied Materials & Interfaces, 4, 4357–4365. DOI: 10.1021/am3009967. http://dx.doi.org/10.1021/am300996710.1021/am3009967Search in Google Scholar PubMed

[31] Chao, D. M., Cui, L., Zhang, J. F., Liu, X. C., Li, Y. X., Zhang, W. J., & Wang, C. (2009). Preparation of oligoaniline derivative/polyvinylpyrrolidone nanofibers containing silver nanoparticles. Synthetic Metals, 159, 537–540. DOI: 10.1016/j.synthmet.2008.11.013. http://dx.doi.org/10.1016/j.synthmet.2008.11.01310.1016/j.synthmet.2008.11.013Search in Google Scholar

[32] Chatterjee, S., Garai, A., & Nandi, A. K. (2011). Mechanism of polypyrrole and silver nanorod formation in lauric acidcetyl trimethyl ammonium bromide coacervate gel template: Physical and conductivity properties. Synthetic Metals, 161, 62–71. DOI: 10.1016/j.synthmet.2010.10.035. http://dx.doi.org/10.1016/j.synthmet.2010.10.03510.1016/j.synthmet.2010.10.035Search in Google Scholar

[33] Chen, A. H., Wang, H. Q., & Li, X. Y. (2005a). One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications, 2005, 1863–1864. DOI: 10.1039/b417744d. http://dx.doi.org/10.1039/b417744d10.1039/B417744DSearch in Google Scholar PubMed

[34] Chen, A. H., Kamata, K., Nakagawa, M., Iyoda, T., Wang, H. Q., & Li, X. Y. (2005b). Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). Journal of Physical Chemistry B, 109, 18283–18288. DOI: 10.1021/jp053247x. http://dx.doi.org/10.1021/jp053247x10.1021/jp053247xSearch in Google Scholar PubMed

[35] Chen, A. H., Xie, H. X., Wang, H. Q., Li, H. Y., & Li, X. Y. (2006). Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals, 156, 346–350. DOI: 10.1016/j.synthmet.2005.12.017. http://dx.doi.org/10.1016/j.synthmet.2005.12.01710.1016/j.synthmet.2005.12.017Search in Google Scholar

[36] Chen, R., Zhao, S. Z., Han, G. Y., & Dong, J. H. (2008). Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Materials Letters, 62, 4031–4034. DOI: 10.1016/j.matlet.2008.05.054. http://dx.doi.org/10.1016/j.matlet.2008.05.05410.1016/j.matlet.2008.05.054Search in Google Scholar

[37] Chen, H. M., & Liu, R. S. (2011a). Architecture of metallic nanostructures: Synthesis strategy and specific applications. Journal of Physical Chemistry C, 115, 3513–3527. DOI: 10.1021/jp108403r. http://dx.doi.org/10.1021/jp108403r10.1021/jp108403rSearch in Google Scholar

[38] Chen, F., & Liu, P. (2011b). Conducting polyaniline nanoparticles and their dispersion for waterborn corrosion protection coating. ACS Applied Materials & Interfaces, 3, 2694–2702. DOI: 10.1021/am200488m. http://dx.doi.org/10.1021/am200488m10.1021/am200488mSearch in Google Scholar PubMed

[39] Cheng, D. M., Xia, H. B., & Cahn, H. S. O. (2006). Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates. Nanotechnology, 17, 1661–1667. DOI: 10.1088/0957-4484/17/6/021. http://dx.doi.org/10.1088/0957-4484/17/6/02110.1088/0957-4484/17/6/021Search in Google Scholar PubMed

[40] Cheng, Q. L., Pavlinek, V., He, Y., Yan, Y. F., Li, C. Z., & Saha, P. (2011). Template-free synthesis of hollow poly(oanisidine) microspheres and their electrorheological characteristics. Smart Materials and Structures, 20, 065014. DOI: 10.1088/0964-1726/20/6/065014. http://dx.doi.org/10.1088/0964-1726/20/6/06501410.1088/0964-1726/20/6/065014Search in Google Scholar

[41] Chi, K. W., Song, Y. H., Cha, E. H., Jin, S. H., & Lee, C. W. (2010). Reversible colorimetric changes of a nanoporous polyaniline conducting particles system for sensing metal ions, Synthetic Metals, 160, 946–949. DOI: 10.1016/j.synthmet.2010.02.005. http://dx.doi.org/10.1016/j.synthmet.2010.02.00510.1016/j.synthmet.2010.02.005Search in Google Scholar

[42] Choi, M. J., & Jang, J. S. (2008). Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. Journal of Colloid and Interface Science, 325, 287–289. DOI: 10.1016/j.jcis.2008.05.047. http://dx.doi.org/10.1016/j.jcis.2008.05.04710.1016/j.jcis.2008.05.047Search in Google Scholar PubMed

[43] Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325. DOI: 10.1016/j.snb.2009.01.019. http://dx.doi.org/10.1016/j.snb.2009.01.01910.1016/j.snb.2009.01.019Search in Google Scholar

[44] Choudhury, A., Kar, P., Mukherjee, M., & Adhikari, B. (2009). Polyaniline/silver nanocomposite based acetone vapour sensor. Sensor Letters, 7, 592–598. DOI: 10.1166/sl.2009.1115. http://dx.doi.org/10.1166/sl.2009.111510.1166/sl.2009.1115Search in Google Scholar

[45] Ćirić-Marjanović, G., Trchová, M., Konyushenko, E. N., Holler, P., & Stejskal, J. (2008). Chemical oxidative polymerization of aminodiphenylamines. Journal of Physical Chemistry B, 112, 6976–6987. DOI: 10.1021/jp710963e. http://dx.doi.org/10.1021/jp710963e10.1021/jp710963eSearch in Google Scholar PubMed

[46] Ćirić-Marjanović, G., Marjanović, B., Bober, P., Rozlívková, Z., Stejskal, J., Trchová, M., & Prokeš, J. (2011). The oxidative polymerization of p-phenylenediamine with silver nitrate: Toward highly conducting micro/nanostructured silver/conjugated polymer composites. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3387–3403. DOI: 10.1002/pola.24775. http://dx.doi.org/10.1002/pola.2477510.1002/pola.24775Search in Google Scholar

[47] Correa, C. M., Faez, R., Bizeto, M. A., & Camilo, F. F. (2012). One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid. RSC Advances, 2, 3088–3093. DOI: 10.1039/c2ra00992g. http://dx.doi.org/10.1039/c2ra00992g10.1039/c2ra00992gSearch in Google Scholar

[48] Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03. 026. http://dx.doi.org/10.1016/j.bios.2009.03.026Search in Google Scholar

[49] Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., & Petridis, D. (2007). Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites. Polymer, 48, 2007–2013. DOI: 10.1016/j.polymer.2007.01.058. http://dx.doi.org/10.1016/j.polymer.2007.01.05810.1016/j.polymer.2007.01.058Search in Google Scholar

[50] Dawn, A., & Nandi, A. K. (2006). Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite. Journal of Physical Chemistry B, 110, 18291–18298. DOI: 10.1021/jp063269z. http://dx.doi.org/10.1021/jp063269z10.1021/jp063269zSearch in Google Scholar PubMed

[51] Dawn, A., Mukherjee, P., & Nandi, A. K. (2007). Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer. Langmuir, 23, 5231–5237. DOI: 10.1021/la063229m. http://dx.doi.org/10.1021/la063229m10.1021/la063229mSearch in Google Scholar PubMed

[52] de Azevedo, W. M., de Barros, R. A., & da Silva, E. F. (2008a). Conductive polymer preparation under extreme or non-classical conditions. Journal of Materials Science, 43, 1400–1405. DOI: 10.1007/s10853-007-2278-2. http://dx.doi.org/10.1007/s10853-007-2278-210.1007/s10853-007-2278-2Search in Google Scholar

[53] de Azevedo, W. M., de Mattos, I. L., Navarro, M., & da Silva, E. F., Jr. (2008b). Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite. Applied Surface Science, 255, 770–774. DOI: 10.1016/j.apsusc.2008.07.039. http://dx.doi.org/10.1016/j.apsusc.2008.07.03910.1016/j.apsusc.2008.07.039Search in Google Scholar

[54] de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014. http://dx.doi.org/10.1016/j.synthmet.2005.05.01410.1016/j.synthmet.2005.05.014Search in Google Scholar

[55] de Barros, R. A., & de Azevedo, W. M. (2008). Polyaniline/silver nanocomposite preparation under extreme or nonclassical conditions. Synthetic Metals, 158, 922–926. DOI: 10.1016/j.synthmet.2008.06.021. http://dx.doi.org/10.1016/j.synthmet.2008.06.02110.1016/j.synthmet.2008.06.021Search in Google Scholar

[56] de Barros, R. A., Areias, M. C. C., & de Azevedo, W. M. (2010). Conducting polymer photopolymerization mechanism: The role of nitrate anions (NO 3−). Synthetic Metals, 160, 61–64. DOI: 10.1016/j.synthmet.2009.09.033. http://dx.doi.org/10.1016/j.synthmet.2009.09.03310.1016/j.synthmet.2009.09.033Search in Google Scholar

[57] de Barros, R. A., & de Azevedo, W. M. (2010). Solvent coassisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synthetic Metals, 160, 1387–1391. DOI: 10.1016/j.synthmet.2010.04.006. http://dx.doi.org/10.1016/j.synthmet.2010.04.00610.1016/j.synthmet.2010.04.006Search in Google Scholar

[58] Della Pina, C., Falletta, E., & Rossi, M. (2011). Conductive materials by metal catalyzed polymerization. Catalysis Today, 160, 11–27. DOI: 10.1016/j.cattod.2010.05.023. http://dx.doi.org/10.1016/j.cattod.2010.05.02310.1016/j.cattod.2010.05.023Search in Google Scholar

[59] D’Eramo, F., Silber, J. J., Arévalo, A. H., & Sereno, L. E. (2000). Electrochemical detection of silver ions and the study of metal-polymer interactions on a polybenzidine film electrode. Journal of Electroanalytical Chemistry, 494, 60–68. DOI: 10.1016/s0022-0728(00)00329-6. http://dx.doi.org/10.1016/S0022-0728(00)00329-610.1016/S0022-0728(00)00329-6Search in Google Scholar

[60] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.11210.1016/j.polymer.2006.03.112Search in Google Scholar

[61] Dispenza, C., Sabatino, M. A., Chmielewska, D., LoPresti, C., & Battaglia, G. (2012). Inherently fluorescent polyaniline nanoparticles in a dynamic landscape. Reactive & Functional Polymers, 72, 185–197. DOI: 10.1016/j.reactfunctpolym.2012.01.001. http://dx.doi.org/10.1016/j.reactfunctpolym.2012.01.00110.1016/j.reactfunctpolym.2012.01.001Search in Google Scholar

[62] Drury, A., Chaure, S., Kröll, M., Nicolosi, V., Chaure, N., & Blau, W. J. (2007). Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chemistry of Materials, 19, 4252–4258. DOI: 10.1021/cm071102s. http://dx.doi.org/10.1021/cm071102s10.1021/cm071102sSearch in Google Scholar

[63] Du, J. M., Liu, Z. M., Han, B. X., Li, Z. H., Zhang, J. L., & Huang, Y. (2005). One-pot synthesis of macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials, 84, 254–260. DOI: 10.1016/j.micromeso.2005.05.036. http://dx.doi.org/10.1016/j.micromeso.2005.05.03610.1016/j.micromeso.2005.05.036Search in Google Scholar

[64] Efros, A. L., & Shklovski, B. I. (1976). Critical behaviour of conductivity and dielectric constant near the metal-non-metal transition threshold. Physica Status Solidi B, 76, 475–485. DOI: 10.1002/pssb.2220760205. http://dx.doi.org/10.1002/pssb.222076020510.1002/pssb.2220760205Search in Google Scholar

[65] Feng, X. M. (2010). Synthesis of Ag/polypyrrole core-shell nanospheres by a seeding method. Chinese Journal of Chemistry, 28, 1359–1362. DOI: 10.1002/cjoc.201090232. http://dx.doi.org/10.1002/cjoc.20109023210.1002/cjoc.201090232Search in Google Scholar

[66] Feng, X. M., Huang, H. P., Ye, Q. Q., Zhu, J. J., & Hou, W. H. (2007a). Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles. Journal of Physical Chemistry C, 111, 8463–8468. DOI: 10.1021/jp071140z. http://dx.doi.org/10.1021/jp071140z10.1021/jp071140zSearch in Google Scholar

[67] Feng, X. M., Sun, Z. Z., Hou, W. H., & Zhu, J. J. (2007b). Synthesis of functional polypyrrole/Prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 18, 195603. DOI: 10.1088/0957-4484/18/19/195603. http://dx.doi.org/10.1088/0957-4484/18/19/19560310.1088/0957-4484/18/19/195603Search in Google Scholar

[68] Feng, X. M., Huang, H. P., Xu, L., Zhu, J. J., & Hou, W. H. (2008). Shape-controlled synthesis of polypyrrole/Ag nanostructures in the presence of chitosan. Journal of Nanoscience and Nanotechnology, 8, 443–447. DOI: 10.1166/jnn.2008.028. http://dx.doi.org/10.1166/jnn.2008.05410.1166/jnn.2008.028Search in Google Scholar

[69] Firoz Babu, K., Dhandapani, P., Maruthamuthu, S., & Anbu Kulandainathan, M. (2012). One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90, 1557–1563. DOI: 10.1016/j.carbpol.2012.07.030. http://dx.doi.org/10.1016/j.carbpol.2012.07.03010.1016/j.carbpol.2012.07.030Search in Google Scholar PubMed

[70] Fujii, S., Nishimura, Y., Aichi, A., Matsuzawa, S., Nakamura, Y., Akamatsu, K., & Nawafune, H. (2010). Facile one-step route to polyaniline-silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 160, 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024. http://dx.doi.org/10.1016/j.synthmet.2010.04.02410.1016/j.synthmet.2010.04.024Search in Google Scholar

[71] Fuke, M. V., Vijayan, A., Kanitkar, P., & Aiyer, R. C. (2009a). Optical humidity sensing characteristics of Ag-polyaniline nanocomposite. IEEE Sensors Journal, 9, 648–653. DOI: 10.1109/jsen.2009.2020662. http://dx.doi.org/10.1109/JSEN.2009.202066210.1109/JSEN.2009.2020662Search in Google Scholar

[72] Fuke, M. V., Vijayan, A., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2009b). Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. Journal of Materials Science: Materials in Electronics, 20, 695–703. DOI: 10.1007/s10854-008-9787-x. http://dx.doi.org/10.1007/s10854-008-9787-x10.1007/s10854-008-9787-xSearch in Google Scholar

[73] Fuke, M. V., Kanitkar, P., Kulkarni, M., Kale, B. B., & Aiyer, R. C. (2010). Effect of particle size variation of Ag nanoparticles in polyaniline composite on humidity sensing. Talanta, 81, 320–326. DOI: 10.1016/j.talanta.2009.12.003. http://dx.doi.org/10.1016/j.talanta.2009.12.00310.1016/j.talanta.2009.12.003Search in Google Scholar PubMed

[74] Gao, Y., Shan, D., Cao, F., Gong, J., Li, X., Ma, H. Y., Su, Z. M., & Qu, L. Y. (2009). Silver/polyaniline composite nanotubes: One-step synthesis and electrocatalytic activity of neurotransmitter dopamine. Journal of Physical Chemistry C, 113, 15175–15181. DOI: 10.1021/jp904788d. http://dx.doi.org/10.1021/jp904788d10.1021/jp904788dSearch in Google Scholar

[75] Gao, L., Lv, S., & Xing, S. X. (2012). Facile route to achieve silver@ polyaniline nanofibers. Synthetic Metals, 162, 948–952. DOI: 10.1016/j.synthmet.2012.04.026. http://dx.doi.org/10.1016/j.synthmet.2012.04.02610.1016/j.synthmet.2012.04.026Search in Google Scholar

[76] Garai, A., Chatterjee, S., & Nandi, A. K. (2010). Nanocomposites of silver nanoparticle and dinonylnaphthalene disulfonic acid-doped thermoreversible polyaniline gel. Polymer Engineering & Science, 50, 446–454. DOI: 10.1002/pen.21545. http://dx.doi.org/10.1002/pen.2154510.1002/pen.21545Search in Google Scholar

[77] Ghorbani, M., Lashkenari, M. S., & Eisazadeh, H. (2011). Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Performance Polymers, 23, 513–517. DOI: 10.1177/0954008311419049. http://dx.doi.org/10.1177/095400831141904910.1177/0954008311419049Search in Google Scholar

[78] Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum of antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018. http://dx.doi.org/10.1016/j.actbio.2011.07.01810.1016/j.actbio.2011.07.018Search in Google Scholar PubMed

[79] Gniadek, M., Bak, E., Stojek, Z., & Donten, M. (2010a). Metalion driven synthesis of polyaniline composite doped with metallic nanocrystals at the boudary of two immiscible liquids. Journal of Solid State Electrochemistry, 14, 1303–1310. DOI: 10.1007/s10008-009-0939-6. http://dx.doi.org/10.1007/s10008-009-0939-610.1007/s10008-009-0939-6Search in Google Scholar

[80] Gniadek, M., Donten, M., & Stojek Z. (2010b). Electroless formation of conductive polymer-metal nanostructured composites at boundry of two immiscible solvents. Morphology and properties. Electrochimica Acta, 55, 7737–7744. DOI: 10.1016/j.electacta.2009.10.064. http://dx.doi.org/10.1016/j.electacta.2009.10.06410.1016/j.electacta.2009.10.064Search in Google Scholar

[81] Grinou, A., Bak, H. S., Yun, Y. S., & Jin, H. J. (2012). Polyaniline/silver nanoparticle-doped multiwalled carbon nanotube composites. Journal of Dispersion Science and Technology, 33, 750–755. DOI: 10.1080/01932691.2011.567862. http://dx.doi.org/10.1080/01932691.2011.56786210.1080/01932691.2011.567862Search in Google Scholar

[82] Guo, S. J., & Wang, E. K. (2008). One pot, facile synthesis of hierarchical silver nanostrip assembling architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 673–678. DOI: 10.1016/j.colsurfa.2007.12.002. http://dx.doi.org/10.1016/j.colsurfa.2007.12.00210.1016/j.colsurfa.2007.12.002Search in Google Scholar

[83] Gupta, K., Jana, P. C., & Meikap, A. K. (2010). Optical and electrical properties of polyaniline-silver nanocomposite. Synthetic Metals, 160, 1566–1573. DOI: 10.1016/j.synthmet. 2010.05.026. http://dx.doi.org/10.1016/j.synthmet.2010.05.02610.1016/j.synthmet.2010.05.026Search in Google Scholar

[84] Han, J., Fang, P., Jiang, W. J., Li, L., & Guo, R. (2012). Ag-Nanoparticle-loaded mesoporous silica: Spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir, 28, 4768–4775. DOI: 10.1021/la204503b. http://dx.doi.org/10.1021/la204503b10.1021/la204503bSearch in Google Scholar PubMed

[85] He, J. J., Han, X. J., Yan, J., Kang, L. L., Zhang, B., Du, Y. C., Dong, C. K., Wang, H. L., & Xu, P. (2012a). Fast fabrication of homogeneous silver nanostructures on hydrazine treated polyaniline films for SERS applications. CrystEngComm, 14, 4952–4954. DOI: 10.1039/c2ce25257k. http://dx.doi.org/10.1039/c2ce25257k10.1039/c2ce25257kSearch in Google Scholar

[86] He, Z. W., Lü, Q. F., & Zhang, J. Y. (2012b). Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Applied Materials & Interfaces, 4, 369–374. DOI: 10.1021/am201447s. http://dx.doi.org/10.1021/am201447s10.1021/am201447sSearch in Google Scholar PubMed

[87] Hosseini, M., & Momeni, M. M. (2010). Silver nanoparticles dispersed in polyaniline matrix coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. Journal of Materials Science, 45, 3304–3310. DOI: 10.1007/s10853-010-4347-1. http://dx.doi.org/10.1007/s10853-010-4347-110.1007/s10853-010-4347-1Search in Google Scholar

[88] Huang, M. R., Li, X. G., & Li, S. X. (2005). The synthesis of polydiaminonaphthalene and its highly reactive adsorption for heavy metal ions. Progress in Chemistry, 17, 299–309. Search in Google Scholar

[89] Huang, L. M., Huang, G. C., & Wen, T. C. (2006a). Role of anions in the polymerization of 2,5-dimethylaniline in the presence of poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 6624–6632. DOI: 10.1002/pola.21745. http://dx.doi.org/10.1002/pola.2174510.1002/pola.21745Search in Google Scholar

[90] Huang, L. M., Tsai, C. C., Wen, T. C., & Gopalan, A. (2006b). Simultaneous synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Journal of Polymer Science: Part A: Polymer Chemistry, 44, 3843–3852. DOI: 10.1002/pola.21479. http://dx.doi.org/10.1002/pola.2147910.1002/pola.21479Search in Google Scholar

[91] Huang, L. M., & Wen, T. C. (2007). One-step synthesis of silver nanoparticles and poly(2,5-dimethoxyaniline) in poly(styrene sulfonic acid). Materials Science and Engineering A, 445–446, 7–13. DOI: 10.1016/j.msea.2006.05.121. http://dx.doi.org/10.1016/j.msea.2006.05.12110.1016/j.msea.2006.05.121Search in Google Scholar

[92] Huang, L. M., Liao, W. H., Ling, H. C., & Wen, T. C. (2009). Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles. Materials Chemistry and Physics, 116, 474–478. DOI: 10.1016/j.matchemphys.2009.04.035. http://dx.doi.org/10.1016/j.matchemphys.2009.04.03510.1016/j.matchemphys.2009.04.035Search in Google Scholar

[93] Huang, Z. H., Shi, L., Zhu, Q. R., Zou, J. T., & Chen, T. (2010). Fabrication of polyaniline/silver nanocomposite under γ-ray irradiation. Chinese Journal of Chemical Physics, 23, 701–706. DOI: 10.1088/1674-0068/23/06/701-706. http://dx.doi.org/10.1088/1674-0068/23/06/701-70610.1088/1674-0068/23/06/701-706Search in Google Scholar

[94] Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012a). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024. http://dx.doi.org/10.1016/j.synthmet.2012.02.02410.1016/j.synthmet.2012.02.024Search in Google Scholar

[95] Humpoliček, P., Kašpárková, Z., & Ševčíkověká, P. (2012b). Proliferace buněk na vodivém polymeru, polyanilinu. Chemické Listy, 106, 380–383. (in Czech) Search in Google Scholar

[96] Ihalainen, P., Määttänen, A., Järnström, J., Tobjörk, D., Österbacka, R., & Peltonen, J. (2012). Influence of surface properties of coated papers on printed electronics. Industrial & Engineering Chemistry Research, 51, 6025–6036. DOI: 10.1021/ie202807v. http://dx.doi.org/10.1021/ie202807v10.1021/ie202807vSearch in Google Scholar

[97] Ijeri, V. S., Nair, J. R., Gerbaldi, C., Gonnelli, R. S., Bodoardo, S., & Bongiovanni, R. M. (2010). An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 6, 4666–4668. DOI: 10.1039/c0sm00530d. http://dx.doi.org/10.1039/c0sm00530d10.1039/c0sm00530dSearch in Google Scholar

[98] Ivanov, S., & Tsakova, V. (2005). Electroless versus electrodriven deposition of silver crystals in polyaniline. Role of silver anion complexes. Electrochimica Acta, 50, 5616–5623. DOI: 10.1016/j.electacta.2005.03.040. http://dx.doi.org/10.1016/j.electacta.2005.03.04010.1016/j.electacta.2005.03.040Search in Google Scholar

[99] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010a). Effect of Ag+ on the morphologies and properties of polyaniline. Rare Metal Materials and Engineering, 39(Supplement 1), 538–543. Search in Google Scholar

[100] Jia, Q. M., Shan, S. Y., Jiang, L. H., & Wang, Y. M. (2010b). One-step synthesis of polyaniline nanofibers decorated with silver. Journal of Applied Polymer Science, 115, 26–31. DOI: 10.1002/app.30373. http://dx.doi.org/10.1002/app.3037310.1002/app.30373Search in Google Scholar

[101] Jia, Q. M., Shan, S. Y., Jiang, L. H., Wang, Y. M., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257. http://dx.doi.org/10.1002/app.3625710.1002/app.36257Search in Google Scholar

[102] Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M. T., Benito, A. M., & Maser, W. K. (2010). Carbon nanotube effect on polyaniline morphology in water dispersible composites. Journal of Physical Chemistry B, 114, 1579–1585. DOI: 10.1021/jp909093e. http://dx.doi.org/10.1021/jp909093e10.1021/jp909093eSearch in Google Scholar PubMed

[103] Jing, S. G., Xing, S. X., Yu, L. X., Wu, Y., & Zhao, C. (2007a). Synthesis and characterization of Ag/polyaniline core-shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 2794–2797. DOI: 10.1016/j.matlet.2006.10.032. http://dx.doi.org/10.1016/j.matlet.2006.10.03210.1016/j.matlet.2006.10.032Search in Google Scholar

[104] Jing, S. G., Xing, S. X., Yu, L. X., & Zhao, C. (2007b). Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 61, 4528–4530. DOI: 10.1016/j.matlet.2007.02.045. http://dx.doi.org/10.1016/j.matlet.2007.02.04510.1016/j.matlet.2007.02.045Search in Google Scholar

[105] Joo, J., & Lee, C. Y. (2000). High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. Journal of Applied Physics, 88, 513–518. DOI: 10.1063/1.373688. http://dx.doi.org/10.1063/1.37368810.1063/1.373688Search in Google Scholar

[106] Jung, Y. J., Govindaiah, P., Choi, S. W., Cheong, I. W., & Kim, J. H. (2011). Morphology and conducting property of Ag/poly(pyrrole) composite nanoparticles: Effect of polymeric stabilizers. Synthetic Metals, 161, 1991–1995. DOI: 10.1016/j.synthmet.2011.07.009. http://dx.doi.org/10.1016/j.synthmet.2011.07.00910.1016/j.synthmet.2011.07.009Search in Google Scholar

[107] Kabir, L., Mandal, A. R., & Mandal, S. K. (2008). Humiditysensing properties of conducting polypyrrole-silver nanocomposites. Journal of Experimental Nanoscience, 3, 297–305. DOI: 10.1080/17458080802512494. http://dx.doi.org/10.1080/1745808080251249410.1080/17458080802512494Search in Google Scholar

[108] Kang, Y. O., Choi, S. H., Gopalan, A., Lee, K. P., Kang, H. D., & Song, Y. S. (2006). Tuning of morphology of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. Journal of Non-Crystalline Solids, 352, 463–468. DOI: 10.1016/j.jnoncrysol.2006.01.043. http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.04310.1016/j.jnoncrysol.2006.01.043Search in Google Scholar

[109] Kanwal, F., Ishaq, S., & Jamil, T. (2009). Synthesis and characterization of silver hexacyanoferrate (II)/polyaniline composites. Journal of the Chemical Society of Pakistan, 31, 907–910. Search in Google Scholar

[110] Kar, P., Pradhan, N. C., & Adhikari, B. (2011). Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polymers for Advanced Technologies, 22, 1060–1066. DOI: 10.1002/pat.1622. http://dx.doi.org/10.1002/pat.162210.1002/pat.1622Search in Google Scholar

[111] Karim, M. R., Lim, K. T., Lee, C. J., Bhuiyan, M. T. I., Kim, H. J., Park, L. S., & Lee, M. S. (2007). Synthesis of coreshell silver-polyaniline nanocomposites by gamma radiolysis method. Journal of Polymer Science, Part A: Polymer Chemistry, 45, 5741–5747. DOI: 10.1002/pola.22323. http://dx.doi.org/10.1002/pola.2232310.1002/pola.22323Search in Google Scholar

[112] Karim, M. R., Yeum, J. H., Lee, M. Y., Lee, M. S., & Lim, K. T. (2009). UV-curing synthesis of sulfonated polyanilinesilver nanocomposites by an in situ reduction method. Polymers for Advanced Technologies, 20, 639–644. DOI: 10.1002/pat.1317. http://dx.doi.org/10.1002/pat.131710.1002/pat.1317Search in Google Scholar

[113] Kate, K. H., Damkale, S. R., Khanna, P. K., & Jain, G. H. (2011). Nano-silver mediated polymerization of pyrrole: Syn thesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology, 11, 7863–7869. DOI: 10.1166/jnn.2011.4708. http://dx.doi.org/10.1166/jnn.2011.470810.1166/jnn.2011.4708Search in Google Scholar PubMed

[114] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 107, 668–677. DOI: 10.1021/jp026731y. http://dx.doi.org/10.1021/jp026731y10.1021/jp026731ySearch in Google Scholar

[115] Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 35, 5571–5577. DOI: 10.1002/ejic.200700608. http://dx.doi.org/10.1002/ejic.20070060810.1002/ejic.200700608Search in Google Scholar

[116] Khanna, P. K., Singh, N., Charan, S., & Viswanath, A. K. (2005). Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics, 92, 214–219. DOI: 10.1016/j.matchemphys.2005.01.011. http://dx.doi.org/10.1016/j.matchemphys.2005.01.01110.1016/j.matchemphys.2005.01.011Search in Google Scholar

[117] Kim, K. S., Kim, I. J., & Park, S. J. (2010a). Influence of Ag doped graphene on electrochemical behaviours and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals, 160, 2355–2360. DOI: 10.1016/j.synthmet.2010.09.011. http://dx.doi.org/10.1016/j.synthmet.2010.09.01110.1016/j.synthmet.2010.09.011Search in Google Scholar

[118] Kim, H. J., Park, S. H., & Park, H. J. (2010b). Synthesis of a new electrically conducting nanosized Ag-polyaniline-silica complex using γ-radiolysis and its biosensing applications. Radiation Physics and Chemistry, 79, 894–899. DOI: 10.1016/j.radphyschem.2010.02.005. http://dx.doi.org/10.1016/j.radphyschem.2010.02.00510.1016/j.radphyschem.2010.02.005Search in Google Scholar

[119] Kim, K. S., & Park, S. J. (2011). Influence of silver-decorated multi-walled carbon nanotubes on electrochemical performance of polyaniline-based electrodes. Journal of Solid State Electrochemistry, 184, 2724–2730. DOI: 10.1016/j.jssc.2011.08.010. http://dx.doi.org/10.1016/j.jssc.2011.08.01010.1016/j.jssc.2011.08.010Search in Google Scholar

[120] Kim, H. J., Park, S. H., & Park, H. J. (2011). Hydrogen peroxide sensor based on electrically conducting nanosized Agpolyaniline-silica complex. Sensor Letters, 9, 59–63. DOI: 10.1166/sl.2011.1419. http://dx.doi.org/10.1166/sl.2011.141910.1166/sl.2011.1419Search in Google Scholar

[121] Kim, H. J., Choi, S. H., & Park, H. J. (2012). Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties. Radiation Physics and Chemistry, 81, 1612–1620. DOI: 10.1016/j.radphyschem.2012.04.013. http://dx.doi.org/10.1016/j.radphyschem.2012.04.01310.1016/j.radphyschem.2012.04.013Search in Google Scholar

[122] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J. Prokeš, J., Cieslar, M., Hwang, J. Y., Chen, K. H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Search in Google Scholar

[123] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008a). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes contaning nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Search in Google Scholar

[124] Konyushenko, E. N., Stejskal, J., Trchová, M., Blinova, N. V., & Holler, P. (2008b). Polymerization of aniline in ice. Synthetic Metals, 158, 927–933. DOI: 10.1016/j.synthmet.2008.06.015. http://dx.doi.org/10.1016/j.synthmet.2008.06.01510.1016/j.synthmet.2008.06.015Search in Google Scholar

[125] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar

[126] Kovałchuk, E. P., Ogenko, V. M., Reshetnyak, O. V., Pereviznyk, O. B., Davydenko, N., & Marchuk, I. E. (2010). Surface modification of silver microparticles with 4-thioaniline. Electrochimica Acta, 55, 5154–5162. DOI: 10.1016/j. electacta.2010.04.023. http://dx.doi.org/10.1016/j.electacta.2010.04.02310.1016/j.electacta.2010.04.023Search in Google Scholar

[127] Krishna, J. B. M., Abhaya, S., Amarendra, G., Sundar, C. S., Saha, A., & Ghosh, B. (2008). Positron beam studies on polyaniline and Ag-coated polyaniline. Applied Surface Science, 255, 248–250. DOI:10.1016/j.apsusc.2008.05.189. http://dx.doi.org/10.1016/j.apsusc.2008.05.18910.1016/j.apsusc.2008.05.189Search in Google Scholar

[128] Křivka, I., Prokeš, J., Tobolková, E., & Stejskal, J. (1999). Application of percolation concepts to electrical conductivity of polyaniline-inorganic salt composites. Journal of Materials Chemistry, 9, 2425–2428. DOI: 10.1039/a904687i. http://dx.doi.org/10.1039/a904687i10.1039/a904687iSearch in Google Scholar

[129] Křížko, E. N., Trchová, M., & Stejskal, J. (2011). NMR investigation of aniline oligomers produced in the oxidation of aniline in alkaline medium. Polymer International, 60, 1296–1302. DOI: 10.1002/pi.3079. 10.1002/pi.3079Search in Google Scholar

[130] Krutyakov, Y. A., Kudrinsky, A. A., Olenin, A. Y., & Lisichkin, G. V. (2010). Synthesis of highly stable silver colloids stabilized with water soluble sulfonated polyaniline. Applied Surface Science, 256, 7037–7042. DOI: 10.1016/j.apsusc.2010. 05.020. http://dx.doi.org/10.1016/j.apsusc.2010.05.02010.1016/j.apsusc.2010.05.020Search in Google Scholar

[131] Lee, C. Y., Song, H. G., Jang, K. S., Oh, E. J., Epstein, A. J., & Joo, J. (1999). Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synthetic Metals, 102, 1346–1349. DOI: 10.1016/s0379-6779(98)00234-3. http://dx.doi.org/10.1016/S0379-6779(98)00234-310.1016/S0379-6779(98)00234-3Search in Google Scholar

[132] Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., Kim, M. S., Lee, J. Y., Jeong, S. H., Byun, S. W., Zang, D. S., & Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13, 577–583. DOI: 10.1002/pat227. http://dx.doi.org/10.1002/pat.227Search in Google Scholar

[133] Lee, H. T., & Liu, Y. C. (2005). Catalytic electrooxidation pathway for the polymerization of polypyrrole in the presence of ultrafine silver nanoparticles. Polymer, 46, 10727–10732. DOI: 10.1016/j.polymer.2005.09.031. http://dx.doi.org/10.1016/j.polymer.2005.09.03110.1016/j.polymer.2005.09.031Search in Google Scholar

[134] Lee, K., Cho, S., Sung, H. P., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature0470510.1038/nature04705Search in Google Scholar PubMed

[135] Lee, C. W., Jin, S. H., Yoon, K. S., Jeong, H. M., & Chi, K. W. (2009). Efficient oxidation of hydroquinone and alcohols by tailor-made solid polyaniline catalyst. Tetrahedron Letters, 50, 559–561. DOI: 10.1016/j.tetlet.2008.11.062. http://dx.doi.org/10.1016/j.tetlet.2008.11.06210.1016/j.tetlet.2008.11.062Search in Google Scholar

[136] Lee, Y. J., Kim, E. H., Kim, K. J., Lee, B. H., & Choe, S. J. (2012). Polyaniline effect on the conductivity of the PMMA/Ag hybrid composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 195–202. DOI: 10.1016/j.colsurfa.2011.12.071. http://dx.doi.org/10.1016/j.colsurfa.2011.12.07110.1016/j.colsurfa.2011.12.071Search in Google Scholar

[137] Leyva, M. E., Garcia, F. G., Alencar de Queiroz, A. A., & Soares, D. A. W. (2011). Electrical properties of the DGEBA/PANI-Ag composites. Journal of Materials Science: Materials in Electronics, 22, 376–383. DOI: 10.1007/s10854-010-0146-3. http://dx.doi.org/10.1007/s10854-010-0146-310.1007/s10854-010-0146-3Search in Google Scholar

[138] Li, X. G., Liu, R., & Huang, M. R. (2005). Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chemistry of Materials, 17, 5411–5419. DOI: 10.1021/cm050813s. http://dx.doi.org/10.1021/cm050813s10.1021/cm050813sSearch in Google Scholar

[139] Li, W. G., Jia, Q. X., & Wang, H. L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.03210.1016/j.polymer.2005.11.032Search in Google Scholar

[140] Li, J., Tang, H. Q., Zhang, A. Q., Shen, X. T., & Zhu, L. H. (2007). A new strategy for the synthesis of polyaniline nanostructures: From nanofibers to nanowires. Macromolecular Rapid Communications, 28, 740–745: DOI: 10.1002/marc.200600810. http://dx.doi.org/10.1002/marc.20060081010.1002/marc.200600810Search in Google Scholar

[141] Li, X., Gao, Y., Gong, J., Zhang, L., & Qu, L. Y. (2009a). Polyaniline/Ag composite nanotubes prepared through UV rays irradiation via fiber template approach and their NH3 gas sensitivity. Journal of Physical Chemistry C, 113, 69–73. DOI: 10.1021/jp807535v. http://dx.doi.org/10.1021/jp807535v10.1021/jp807535vSearch in Google Scholar

[142] Li, X., Gao, Y., Liu, F. H., Gong, J., & Qu, L. Y. (2009b). Synthesis of polyaniline/Ag composite nanospheres through UV rays irradiation method. Materials Letters, 63, 467–469. DOI: 10.1016/j.matlet.2008.11.027. http://dx.doi.org/10.1016/j.matlet.2008.11.02710.1016/j.matlet.2008.11.027Search in Google Scholar

[143] Li, X. G., Ma, X. L., Sun, J., & Huang, M. R. (2009c). Powerful reactive sorption of silver(I) and mercury(II) onto poly (o-phenylenediamine) microparticles. Langmuir, 25, 1675–1684. DOI: 10.1021/la802410p. http://dx.doi.org/10.1021/la802410p10.1021/la802410pSearch in Google Scholar PubMed

[144] Li, B., Xu, Y. L., Chen, J., Chen, G. R., Zhao, C. J., Qian, X. Z., & Wang, M. (2009d). Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Applied Surface Science, 256, 235–238. DOI: 10.1016/j.apsusc.2009.08.006. http://dx.doi.org/10.1016/j.apsusc.2009.08.00610.1016/j.apsusc.2009.08.006Search in Google Scholar

[145] Li, X. G., Feng, H., & Huang, M. R. (2010). Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry — A European Journal, 16, 10113–10123. DOI: 10.1002/chem.201000506. http://dx.doi.org/10.1002/chem.20100050610.1002/chem.201000506Search in Google Scholar PubMed

[146] Li, Z. H., & Wang, Y. W. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31, 1662–1668. DOI: 10.1002/pc.20956. http://dx.doi.org/10.1002/pc.2095610.1002/pc.20956Search in Google Scholar

[147] Li, B. T., Tang, L. M., Chen, K., Xia, Y., & Jin, X. (2011). Coordinated organogel templated fabrication of silver/polypyrrole composite nanowires. Chinese Chemical Letters, 22, 123–126. DOI: 10.1016/j.cclet.2010.06.034. http://dx.doi.org/10.1016/j.cclet.2010.06.03410.1016/j.cclet.2010.06.034Search in Google Scholar

[148] Li, Z. F., Blum, F. D., Bertino, M. F., & Kim, C. S. (2012a). Amplified response and enhanced selectivity of metal-PANI fiber composite based vapor sensors. Sensors and Actuators B: Chemical, 161, 390–395. DOI: 10.1016/j.sab.2011.10.049. http://dx.doi.org/10.1016/j.snb.2011.10.049Search in Google Scholar

[149] Li, Z. H., Lin, W., Lu, J. T., Laven, J., & Foyet, A. (2012b). Reversed micelle synthesis of Ag/polyaniline nanocomposites via an in situ ultraviolet photo-redox mechanism. Polymer Composites, 33, 451–458. DOI: 10.1002/pc.21211. http://dx.doi.org/10.1002/pc.2121110.1002/pc.21211Search in Google Scholar

[150] Liang, X. X., Sun, M. X., Li, L. C., Qiao, R., Chen, K., Xiao, Q. S., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h. http://dx.doi.org/10.1039/c2dt11823h10.1039/c2dt11823hSearch in Google Scholar PubMed

[151] Liao, F., Wang, Z. F., & Hu, X. Q. (2011a). Shape-controllable synthesis of dendritic silver nanostructures at room temperature. Colloid Journal, 73, 504–508. DOI: 10.1134/s1061933 x11040053. http://dx.doi.org/10.1134/S1061933X1104005310.1134/S1061933X11040053Search in Google Scholar

[152] Liao, F., Wang, Z. F., & Hu, X. Q. (2011b). Growth of different morphologies of silver submicrostructures: The effect of concentrations and pH. Ionics, 17, 177–182. DOI: 10.1007/s11581-010-0499-x. http://dx.doi.org/10.1007/s11581-010-0499-x10.1007/s11581-010-0499-xSearch in Google Scholar

[153] Liao, F., Wang, Z. F., & Sun, X. P. (2012). A novel method self-assemle silver nanowires at room temperature. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 325–328. DOI: 10.1080/15533174.2011.610767. http://dx.doi.org/10.1080/15533174.2011.61076710.1080/15533174.2011.610767Search in Google Scholar

[154] Lim, C. W., Song, K., & Kim, S. H. (2012). Synthesis of PPy/silica nanocomposites with cratered surfaces and their application in heavy metal extraction. Journal of Industrial and Engineering Chemistry, 18, 24–28. DOI: 10.1016/j.jiec.2011.11.115. http://dx.doi.org/10.1016/j.jiec.2011.11.11510.1016/j.jiec.2011.11.115Search in Google Scholar

[155] Liu, Z. C., Su, Y., & Varahramyan, K. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279. DOI: 10.1016/j.tsf.2004.11.077. http://dx.doi.org/10.1016/j.tsf.2004.11.07710.1016/j.tsf.2004.11.077Search in Google Scholar

[156] Luo, C. H., Peng, H., Zhang, L. J., Lu, G. L., Wang, Y. T., & Travas-Sejdic, J. (2011). Formation of nano-/microstructures of polyaniline and its derivatives. Macromolecules, 44, 6899–6907. DOI: 10.1021/ma201350m. http://dx.doi.org/10.1021/ma201350m10.1021/ma201350mSearch in Google Scholar

[157] Lyutov, V., & Tsakova, V. (2011). Silver particles-modified polysulfonic acid-doped polyaniline layers: electroless deposition of silver in slightly acidic and neutral solutions. Journal of Solid State Electrochemistry, 15, 2553–2561. DOI: 10.1007/s10008-011-1451-3. http://dx.doi.org/10.1007/s10008-011-1451-310.1007/s10008-011-1451-3Search in Google Scholar

[158] Mack, N. H., Bailey, J. A., Doorn, S. K., Chen, C. A., Gau, H. M., Xu, P., Williams, D. J., Akhadov, E. A., & Wang, H. L. (2011). Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir, 27, 4979–4985. DOI: 10.1021/la103644j. http://dx.doi.org/10.1021/la103644j10.1021/la103644jSearch in Google Scholar PubMed

[159] Mahmoudian, M. R., Alias, Y., Basirun, W. J., & Ebadi, M. (2012). Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 72, 46–52. DOI: 10.1016/j.electacta.2012.03.144. http://dx.doi.org/10.1016/j.electacta.2012.03.14410.1016/j.electacta.2012.03.144Search in Google Scholar

[160] Mai, L. Q., Xu, X., Han, C. H., Luo, Y. Z., Xu, L., Wu, Y. A., & Zhao, Y. L. (2011). Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Letters, 11, 4992–4996. DOI: 10.1021/nl202943b. http://dx.doi.org/10.1021/nl202943b10.1021/nl202943bSearch in Google Scholar PubMed

[161] Manesh, K. M., Gopalan, A. I., Lee, K. P., & Shanmugasundaram, K. (2010). Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergetic influence for catalysis. Catalysis Communications, 11, 913–918. DOI: 10.1016/j.catcom.2010.03.013. http://dx.doi.org/10.1016/j.catcom.2010.03.01310.1016/j.catcom.2010.03.013Search in Google Scholar

[162] Manivel, A., & Anandan, S. (2011). Silver nanoparticles embedded phosphomolybdate-polyaniline hybrid electrode for electrocatalytic reduction of H2O2. Journal of Solid State Electrochemistry, 15, 153–160. DOI: 10.1007/s10008-010-1080-2. http://dx.doi.org/10.1007/s10008-010-1080-210.1007/s10008-010-1080-2Search in Google Scholar

[163] Manivel, A., Sivakumar, R., Anandan, S., & Ashokkumar, M. (2012). Ultrasound-assisted synthesis of hybrid phosphomolybdate-polybenzidine containing silver nanoparticles for electrocatalytic detection of chlorate, bromate and iodate ions in aqueous solution. Electrocatalysis, 3, 22–29. DOI: 10.1007/s12678-011-0072-z. http://dx.doi.org/10.1007/s12678-011-0072-z10.1007/s12678-011-0072-zSearch in Google Scholar

[164] Martins, C. R., de Almeida, Y. M., do Nascimento, G. C., & de Azevedo, W. M. (2006). Metal nanoparticles incorporation during the photopolymerization of polypyrrole. Journal of Materials Science, 41, 7413–7418. DOI: 10.1007/s10853-006-0795-z. http://dx.doi.org/10.1007/s10853-006-0795-z10.1007/s10853-006-0795-zSearch in Google Scholar

[165] Mazur, M., Michota-Kamińska, A., & Bukowska, J. (2007). Facile electrochemical fabrication of polymeric templates for spatially selective deposition of metals. Electrochemistry Communications, 9, 2418–2422. DOI: 10.1016/j.elecom.2007. 07.018. http://dx.doi.org/10.1016/j.elecom.2007.07.01810.1016/j.elecom.2007.07.018Search in Google Scholar

[166] Mo, Z. L., Zuo, D. D., Chen, H., Sun, Y. X., & Zhang, P. (2007). Synthesis of graphite nanosheets/AgCl/polypyrrole composites via two-step inverse microemulsion method. European Polymer Journal, 43, 300–306. DOI: 10.1016/j.eurpolymj.2006.11.023. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.02310.1016/j.eurpolymj.2006.11.023Search in Google Scholar

[167] Mukherjee, P., & Nandi, A. K. (2009). Electronic properties of poly(o-methoxy aniline)-silver nanocomposite thin films: influence of nanoparticle size and density. Journal of Materials Chemistry, 19, 781–786. DOI: 10.1039/b813203h. 10.1039/B813203HSearch in Google Scholar

[168] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2008a). Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small, 4, 1301–1306. DOI: 10.1002/smll.200701199. http://dx.doi.org/10.1002/smll.20070119910.1002/smll.200701199Search in Google Scholar PubMed

[169] Muñoz-Rojas, D., Oró-Solé, J., & Gómez-Romero, P. (2008b). From nanosnakes to nanosheets: A matrix-mediated shape evolution. Journal of Physical Chemistry C, 112, 20312–20318. DOI: 10.1021/jp808187w. http://dx.doi.org/10.1021/jp808187w10.1021/jp808187wSearch in Google Scholar

[170] Muñoz-Rojas, D., Oró-Solé, J., Ayyad, O., & Gómez-Romero, P. (2011). Shaping hybrid nanostructures with polymer matrices: the formation mechanism of silver-polypyrrole core/shell nanostructures. Journal of Materials Chemistry, 21, 2078–2086. DOI: 10.1039/c0jm01449d. http://dx.doi.org/10.1039/c0jm01449d10.1039/C0JM01449DSearch in Google Scholar

[171] Nadagouda, M. N., & Varma, R. S. (2007). Room temperature bulk synthesis of silver nanocables wrapped with polypyrrole. Macromolecular Rapid Communications, 28, 2106–2111. DOI: 10.1002/marc.200700495. http://dx.doi.org/10.1002/marc.20070049510.1002/marc.200700495Search in Google Scholar

[172] Nadagouda, M. N., & Varma, R. S. (2008). Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: Catalytic polymerization of aniline and pyrrole. Journal of Nanomaterials, 2008, 782358. DOI: 10.1155/2008/782358. http://dx.doi.org/10.1155/2008/78235810.1155/2008/782358Search in Google Scholar

[173] Narang, J., Chauhan, N., Jain, P., & Pundir, C. S. (2012). Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules, 50, 672–678. DOI: 10.1016/j.ijbiomac.2012.01.023. http://dx.doi.org/10.1016/j.ijbiomac.2012.01.02310.1016/j.ijbiomac.2012.01.023Search in Google Scholar PubMed

[174] Neelgund, G. M., Hrehorova, E., Joyce, M., & Bliznyuk, V. (2008). Synthesis and characterization of polyaniline derivatives and silver nanoparticle composites. Polymer International, 57, 1083–1089. DOI: 10.1002/pi.2445. http://dx.doi.org/10.1002/pi.244510.1002/pi.2445Search in Google Scholar

[175] Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005. http://dx.doi.org/10.1016/j.compscitech.2010.11.00510.1016/j.compscitech.2010.11.005Search in Google Scholar

[176] Nguyen, V. H., & Shim, J. J. (2011). Facile synthesis and characterization of carbon nanotubes/silver nanohybrids coated with polyaniline. Synthetic Metals, 161, 2078–2082. DOI: 10.1016/j.synthmet.2011.07.017. http://dx.doi.org/10.1016/j.synthmet.2011.07.01710.1016/j.synthmet.2011.07.017Search in Google Scholar

[177] Ocypa, M., Ptacińska, M., Michalska, A., Maksymiuk, K., & Hall, E. A. H. (2006). Electroless silver deposition on polypyrrole and poly(3,4-ethylenedioxythiophene): The reaction/diffusion balance. Journal of Electroanalytical Chemistry, 596, 157–168. DOI: 10.1016/j.jelechem.2006.07.032. http://dx.doi.org/10.1016/j.jelechem.2006.07.03210.1016/j.jelechem.2006.07.032Search in Google Scholar

[178] Oliveira, M. M., Zanchet, D., Ugarte, D., & Zarbin, A. J. G. (2004) Synthesis and characterization of silver nanoparticle/polyaniline nanocomposites. Progress in Colloid and Polymer Science, 128, 49–60. DOI: 10.1007/b97108. 10.1007/b97108Search in Google Scholar

[179] Oliveira, M. M., Castro, E. G., Canestraro, C. D., Zanchet, D., Ugarte, D., Roman, L. S., & Zarbin, A. J. G. (2006). A simple two-phase route to silver nanoparticles/polyaniline structures. Journal of Physical Chemistry B, 110, 17063–17069. DOI: 10.1021/jp060861f. http://dx.doi.org/10.1021/jp060861f10.1021/jp060861fSearch in Google Scholar

[180] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-810.1016/S0379-6779(02)00498-8Search in Google Scholar

[181] Palaniappan, S., & Rajender, B. (2010). A novel polyanilinesilver nitrate-p-toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β-amino ketones: “One-pot” synthesis in water medium. Advanced Synthesis & Catalysis, 352, 2507–2514. DOI: 10.1002/adsc.201000346. http://dx.doi.org/10.1002/adsc.20100034610.1002/adsc.201000346Search in Google Scholar

[182] Park, E. Y., Kim, H. Y., Song, J. Y., Oh, H. T., Song, H., & Jang, J. S. (2012). Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromolecular Research, 20, 1096–1101. DOI: 10.1007/s13233-012-0150-y. http://dx.doi.org/10.1007/s13233-012-0150-y10.1007/s13233-012-0150-ySearch in Google Scholar

[183] Patil, D. S., Shaikh, J. S., Pawar, S. A., Devan, R. S., Ma, Y. R., Moholkar, A. V., Kim, J. H., Kalubarme, R. S., Park, C. J., & Patil, P. S. (2012). Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry, Chemical Physics, 14, 11886–11895. DOI: 10.1039/c2cp41757j. http://dx.doi.org/10.1039/c2cp41757j10.1039/c2cp41757jSearch in Google Scholar

[184] Paulraj, P., Janaki, N., Sandhya, S., & Pandian, K. (2011). Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 28–34. DOI: 10.1016/j.colsurfa.2010.12.001. http://dx.doi.org/10.1016/j.colsurfa.2010.12.00110.1016/j.colsurfa.2010.12.001Search in Google Scholar

[185] Peng, Y. J., Qiu, L. H., Pan, C. T., Wang, C. C., Shang, S. M., & Yan, F. (2012). Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochimica Acta, 75, 399–405. DOI: 10.1016/j.electacta.2012.05.034. http://dx.doi.org/10.1016/j.electacta.2012.05.03410.1016/j.electacta.2012.05.034Search in Google Scholar

[186] Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/s0003-2670(98)00144-5. http://dx.doi.org/10.1016/S0003-2670(98)00144-510.1016/S0003-2670(98)00144-5Search in Google Scholar

[187] Pillalamarri, S. K., Blum, F. D., Tokuhiro, A. T., & Bertino, M. F. (2005). One-pot synthesis of polyaniline-metal nanocomposites. Chemistry of Materials, 17, 5941–5944. DOI: 10. 1021/cm050827y. http://dx.doi.org/10.1021/cm050827y10.1021/cm050827ySearch in Google Scholar

[188] Pintér, E., Patakfalvi, R., Fülei, T., Gingl, Z., Dékány, I., & Visy, C. (2005). Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants. Journal of Physical Chemistry B, 109, 17474–17478. DOI: 10.1021/jp0517652. http://dx.doi.org/10.1021/jp051765210.1021/jp0517652Search in Google Scholar

[189] Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153: DOI 10.1016/j.colsurfb.2011.03.033. http://dx.doi.org/10.1016/j.colsurfb.2011.03.03310.1016/j.colsurfb.2011.03.033Search in Google Scholar

[190] Prokeš, J., Křivka, I., & Stejskal, J. (1997). Control of electrical properties of polyaniline. Polymer International, 43, 117–125. DOI: 10.1002/(sici)1097-0126(199706)43:2〈117::aidpi713〉3.3.co;2-u. http://dx.doi.org/10.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-210.1002/(SICI)1097-0126(199706)43:2<117::AID-PI713>3.0.CO;2-2Search in Google Scholar

[191] Prokeš, J., & Stejskal, J. (2004). Polyaniline prepared in the presence of various acids: 2. Thermal stability of conductivity. Polymer Degradation and Stability, 86, 187–195. DOI: 10.1016/j.polymdegradstab.2004.04.012. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.01210.1016/j.polymdegradstab.2004.04.012Search in Google Scholar

[192] Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. 10.1016/s0079-6700(01)00043-0. http://dx.doi.org/10.1016/S0079-6700(01)00043-010.1016/S0079-6700(01)00043-0Search in Google Scholar

[193] Ptschelin, V. (1935). Über die Sole des Emeraldins I. Die chemische Natur, die Gewinnung und die Eigenschaften der Sole. Colloid & Polymer Science, 70, 306–311. DOI: 10.1007/bf01442769. (in German) 10.1007/BF01442769Search in Google Scholar

[194] Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Surface and charge transport characterization of polyaniline-cellulose acetate composite mebranes. Journal of Physical Chemistry B, 115, 1652–1661. DOI: 10.1021/jp109455m. http://dx.doi.org/10.1021/jp109455m10.1021/jp109455mSearch in Google Scholar

[195] Qin, X. Y., Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated polypyrrole colloids and their application for H2O2 detection. Electrochemistry Communications, 13, 785–787. DOI: 10.1016/j.elecom.2011.05.002. http://dx.doi.org/10.1016/j.elecom.2011.05.00210.1016/j.elecom.2011.05.002Search in Google Scholar

[196] Qin, X.Y., Liu, S., Lu, W. B., Li, H.Y., Chang, G.H., Zhang, Y. W., Tian, J. Q., Luo, Y. L., Asiri, A. M., Al-Youbi, A. O., & Sun, X. P. (2012). Submicrometre-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst. Catalysis Science & Technology, 2, 711–714. DOI: 10.1039/c2cy00439a. http://dx.doi.org/10.1039/c2cy00439a10.1039/c2cy00439aSearch in Google Scholar

[197] Qiu, T., Xie, H. X., Zhang, J. R., Zahoor, A., & Li, X. Y. (2011). The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants. Journal of Nanoparticle Research, 13, 1175–1182. DOI: 10.1007/s11051-010-0109-x. http://dx.doi.org/10.1007/s11051-010-0109-x10.1007/s11051-010-0109-xSearch in Google Scholar

[198] Reddy, K. R., Lee, K. P., Lee, Y. I., & Gopalan, A. I. (2008). Facile synthesis of conducting polymer-metal hydrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62, 1815–1818. DOI: 10.1016/j.matlet.2007.10.025. http://dx.doi.org/10.1016/j.matlet.2007.10.02510.1016/j.matlet.2007.10.025Search in Google Scholar

[199] Reddy, K. R., Sin, B. C., Ryu, K. S., Kim, J. C., Chung, H. I., & Lee, Y. I. (2009). Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030. http://dx.doi.org/10.1016/j.synthmet.2008.11.03010.1016/j.synthmet.2008.11.030Search in Google Scholar

[200] Routh, P., Mukherjee, P., & Nandi, A. K. (2010). RNA-poly(omethoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: Physical and electronic properties. Langmuir, 26, 5093–5100. DOI: 10.1021/la903553t. http://dx.doi.org/10.1021/la903553t10.1021/la903553tSearch in Google Scholar PubMed

[201] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI: 10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.03410.1016/j.synthmet.2011.03.034Search in Google Scholar

[202] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Search in Google Scholar

[203] Sapurina, I., & Stejskal, J. (2009). Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential application in electrocatalysis. Chemical Papers, 63, 579–585. DOI: 10.1478/s11696-009-0061-3. http://dx.doi.org/10.2478/s11696-009-0061-3Search in Google Scholar

[204] Sapurina, I. Y., & Stejskal, J. (2010). The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russian Chemical Reviews, 79, 1123–1143. DOI: 10.1070/rc2010v079n12abeh004140. http://dx.doi.org/10.1070/RC2010v079n12ABEH00414010.1070/RC2010v079n12ABEH004140Search in Google Scholar

[205] Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI: 10.1134/s1070363212020168. http://dx.doi.org/10.1134/S107036321202016810.1134/S1070363212020168Search in Google Scholar

[206] Šeděnková, M., Stejskal, J., & Prokeš, J. (2009). Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials. ACS Applied Materials & Interfaces, 1, 1906–1912. DOI: 10.1021/am900320t. http://dx.doi.org/10.1021/am900320t10.1021/am900320tSearch in Google Scholar PubMed

[207] Šeděnková, M., & Prokeš, J. (2011). Solid-state oxidation of aniline hydrochloride with various oxidants. Synthetic Metals, 161, 1353–1360. DOI: 10.1016/j.synthmet.2011.04.037. http://dx.doi.org/10.1016/j.synthmet.2011.04.03710.1016/j.synthmet.2011.04.037Search in Google Scholar

[208] Sestrem, R. H., Ferreira, D. C., Landers, R., Temperini, M. L. A., & do Nascimento, G. M. (2010). Synthesis and spectroscopic characterization of polymer and oligomers of orthophenylenediamine. European Polymer Journal, 46, 484–493. DOI: 10.1016/j.eurpolymj.2009.12.007. http://dx.doi.org/10.1016/j.eurpolymj.2009.12.00710.1016/j.eurpolymj.2009.12.007Search in Google Scholar

[209] Sezer, A., Gurudas, U., Collins, B., Mckinlay, A., & Bubb, D. M. (2009). Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chemical Physics Letters, 477, 164–168. DOI: 10.1016/j.cplett.2009. 06.070. http://dx.doi.org/10.1016/j.cplett.2009.06.07010.1016/j.cplett.2009.06.070Search in Google Scholar

[210] Shahi, M., Moghimi, A., Naderizadeh, B., & Maddah, B. (2011). Electrospun PVA-PANI and PVA-PANI-AgNO3 composite nanofibers. Scientia Iranica, 18, 1327–1331. DOI: 10.1016/j.scient.2011.08.013. http://dx.doi.org/10.1016/j.scient.2011.08.01310.1016/j.scient.2011.08.013Search in Google Scholar

[211] Sharma, J., & Imae, T. (2009). Recent advances in fabrication of anisotropic metallic nanostructures. Journal of Nanoscience and Nanotechnology, 9, 19–40. DOI: 10.1166/jnn.2009.j087. http://dx.doi.org/10.1166/jnn.2009.J08710.1166/jnn.2009.J087Search in Google Scholar PubMed

[212] Shenashen, M. A., Ayad, M. M., Salahuddin, N., & Youssif, M. A. (2010). Usage of quartz crystal microbalance technique to study polyaniline films formation in the presence of pphenylenediamine. Reactive & Functional Polymers, 70, 843–848. DOI: 10.1016/j.reactfunctpolym.2010.07.005. http://dx.doi.org/10.1016/j.reactfunctpolym.2010.07.00510.1016/j.reactfunctpolym.2010.07.005Search in Google Scholar

[213] Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive & Functional Polymers, 71, 766–773. DOI: 10.1016/j.reactfunctpolym.2011.02.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.00410.1016/j.reactfunctpolym.2011.02.004Search in Google Scholar

[214] Shi, Z. Q., Wang, H. J., Dai, T. Y., & Lu, Y. (2010). Room temperature synthesis of Ag/polypyrrole core-shell nanoparticles and hollow composite capsules. Synthetic Metals, 160, 2121–2127. DOI: 10.1016/j.synthmet.2010.07.042. http://dx.doi.org/10.1016/j.synthmet.2010.07.04210.1016/j.synthmet.2010.07.042Search in Google Scholar

[215] Shi, Z. Q., Zhou, H., Qing, X. T., Dai, T. Y., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040. http://dx.doi.org/10.1016/j.apsusc.2012.03.04010.1016/j.apsusc.2012.03.040Search in Google Scholar

[216] Shin, D. Y., & Kim, I. (2009). Self-patterning of fine metal electrodes by means of the formation of isolated silver nanoclusters embedded in polyaniline. Nanotechnology, 20, 415301. DOI: 10.1088/0957-4484/20/41/415301. http://dx.doi.org/10.1088/0957-4484/20/41/41530110.1088/0957-4484/20/41/415301Search in Google Scholar PubMed

[217] Shukla, V. K., Yadav, P., Yadav, R. S., Mishra, P., & Pandey, A. C. (2012). A new class of PANI-Ag core-shell nanorods with sensing dimensions. Nanoscale, 4, 3886–3893. DOI: 10.1039/c2nr30963g. http://dx.doi.org/10.1039/c2nr30963g10.1039/c2nr30963gSearch in Google Scholar PubMed

[218] Silva, C. H. B., Ferreira, D. C., Constantino, V. R. L., & Temperini, M. L. A. (2011). Characterization of the products of aniline peroxydisulfate oligo/polymerization in media with different pH by resonance Raman spectroscopy at 413.1 and 1064 nm excitation wavelengths. Journal of Raman Spectroscopy, 42, 1653–1659. DOI: 10.1002/jrs.2898. http://dx.doi.org/10.1002/jrs.289810.1002/jrs.2898Search in Google Scholar

[219] Sim, S. Y., Gu, Y. J., Ahn, H. J., Yoon, C. S., & Im, S. S. (2009). Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°. Polymer Degradation and Stability, 94, 208–212. DOI: 10.1016/j.polymdegradstab.2008.11.002. http://dx.doi.org/10.1016/j.polymdegradstab.2008.11.00210.1016/j.polymdegradstab.2008.11.002Search in Google Scholar

[220] Sinai, O., & Avnir, D. (2011). Organics@metals as the basis for silver/doped-silver electrochemical cell. Chemistry of Materials, 23, 3289–3295. DOI: 10.1021/cm2000655. http://dx.doi.org/10.1021/cm200065510.1021/cm2000655Search in Google Scholar

[221] Singh, R. P., Tiwari, A., & Pandey, A. C. (2011). Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. Journal of Inorganic and Organometalic Polymers and Materials, 21, 788–792. DOI: 10.1007/s10904-011-9554-y. http://dx.doi.org/10.1007/s10904-011-9554-y10.1007/s10904-011-9554-ySearch in Google Scholar

[222] Song, W., Jia, H. Y., Cong, Q., & Zhao, B. (2007). Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. Journal of Colloid and Interface Science, 311, 456–460. DOI: 10.1016/j.jcis.2007.03.058. http://dx.doi.org/10.1016/j.jcis.2007.03.05810.1016/j.jcis.2007.03.058Search in Google Scholar

[223] Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.00310.1016/j.progpolymsci.2009.09.003Search in Google Scholar

[224] Stamplecoskie, K. G., & Scaiano, J. C. (2011). Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 115, 1403–1409. DOI: 10.1021/jp106666t. http://dx.doi.org/10.1021/jp106666t10.1021/jp106666tSearch in Google Scholar

[225] Stejskal, J. (2001). Colloidal dispersions of conducting polymers. Journal of Polymer Materials, 18, 225–258. Search in Google Scholar

[226] Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61, 225–231. DOI: 10.1016/0379-6779(93) 91266-5. http://dx.doi.org/10.1016/0379-6779(93)91266-510.1016/0379-6779(93)91266-5Search in Google Scholar

[227] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-f. http://dx.doi.org/10.1016/0032-3861(95)90996-F10.1016/0032-3861(95)90996-FSearch in Google Scholar

[228] Stejskal, J., Kratochvíl, P., & Helmstedt, M. (1996a). Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir, 12, 3389–3392. DOI: 10.1021/la9506483. http://dx.doi.org/10.1021/la950648310.1021/la9506483Search in Google Scholar

[229] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996b). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-x. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSearch in Google Scholar

[230] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[231] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-010.1016/S0032-3861(02)00906-0Search in Google Scholar

[232] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI: 10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[233] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.01210.1016/j.reactfunctpolym.2008.06.012Search in Google Scholar

[234] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008b). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar

[235] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008c). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSearch in Google Scholar

[236] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009a). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: Beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Search in Google Scholar

[237] Stejskal, J., Prokeš, J., & Sapurina, I. (2009b). The reduction of silver ions with polyaniline: The effect of the type of polyaniline and the mole ratio of reagents. Materials Letters, 63, 709–711. DOI: 10.1016/j.matlet.2008.12.026. http://dx.doi.org/10.1016/j.matlet.2008.12.02610.1016/j.matlet.2008.12.026Search in Google Scholar

[238] Stejskal, J., Trchová, M., Brožovš, J. (2009c). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSearch in Google Scholar

[239] Stejskal, J., Trchová, M., Kovářová, J., Brožová, L., & Prokeš, J. (2009d). The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites. Reactive & Functional Polymers, 69, 86–90. DOI: 10.1016/j.reactfunctpolym.2008.11.004. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.11.00410.1016/j.reactfunctpolym.2008.11.004Search in Google Scholar

[240] Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[241] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Search in Google Scholar

[242] Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) dispersions. Journal of Colloid and Interface Science, 236, 328–334. DOI: 10.1006/jcis.2000.7415. http://dx.doi.org/10.1006/jcis.2000.741510.1006/jcis.2000.7415Search in Google Scholar

[243] Sun, X. P. (2010). Morphology and size-controllable preparation of silver nanostructures through a wet-chemical route at room temperature. Inorganic Materials, 46, 679–682. DOI: 10.1134/s0020168510060208. http://dx.doi.org/10.1134/S002016851006020810.1134/S0020168510060208Search in Google Scholar

[244] Sun, X. P., Dong, S. J., & Wang, E. K. (2005). Rapid preparation and characterization of uniform, large, spherical Ag particles through a simple wet-chemical route. Journal of Colloid and Interface Science, 290, 130–133. DOI: 10.1016/j.jcis.2005.04.016. http://dx.doi.org/10.1016/j.jcis.2005.04.01610.1016/j.jcis.2005.04.016Search in Google Scholar

[245] Sun, X. P., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag and Au at room temperature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x. http://dx.doi.org/10.1021/la701519x10.1021/la701519xSearch in Google Scholar

[246] Sun, Y. Y., Guo, G. H., Yang, B. H., He, M. H., Tian, Y., Cheng, J. C., & Liu, Y. Q. (2012). Simple synthesis of polyaniline microtubes for the application on silver microrods preparation. Journal of Materials Research, 27, 457–462. DOI: 10.1557/jmr.2011.408. http://dx.doi.org/10.1557/jmr.2011.40810.1557/jmr.2011.408Search in Google Scholar

[247] Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006. http://dx.doi.org/10.1016/j.colsurfb.2011.11.00610.1016/j.colsurfb.2011.11.006Search in Google Scholar

[248] Tan, Y. W., Li, Y. F., & Zhu, D. B. (2003). Preparation of silver nanocrystals in the presence of aniline. Journal of Colloid and Interface Science, 258, 244–251. DOI: 10.1016/s0021-9797(02)00151-0. http://dx.doi.org/10.1016/S0021-9797(02)00151-010.1016/S0021-9797(02)00151-0Search in Google Scholar

[249] Tchmutin, I. A., Ponomarenko, A. T., Krinichnaya, E. P., Kozub, G. I., & Efimov, O. N. (2003). Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon, 41, 1391–1395. DOI: 10.1016/s0008-6223(03)00067-8. http://dx.doi.org/10.1016/S0008-6223(03)00067-810.1016/S0008-6223(03)00067-8Search in Google Scholar

[250] Thanjam, S., Philips, M. F., Komathi, S., Manisankar, P., Sivakumar, C., Gopalan, A., & Lee, K. P. (2011). Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1256–1266. DOI: 10.1016/j.saa.2011.04.052. http://dx.doi.org/10.1016/j.saa.2011.04.05210.1016/j.saa.2011.04.052Search in Google Scholar PubMed

[251] Thanjam, I. S., Philips, M. F., Komathi, S., Manisankar, P., Gopalan, A. I., & Lee, K. P. (2012a). Influence of medium on the nanostructures and properties of poly(4-aminodiphenylamine)-silver nanocomposites. Polymer International, 61, 539–544. DOI: 10.1002/pi.3200. http://dx.doi.org/10.1002/pi.320010.1002/pi.3200Search in Google Scholar

[252] Thanjam, I. S., Philips, M. F., Lee, K. P., & Gopalan, A. (2012b). Preparation of poly(4-aminodiphenylamine)/silver nanoparticles composite and catalysis. Journal of Materials Science: Materials in Electronics, 23, 807–810. DOI: 10.1007/s10854-011-0496-5. http://dx.doi.org/10.1007/s10854-011-0496-510.1007/s10854-011-0496-5Search in Google Scholar

[253] Tian, Y., Li, Z. Q., Ski, K., & Yang, F. L. (2008). Spontaneous and electrochemical reduction of silver by polypyrrole deposits. Separation Science and Technology, 43, 3891–3901. DOI: 10.1080/01496390802212625. http://dx.doi.org/10.1080/0149639080221262510.1080/01496390802212625Search in Google Scholar

[254] Tian, J. Q., Liu, S., & Sun, X. P. (2010). Supramolecular microfibrils of o-phenylenediamine dimers: Oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers. Langmuir, 26, 15112–15116. DOI: 10.1021/la103038m. http://dx.doi.org/10.1021/la103038m10.1021/la103038mSearch in Google Scholar PubMed

[255] Tian, J. Q., Li, H. L., Lu, W. B., Luo, Y. L., Wang, L., & Sun, X. P. (2011). Preparation of Ag nanoparticle-decorated poly(mphenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst, 136, 1806–1809. DOI: 10.1039/c0an00929f. http://dx.doi.org/10.1039/c0an00929f10.1039/c0an00929fSearch in Google Scholar PubMed

[256] Tran, H. D., Norris, I., D’Arcy, J. M., Tsang, H., Wang, Y., Mattes, B. R., & Kaner, R. B. (2008). Substituted polyaniline nanofibers produced via rapid initiated polymerization, Macromolecules, 41, 7405–7410. DOI: 10.1021/ma800122d. http://dx.doi.org/10.1021/ma800122d10.1021/ma800122dSearch in Google Scholar

[257] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářová, J., & Ćirić-Marjanović, G. (2009). The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI: 10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.00110.1016/j.polymdegradstab.2009.03.001Search in Google Scholar

[258] Trchová, M., & Stejskal, J. (2010). The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synthetic Metals, 160, 1479–1486. DOI: 10.1016/j.synthmet.2010.05.007. http://dx.doi.org/10.1016/j.synthmet.2010.05.00710.1016/j.synthmet.2010.05.007Search in Google Scholar

[259] Trchová, M., Morávková, Z., Šeděnková, I., & Stejskal, J. (2012). Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 66, 415–445. DOI: 10.2478/s11696-012-0142-6. http://dx.doi.org/10.2478/s11696-012-0142-610.2478/s11696-012-0142-6Search in Google Scholar

[260] Tsakova, V. (2008) How to affect number, size, and location of metal particles deposited in conducting polymer layers. Journal of Solid State Electrochemistry, 12, 1421–1434. DOI: 10.1007/s10008-007-0494-y. http://dx.doi.org/10.1007/s10008-007-0494-y10.1007/s10008-007-0494-ySearch in Google Scholar

[261] Visy, C., Pintér, E., Fülei, T., & Ptakfalvi, R. (2005). Characterization of electronically conducting polypyrrole based composite materials. Synthetic Metals, 152, 13–16. DOI: 10.1016/j.synthmet.2005.07.084. http://dx.doi.org/10.1016/j.synthmet.2005.07.08410.1016/j.synthmet.2005.07.084Search in Google Scholar

[262] Vorotyntsev, M. A., Skompska, M., Rajchowska, A., Borysiuk, J., & Donten, M. (2011). A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. Journal of Electroanalytical Chemistry, 662, 105–115. DOI: 10.1016/j.jelechem.2011.03. 037. Search in Google Scholar

[263] Wang, H. L., Li, W. G., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposi tion of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm061950810.1021/cm0619508Search in Google Scholar

[264] Wang, S. B., & Shi, G. Q. (2007). Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Materials Chemistry and Physics, 102, 255–259. DOI: 10.1016/j.matchemphys.2006.12.014. http://dx.doi.org/10.1016/j.matchemphys.2006.12.01410.1016/j.matchemphys.2006.12.014Search in Google Scholar

[265] Wang, W., Li, Q., Li, Y., Xu, H., & Zhai, J. P. (2009a). Electroless Ag coating of fly ash cenospheres using polyaniline activator. Journal of Physics D: Applied Physics, 42, 215306. DOI: 10.1088/0022-3727/42/21/215306. http://dx.doi.org/10.1088/0022-3727/42/21/21530610.1088/0022-3727/42/21/215306Search in Google Scholar

[266] Wang, W. Q., Shi, G. Q., & Zhang, R. F. (2009b). Facile fabrication of silver/polypyrrole composites by the modified silver mirror reaction. Journal of Materials Science, 44, 3002–3005. DOI: 10.1007/s10853-009-3416-9. http://dx.doi.org/10.1007/s10853-009-3416-910.1007/s10853-009-3416-9Search in Google Scholar

[267] Wang, W. Q., & Zhang, R. F. (2009). Silver-polypyrrole composites: Facile preparation and application in surfaceenhanced Raman spectroscopy. Synthetic Metals, 159, 1332–1335. DOI: 10.1016/j.synthmet.2009.03.002. http://dx.doi.org/10.1016/j.synthmet.2009.03.00210.1016/j.synthmet.2009.03.002Search in Google Scholar

[268] Wang, W. Q., Li, W. L., Ye, J., & Zhang, R. F. (2010a). Surface enhanced Raman scattering of Rhodamine B adsorbed on polypyrrole-silver composites. Journal of Polymer Materials, 27, 351–357. Search in Google Scholar

[269] Wang, W. Q., Li, W. L., & Zhang, R. F. (2010b). Controlled fabrication of surface-enhanced-Raman scattering-active silver nanostructures on polypyrrole films. Materials Chemistry and Physics, 124, 385–388. DOI: 10.1016/j.matchemphys.2010.06.051. http://dx.doi.org/10.1016/j.matchemphys.2010.06.05110.1016/j.matchemphys.2010.06.051Search in Google Scholar

[270] Wang, W. Q., Li, W. L., Zhang, R. F., & Wang, J. J. (2010c). Synthesis and characterization of Ag@PPy yolk-shell nanocomposite. Synthetic Metals, 160, 2255–2259. DOI: 10.1016/j.synthmet.2010.08.016. http://dx.doi.org/10.1016/j.synthmet.2010.08.01610.1016/j.synthmet.2010.08.016Search in Google Scholar

[271] Wang, Z. F., Liao, F., Guo, T. T., Yang, S. W., & Zeng, C. M. (2012a). Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. Journal of Electroanalytical Chemistry, 664, 135–138. DOI: 10.1016/j.jelechem.2011.11.006. http://dx.doi.org/10.1016/j.jelechem.2011.11.00610.1016/j.jelechem.2011.11.006Search in Google Scholar

[272] Wang, L., Zhu, H. Z., Song, Y. H., Liu, L., He, Z. F., Wan, L. L., Chen, S. H., Xiang, Y., Chen, S. S., & Chen, J. (2012b). Architecture of poly(o-phenylenediamine)-Ag nanoparticle composites for a hydrogen peroxide senor. Electrochimica Acta, 60, 314–320. DOI: 10.1016/j.electacta.2011.11.045. http://dx.doi.org/10.1016/j.electacta.2011.11.04510.1016/j.electacta.2011.11.045Search in Google Scholar

[273] Wei, M., & Lu, Y. (2009). Templating fabrication of polypyrrole nanorods/nanofibers. Synthetic Metals, 159, 1061–1066. DOI: 10.1016/j.synthmet.2009.01.031. http://dx.doi.org/10.1016/j.synthmet.2009.01.03110.1016/j.synthmet.2009.01.031Search in Google Scholar

[274] Wei, Y. Y., Liang, L., Yang, X. M., Pan, G. L., Yan, G. P., & Yu, X. H. (2010a). One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Research Letters, 5, 443–437. DOI: 10.1007/s11671-009-9501-9. 10.1007/s11671-009-9501-9Search in Google Scholar PubMed PubMed Central

[275] Wei, Y. Y., Zhao, Y., Li, L., Yang, X. M., Yu, X. H., & Yan, G. P. (2010b). Magnetic ionic liquid-assisted syntesis of polypyrrole/AgCl nanocomposites. Polymers for Advanced Technologies, 21, 742–745. DOI: 10.1002/pat.1682. http://dx.doi.org/10.1002/pat.168210.1002/pat.1682Search in Google Scholar

[276] Wessling, B., Thun, M., Arribas-Sanchez, C., Gleeson, S., Posdorfer, J., Rischka, M., & Zeysing, B. (2007). An organic metal/silver nanoparticle finish on copper for efficient passivation and solderability preservation. Nanoscale Research Letters, 2, 455–460. DOI: 10.1007/s11671-007-9086-0. http://dx.doi.org/10.1007/s11671-007-9086-010.1007/s11671-007-9086-0Search in Google Scholar

[277] Wolz, A., Zils, S., Michel, M., & Roth, C. (2010). Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating. Journal of Power Sources, 195, 8162–8167. DOI: 10.1016/j.jpowsour.2010.06.087. http://dx.doi.org/10.1016/j.jpowsour.2010.06.08710.1016/j.jpowsour.2010.06.087Search in Google Scholar

[278] Wu, X. M., Qi, S. H., He, J., Chen, B., & Duan, G. C. (2010). Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique. Journal of Polymer Research, 17, 751–757. DOI: 10.1007/s10965-009-9366-8. http://dx.doi.org/10.1007/s10965-009-9366-810.1007/s10965-009-9366-8Search in Google Scholar

[279] Wu, X. M., Qi, S. H., & Duan, G. C. (2012). Polyaniline/graphite nanosheet, polyaniline/Ag/graphite nanosheet, polyaniline/Ni/graphite nanosheet composites and their electromagnetic properties. Synthetic Metals, 162, 1609–1614. DOI: 10.1016/j.synthmet.2012.07.012. http://dx.doi.org/10.1016/j.synthmet.2012.07.01210.1016/j.synthmet.2012.07.012Search in Google Scholar

[280] Wudl, F., Angus, R. O., Jr., Lu, F. L., Allemand, P. M., Vachon, D., Nowak, M., Liu, Z. X., Schaffer, H., & Heeger, A. J. (1987). Poly p-phenyleneamineimine: synthesis and comparison to polyaniline. Journal of the American Chemical Society, 109, 3677–3684. DOI: 10.1021/ja00246a026. http://dx.doi.org/10.1021/ja00246a02610.1021/ja00246a026Search in Google Scholar

[281] Xia, Y. Y. (2011). The prevalent synthesis of one-dimensional noble metal nanostructures based on sulfonated polyaniline at room temperature. Journal of Nanoparticle Research, 13, 1717–1721. DOI: 10.1007/s11051-010-9926-1. http://dx.doi.org/10.1007/s11051-010-9926-110.1007/s11051-010-9926-1Search in Google Scholar

[282] Xing, S. X., & Zhao, G. K. (2007). One-step synthesis of polypyrrole-Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 61, 2040–2044. DOI: 10.1016/j.matlet.2006.08.011. http://dx.doi.org/10.1016/j.matlet.2006.08.01110.1016/j.matlet.2006.08.011Search in Google Scholar

[283] Xu, P., Jeon, S. H., Chen, H. T., Luo, H. M., Zou, G. F., Jia, Q. X., Anghel, M., Teuscher, C., Williams, D. J., Zhang, B., Han, X. J., & Wang, H. L. (2010a). Facile synthesis of electrical properties of silver wires through chemical reduction by polyaniline. Journal of Physical Chemistry C, 114, 22147–22154. DOI: 10.1021/jp109207d. http://dx.doi.org/10.1021/jp109207d10.1021/jp109207dSearch in Google Scholar

[284] Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010b). Field assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2, 1436–1440. DOI: 10.1039/c0nr00106f. http://dx.doi.org/10.1039/c0nr00106f10.1039/c0nr00106fSearch in Google Scholar PubMed

[285] Xu, P., Mack, N. H., Jeon, S. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010c). Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates. Langmuir, 26, 8882–8886. DOI: 10.1021/la904617p. http://dx.doi.org/10.1021/la904617p10.1021/la904617pSearch in Google Scholar PubMed

[286] Xu, P., Zhang, B., Mack, N. H., Doorn, S. K., Han, X. J., & Wang, H. L. (2010d). Synthesis and homogeneous silver nanosheet assemblies for surface enhanced Raman scattering applications. Journal of Materials Chemistry, 20, 7222–7226. DOI: 10.1039/c0jm01322f. http://dx.doi.org/10.1039/c0jm01322f10.1039/c0jm01322fSearch in Google Scholar

[287] Yan, J., Han, X. J., He, J. J., Kang, L. L., Zhang, B., Du, Y. C., Zhao, H. T., Dong, C. K., Wang, H. L., & Xu, P. (2012). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces. Applied Materials & Interfaces, 4, 2752–2756. DOI: 10.1021/am300381v. http://dx.doi.org/10.1021/am300381v10.1021/am300381vSearch in Google Scholar PubMed

[288] Yang, X. M., & Lu, Y. (2005). Hollow nanometer-sized polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan. Polymer, 46, 5324–5328. DOI: 10.1016/j.polymer.2005.04.023. http://dx.doi.org/10.1016/j.polymer.2005.04.02310.1016/j.polymer.2005.04.023Search in Google Scholar

[289] Yang, X. M., Li, L., & Yan, F. (2010a). Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuators B: Chemical, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065. http://dx.doi.org/10.1016/j.snb.2009.12.06510.1016/j.snb.2009.12.065Search in Google Scholar

[290] Yang, X. M., Li, L., & Yan, F. (2010b). Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chemistry Letters, 39, 118–119. DOI: 10.1246/cl.2010.118. http://dx.doi.org/10.1246/cl.2010.11810.1246/cl.2010.118Search in Google Scholar

[291] Yang, X. M., Li, L., & Zhao, Y. (2010c). Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synthetic Metals, 160, 1822–1825. DOI: 10.1016/j.synthmet.2010.06.018. http://dx.doi.org/10.1016/j.synthmet.2010.06.01810.1016/j.synthmet.2010.06.018Search in Google Scholar

[292] Yang, X., & Wang, E. (2011). A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Analytical Chemistry, 83, 5005–5011. DOI: 10.1021/ac2008465. http://dx.doi.org/10.1021/ac200846510.1021/ac2008465Search in Google Scholar PubMed

[293] Yang, J. P., Yin, H. J., Jia, J. J., & Wei, Y. (2011). Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant. Langmuir, 27, 5047–5053. DOI: 10.1021/la200013z. http://dx.doi.org/10.1021/la200013z10.1021/la200013zSearch in Google Scholar PubMed

[294] Yang, Y. Q., Qi, S. H., Qin, Y. C., & Zhang, X. X. (2012a). Synthesis and characterization of silver-coated graphite nanosheets with pyrrole via in situ polymerization. Journal of Applied Polymer Science, 125, E388–E397. DOI: 10.1002/app.36383. http://dx.doi.org/10.1002/app.3638310.1002/app.36383Search in Google Scholar

[295] Yang, M., Xiang, Z. J., & Wang, G. (2012b). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI: 10.1016/j.jcis.2011.08.086. http://dx.doi.org/10.1016/j.jcis.2011.08.08610.1016/j.jcis.2011.08.086Search in Google Scholar PubMed

[296] Yao, T. J., Wang, C. X., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001. http://dx.doi.org/10.1016/j.jcis.2009.05.00110.1016/j.jcis.2009.05.001Search in Google Scholar PubMed

[297] Ye, S. J., & Lu, Y. (2008). Optical properties of Ag@polypyrrole nanoparticles calculated by Mie theory. Journal of Physical Chemistry C, 112, 8767–8772. DOI: 10.1021/jp077710c. http://dx.doi.org/10.1021/jp077710c10.1021/jp077710cSearch in Google Scholar

[298] Ye, S. J., Fang, L., & Lu, Y. (2009). Contribution of chargetransfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Physical Chemistry Chemical Physics, 11, 2480–2484. DOI: 10.1039/b816070h. http://dx.doi.org/10.1039/b816070h10.1039/b816070hSearch in Google Scholar PubMed

[299] Yi, Q. F., & Song, L. H. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200 154. http://dx.doi.org/10.1002/elan.201200154Search in Google Scholar

[300] Yin, H. J., & Yang, J. P. (2012). A novel strategy for the controlled synthesis of silver halide/polyaniline nanocomposites with different polyaniline morphologies. Macromolecular Materials and Engineering, 297, 203–208. DOI: 10.1002/mame.201100130. http://dx.doi.org/10.1002/mame.20110013010.1002/mame.201100130Search in Google Scholar

[301] ZabrodskiĽ, A. G., Kompan, M. E., Malyshkin, V. G., & Sapurina, I. Y. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/s1063785006090070. http://dx.doi.org/10.1134/S106378500609007010.1134/S1063785006090070Search in Google Scholar

[302] Zhang, A. Q., Cui, C. Q., Lee, J. Y., & Loh, F. C. (1995). Interactions between polyaniline and silver cations. Journal of Electrochemical Society, 142, 1097–1104. DOI: 10.1149/1.2044136. http://dx.doi.org/10.1149/1.204413610.1149/1.2044136Search in Google Scholar

[303] Zhang, A. Q., Cui, C. Q., & Lee, J. Y. (1996). Metalpolymer interactions in the Ag+|poly-o-aminophenol system. Journal of Electroanalytical Chemistry, 413, 143–151. DOI: 10.1016/0022-0728(96)04668-2. http://dx.doi.org/10.1016/0022-0728(96)04668-210.1016/0022-0728(96)04668-2Search in Google Scholar

[304] Zhang, X. Y., & Manohar, S. K. (2005). Narrow pore-diameter polypyrrole nanotubes. Journal of the American Chemical Society, 127, 14156–14157. DOI: 10.1021/ja054789v. http://dx.doi.org/10.1021/ja054789v10.1021/ja054789vSearch in Google Scholar PubMed

[305] Zhang, W. M., Chen, J., Wagner, P., Swiegers, G. F., & Wallace, G. G. (2008). Polypyrrole/Co-tetraphenylporphyrin modified carbon fibre paper as a fuel cell electrocatalyst of oxygen reduction. Electrochemistry Communications, 10, 519–522. DOI: 10.1016/j.elecom.2008.01.032. http://dx.doi.org/10.1016/j.elecom.2008.01.03210.1016/j.elecom.2008.01.032Search in Google Scholar

[306] Zhang, X. L., Xing, J. X., & Jin, F. (2010). Electrocatalytic study of silver/polypyrrole nanowire composite modified electrodes. Asian Journal of Chemistry, 22, 755–760. Search in Google Scholar

[307] Zhang, L. Y., Chai, L. Y., Duan, J. Y., Li, G. L., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011a). One-step and cost-effective synthesis of micrometer-sized saw-like silver nanosheets by oil/water interfacial method. Materials Letters, 65, 1295–1298, DOI: 10.1016/j.matlet.2011.01.062. http://dx.doi.org/10.1016/j.matlet.2011.01.06210.1016/j.matlet.2011.01.062Search in Google Scholar

[308] Zhang, L. Y., Chai, L. Y., Liu, J., Wang, H. Y., Yu, W. T., & Sang, P. L. (2011b). pH manipulation: A facile method for lowering oxidation state and keeping good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir, 27, 13729–13738. DOI: 10.1021/la203162y. http://dx.doi.org/10.1021/la203162y10.1021/la203162ySearch in Google Scholar PubMed

[309] Zhang, Y. W., Wang, L., Tian, J. Q., Li, H. L., Luo, Y. L., & Sun, X. P. (2011c). Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir, 27, 2170–2175. DOI: 10.1021/la105092f. http://dx.doi.org/10.1021/la105092f10.1021/la105092fSearch in Google Scholar PubMed

[310] Zhang, X., Zhi, W. X., Yan, B., & Xu, X. X. (2012). α-Fe2O3/PPy/Ag functional hybrid nanomaterials with core/shell structure: Synthesis, characterization and catalytic activity. Powder Technology, 221, 177–182. DOI: 10.1016/j.powtec.2011.12.064. http://dx.doi.org/10.1016/j.powtec.2011.12.06410.1016/j.powtec.2011.12.064Search in Google Scholar

[311] Zhao, C. J., Zhao, Q. T., Zhao, Q. Z., Qiu, J. R., Zhu, C. S., & Guo, S. W. (2007). Preparation and optical properties of Ag/PPy composite colloids. Journal of Photochemistry and Photobiology A: Chemistry, 187, 146–151. DOI: 10.1016/j.jphotochem.2006.10.006. http://dx.doi.org/10.1016/j.jphotochem.2006.10.00610.1016/j.jphotochem.2006.10.006Search in Google Scholar

[312] Zhao, B. B., & Nan, Z. D. (2012a). Enhancement of electrical conductivity by incorporation of Ag into core/shell structure of Fe3O4/Ag/PPy/NPs. Materials Science and Engineering: C, 32, 804–810. DOI: 10.1016/j.msec.2012.01.030. http://dx.doi.org/10.1016/j.msec.2012.01.03010.1016/j.msec.2012.01.030Search in Google Scholar

[313] Zhao, B. B., & Nan, Z. D. (2012b). Formation of self-assembled nanofiber-like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering: C, 32, 1971–1975. DOI: 10.1016/j.msec.2012.05.029. http://dx.doi.org/10.1016/j.msec.2012.05.02910.1016/j.msec.2012.05.029Search in Google Scholar PubMed

[314] Zhao, Y. C., Tomšík, E., Wang, J. X., Morávková, Z., Zhigunov, A., Stejskal, J., & Trchová, M. (2013). Self-assembly of aniline oligomers. Chemistry — An Asian Journal, 8, 129–137. DOI: 10.1002/asia.201200836. http://dx.doi.org/10.1002/asia.20120083610.1002/asia.201200836Search in Google Scholar PubMed

[315] Zhou, H. H., Ning, X. H., Li, S. L., Chen, J. H., & Kuang, Y. F. (2006). Synthesis of polyaniline-silver nanocomposite film by unsymmetrical square wave current method. Thin Solid Films, 510, 164–168. DOI: 10.1016/j.tsf.2005.12.310. http://dx.doi.org/10.1016/j.tsf.2005.12.31010.1016/j.tsf.2005.12.310Search in Google Scholar

[316] Zhou, Z., He, D. L., Guo, Y. N., Cui, Z. D., Wang, M. H., Li, G. X., & Yang, R. H. (2009). Fabrication of polyaniline-silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films, 517, 6767–6771. DOI: 10.1016/j.tsf.2009.05.043. http://dx.doi.org/10.1016/j.tsf.2009.05.04310.1016/j.tsf.2009.05.043Search in Google Scholar

[317] Zięba, A., Drelinkiewicz, A., Konyushenko, E. N., & Stejskal, J. (2010). Activity and stability of polyaniline-sulfate-based solid acid catalysts for the transesterifacion of triglycerides and esterification of fatty acids with methanol. Applied Catalysis A: General, 383, 169–181. DOI: 10.1016/j.apcata.2010.05.042. http://dx.doi.org/10.1016/j.apcata.2010.05.04210.1016/j.apcata.2010.05.042Search in Google Scholar

[318] Zujovic, Z. D., Laslau, C., & Travas-Sejdic, J. (2011a). Lamellar-structured nanoflakes comprised of stacked oligoaniline nanosheets. Chemistry — An Asian Journal, 6, 791–796. DOI: 10.1002/asia.201000703. http://dx.doi.org/10.1002/asia.20100070310.1002/asia.201000703Search in Google Scholar PubMed

[319] Zujovic, Z. D., Wang, Y., Bowmaker, G. A., & Kaner, R. B. (2011b). Structure of ultralong polyaniline nanofibers using initiators. Macromolecules, 44, 2735–2742. DOI: 10.1021/ma102772t. http://dx.doi.org/10.1021/ma102772t10.1021/ma102772tSearch in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0304-6/html
Scroll to top button