Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 29, 2012

Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes

  • Renata Rychtáriková EMAIL logo , Stanislav Šabata , Jiří Hetflejš and Gabriela Kuncová
From the journal Chemical Papers

Abstract

Mesoporous organosilica-porphyrin composites were obtained by entrapment of 5,10,15,20-tetraphenylporphyrin (TPP) and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP) into three polysilsesquioxanes prepared by the sol-gel method from 1,2-bis(triethoxysilyl)ethane, 1,6-bis(triethoxysilyl)hexane, and 1,8-bis(triethoxysilyl)octane. The materials were characterised by their texture and optical properties (fluorescence and absorbance) and by light-induced antimicrobial activity against E. coli BL21(DE3) (pET16bDsRed) strain.

[1] Alves, E., Costa, L., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, Â., & Almeida, A. (2009). Charge effect on the photoinactivation of Gram-negative and Grampositive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 9, 70. DOI: 10.1186/1471-2180-9-70. http://dx.doi.org/10.1186/1471-2180-9-7010.1186/1471-2180-9-70Search in Google Scholar

[2] Arabei, S. M., Pavich, T. A., & Solov’ev, K. N. (2001). The influence of the conditions of sol-gel synthesis on the absorption and fluorescence spectra of porphyrin molecules in silicate matrices. Journal of Applied Spectroscopy, 68, 66–72. DOI: 10.1023/a:1019261002923. http://dx.doi.org/10.1023/A:101926100292310.1023/A:1019261002923Search in Google Scholar

[3] Biazzotto, J. C., Vidoto, E. A., Nascimento, O. R., Iamamoto, Y., & Serra, O. A. (2002). Iron(III)-tetra-o-ureaphenylporphyrinosilica obtained by a sol-gel process: a study of EPR, surface area and catalytic activity. Journal of Non-Crystalline Solids, 304, 101–108. DOI: 10.1016/s0022-3093(02)01010-4. http://dx.doi.org/10.1016/S0022-3093(02)01010-410.1016/S0022-3093(02)01010-4Search in Google Scholar

[4] Brevet, D., Gary-Bobo, M., Raehm, L., Richeter, S., Hocine, O., Amro, K., Loock, B., Couleaud, P., Frochot, C., Morère, A., Maillard, P., Garcia, M., & Durand, J. O. (2009). Manosetargeted mesoporous silica nanoparticles for photodynamic therapy. Chemical Communications, 2009, 1475–1477. DOI: 10.1039/b900427k. http://dx.doi.org/10.1039/b900427k10.1039/b900427kSearch in Google Scholar PubMed

[5] Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science: The physics and chemistry of sol-gel processing. New York, NY, USA: Academic Press. Search in Google Scholar

[6] Caminos, D. A., & Durantini, E. N. (2006). Photodynamic inactivation of Escherichia coli immobilized on agar surfaces by a tricationic porphyrin. Bioorganic & Medicinal Chemistry, 14, 4253–4259. DOI: 10.1016/j.bmc.2006.01.058. http://dx.doi.org/10.1016/j.bmc.2006.01.05810.1016/j.bmc.2006.01.058Search in Google Scholar PubMed

[7] Caminos, D. A., Spesia, M. B., Pons, P., & Durantini, E. N. (2008). Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(N,N,N-trimethylammoniumphenyl) porphyrin. Photochemical & Photobiological Sciences, 2008, 1071–1078. DOI: 10.1039/b804965c. http://dx.doi.org/10.1039/b804965c10.1039/b804965cSearch in Google Scholar PubMed

[8] Carvalho, C. M. B., Gomes, A. T. P. C., Fernandes, S. C. D., Prata, A. C. B., Almeida, M. A., Cunha, M. A., Tomé, J. P. C., Faustino, M. A. F., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Lin, Z., Rainho, J. P., & Rocha, J. (2007). Photoinactivation of bacteria in wastewater by porphyrins: Bacterial β-galactosidase activity and leucineuptake as methods to monitor the process. Journal of Photochemistry and Photobiology B: Biology, 88, 112–118. DOI: 10.1016/j.jphotobiol.2007.04.015. http://dx.doi.org/10.1016/j.jphotobiol.2007.04.01510.1016/j.jphotobiol.2007.04.015Search in Google Scholar PubMed

[9] Chirvony, V., Bolotin, V., Matveeva, E., & Parkhutin, V. (2006). Fluorescence and 1O2 generation properties of porphyrin molecules immobilized in oxidized nano-porous silicon matrix. Journal of Photochemistry and Photobiology A: Chemistry, 181, 106–113. DOI: 10.1016/j.jphotochem.2005.11.008. http://dx.doi.org/10.1016/j.jphotochem.2005.11.00810.1016/j.jphotochem.2005.11.008Search in Google Scholar

[10] Chirvony, V. S., Bolotin, V. I., Ovejero, J., Matveeva, E. S., Dzhagarov, B. M., Albella, J., & Parkhutin, V. P. (2007). Luminescence properties of the porphyrin/porous silicon composites. Physica Status Solidi (A), 204, 1523–1527. DOI: 10.1002/pssa.200674414. http://dx.doi.org/10.1002/pssa.20067441410.1002/pssa.200674414Search in Google Scholar

[11] Collins, T. L., Markus, E. A., Hassett, D. J., & Robinson, J. B. (2010). The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Current Microbiology, 61, 411–416. DOI: 10.1007/s00284-010-9629-y. http://dx.doi.org/10.1007/s00284-010-9629-y10.1007/s00284-010-9629-ySearch in Google Scholar PubMed

[12] Cormick, M. P., Alvarez, M. G., Rovera, M., & Durantini, E. N. (2009). Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives. European Journal of Medicinal Chemistry, 44, 1592–1599. DOI: 10.1016/j.ejmech.2008.07.026. http://dx.doi.org/10.1016/j.ejmech.2008.07.02610.1016/j.ejmech.2008.07.026Search in Google Scholar

[13] Cormick, M. P., Quiroga, E. D., Bertolotti, S. G., Alvarez, M. G., & Durantini, E. N. (2011). Mechanistic insight of the photodynamic effect induced by tri- and tetra-cationic porphyrins on Candida albicans cells. Photochemistry & Photobiology Sciences, 2011, 1556–1561. DOI: 10.1039/c1pp05074e. http://dx.doi.org/10.1039/c1pp05074e10.1039/c1pp05074eSearch in Google Scholar

[14] Costa, L., Alves, E., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M.G. P.M. S., Tomé, A. C., Cavaleiro, J.A. S., Cunha, Â., & Almeida, A. (2008). Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochemical & Photobiological Sciences, 2008, 415–422. DOI: 10.1039/b712749a. http://dx.doi.org/10.1039/b712749a10.1039/b712749aSearch in Google Scholar

[15] Costa, L., Carvalho, C. M. B., Faustino, M. A. F., Neves, M. G. P.M. S., Tomé, J. P. C., Tomé, A. C., Cavaleiro, J. A. S., Cunha, Â., & Almeida, A. (2010). Sewage bacteriophage photoinactivation by cationic porphyrins: influence of light parameters. Photochemical & Photobiological Sciences, 2010, 1126–1133. DOI: 10.1039/c0pp00051e. http://dx.doi.org/10.1039/c0pp00051e10.1039/c0pp00051eSearch in Google Scholar

[16] Dąbrowski, J. M., Pereira, M. M., Arnaut, L. G., Monteiro, C. J. P., Peixoto, A. F., Karocki, A., Urbańska, K., & Stochel, G. (2007). Synthesis, photophysical studies and anticancer activity of a new halogenated water-soluble porphyrin. Photochemistry and Photobiology Sciences, 83, 897–903. DOI: 10.1111/j.1751-1097.2007.00073.x. http://dx.doi.org/10.1111/j.1751-1097.2007.00073.x10.1111/j.1751-1097.2007.00073.xSearch in Google Scholar

[17] Dargiewicz, J., Makarska, M., & Radzki, S. (2002). Spectroscopic characterization of water-soluble cationic porphyrins in sol-gel silica matrices and coatings. Colloids and Surface A: Physicochemical and Engineering Aspects, 208, 159–165. DOI: 10.1016/s0927-7757(02)00142-5. http://dx.doi.org/10.1016/S0927-7757(02)00142-510.1016/S0927-7757(02)00142-5Search in Google Scholar

[18] Ferguson, G. P., & Booth, I. R. (1998). Importance of glutathione for growth and survival of Escherichia coli cells: Detoxification of methylglyoxal and maintenance of intracellular K+. Journal of Bacteriology, 180, 4314–4318. 10.1128/JB.180.16.4314-4318.1998Search in Google Scholar PubMed PubMed Central

[19] Figueira, F., Cavaleiro, J. A. S., & Tomé, J. P. C. (2011). Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies. Journal of Porhyrins and Phthalocyanines, 15, 517–533. DOI: 10.1142/s1088424611003653. http://dx.doi.org/10.1142/S108842461100365310.1142/S1088424611003653Search in Google Scholar

[20] Fueda, Y., Hashimoto, M., Nobuhara, K., Yokoi, H., Komiya, Y., Shiragami, T., Matsumoto, J., Kawano, K., Suzuki, S., & Yasuda, M. (2005). Visible-light bactericidal effect of silica gel-supported porphyrinatoantimony(V) catalyst on Legionella species occurring in the living environmental fields. Biocontrol Science, 10, 55–60. http://dx.doi.org/10.4265/bio.10.5510.4265/bio.10.55Search in Google Scholar

[21] Fueda, Y., Suzuki, H., Komiya, Y., Asakura, Y., Shiragami, T., Matsumoto, J., Yokoi, H., & Yasuda, M. (2006). Bactericidal effect of silica gel-supported porphyrinatophosphorus(V) catalysts on Escherichia coli under visible-light irradiation. Bulletin of the Chemical Society of Japan, 79, 1420–1425. DOI: 10.1246/bcsj.79.1420. http://dx.doi.org/10.1246/bcsj.79.142010.1246/bcsj.79.1420Search in Google Scholar

[22] García-Sánchez, M. A., de la Luz, V., Coahuila-Hernández, M. I., Rojas-Gonzáles, F., Tello-Solís, S. R., & Campero, A. (2011). Effects of the structure of entrapped substituted porphyrins on the textural characteristics of silica networks. Journal of Photochemistry & Photobiology A: Chemistry, 223, 172–181. DOI: 10.1016/j.photochem.2011.08.015. http://dx.doi.org/10.1016/j.jphotochem.2011.08.015Search in Google Scholar

[23] Gomes, M. C., Woranovicz-Barreira, S. M., Faustino, M. A. F., Fernandes, R., Neves, M. G. P. M. S., Tomé, A. C., Gomes, N. C. M., Almeida, A., Cavaleiro, J. A. S., Cunha, Â., & Tomé, J. P. C. (2011). Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochemical & Photobiological Sciences, 2011, 1735–1743. DOI: 10.1039/c1pp05174a. http://dx.doi.org/10.1039/c1pp05174a10.1039/c1pp05174aSearch in Google Scholar

[24] Hocine, O., Gary-Bobo, M., Brevet, D., Maynadier, M., Fontanel, S., Raehm, L., Richeter, S., Loock, B., Couleaud, P., Frochot, C., Charnay, C., Derrien, G., Smaïhi, M., Sahmoune, A., Morère, A., Maillard, P., Garcia, M., & Durand, J. O. (2011). Silicalites and mesoporous silica nanoparticles for photodynamic therapy. International Journal of Pharmaceutics, 402, 221–230. DOI: 10.1016/j.ijpharm.2010.10.004. http://dx.doi.org/10.1016/j.ijpharm.2010.10.00410.1016/j.ijpharm.2010.10.004Search in Google Scholar

[25] Jemli, M., Alouini, Z., Sabbahi, S., & Gueddari, M. (2002). Destruction of fecal bacteria in wastewater by three photosensitizers. Journal of Environmental Monitoring, 2002, 511–516. DOI: 10.1039/b204637g. http://dx.doi.org/10.1039/b204637g10.1039/b204637gSearch in Google Scholar

[26] Jori, G. (2006). Photodynamic therapy of microbial infections: State of the art and perspectives. Journal of Environmental Pathology, Toxicology and Oncology, 25, 505–520. 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.320Search in Google Scholar

[27] Jori, G., Camerin, M., Soncin, M., Guidolin, L., & Coppellotti, O. (2011a). Antimicrobial photodynamic therapy: Basic principles. In M. R. Hamblin, & G. Jori (Eds.), Photodynamic inactivation of microbial pathogens: Medical and environmental applications (pp. 3–14). London, UK: Royal Society of Chemistry. DOI: 10.1039/9781849733083-00001. 10.1039/9781849733083-00001Search in Google Scholar

[28] Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., & Roneucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 38, 468–481. DOI: 10.1002/lsm.20361. http://dx.doi.org/10.1002/lsm.2036110.1002/lsm.20361Search in Google Scholar

[29] Jori, G., Magaraggia, M., Fabris, C., Soncin, M., Camerin, M., Tallandini, L., Coppellotti, O., & Guidolin, L. (2011b). Photodynamic inactivation of microbial pathogens: Disinfection of water and prevention of water-borne diseases. Journal of Environmental Pathology, Toxicology and Oncology, 30, 261–271. 10.1615/JEnvironPatholToxicolOncol.v30.i3.90Search in Google Scholar

[30] Ko, Y. J., Yun, K. J., Kang, M. S., Park, J., Lee, K. T., Park, S. B., & Shin, J. H. (2007). Synthesis and in vitro photodynamic activities of water-soluble fluorinated tetrapyridylporphyrins as tumor photosensitizers. Bioorganic & Medicinal Chemistry Letters, 17, 2789–2794. DOI: 10.1016/j.bmcl.2007.02.083. http://dx.doi.org/10.1016/j.bmcl.2007.02.08310.1016/j.bmcl.2007.02.083Search in Google Scholar

[31] Koenig K., & Schneckenburger, H. (2004). Laser-induced auto-fluorescence for medical diagnosis. Journal of Fluorescence, 4, 17–40, DOI: 10.1007/bf01876650. http://dx.doi.org/10.1007/BF0187665010.1007/BF01876650Search in Google Scholar

[32] Loy, D. A., Jamison, G. M., Baugher, B. M., Russick, E. M., Assink, R. A., Prabakar, S., & Shea, K. J. (1995). Alkylenebridged polysilsesquioxane aerogels: highly porous hybrid organic-inorganic materials. Journal of Non-Crystalline Solids, 186, 44–53. DOI: 10.1016/0022-3093(95)00032-1. http://dx.doi.org/10.1016/0022-3093(95)00032-110.1016/0022-3093(95)00032-1Search in Google Scholar

[33] Lukasik, K. V., & Ludescher, R. D. (2006). Molecular mobility in water and glycerol plasticized cold- and hotcast gelatin films. Food Hydrocolloids, 20, 96–105. DOI: 10.1016/j.foodhyd.2005.03.007. http://dx.doi.org/10.1016/j.foodhyd.2005.03.00710.1016/j.foodhyd.2005.03.007Search in Google Scholar

[34] Lukšienė, Ž. (2005). New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technology & Biotechnology, 43, 411–418. Search in Google Scholar

[35] Magaraggia, M., Marigo, L., Pagnan, A., Jori, G., & Visona, A. (2007). Porphyrin-photosensitized processes in the prevention of arterial restenosis. Cardiovascular & Hematological Agents in Medical Chemistry, 5, 278–288. http://dx.doi.org/10.2174/18715250778210990810.2174/187152507782109908Search in Google Scholar PubMed

[36] Maisch, T., Szeimies, R. M., Jori, G., & Abels, C. (2004). Antibacterial photodynamic therapy in dermatology. Photochemical & Photobiological Sciences, 3, 907–917. DOI: 10.1039/b407622b. http://dx.doi.org/10.1039/b407622b10.1039/b407622bSearch in Google Scholar PubMed

[37] Mosinger, J., Losinská, K., Abrhámová, T., Veiserová, S., Mička, Z., Němcová, I., & Mosinger, B. (2000). Determination of singlet oxygen production and antibacterial effect of nonpolar porphyrins in heterogeneous systems. Analytical Letters, 33, 1091–1104. DOI: 10.1080/00032710008543111. http://dx.doi.org/10.1080/0003271000854311110.1080/00032710008543111Search in Google Scholar

[38] Oliveira, A., Almeida, A., Carvalho, C. M. B., Tomé, J. P. C., Faustino, M. A. F., Neves, M.G. P.M. S., Tomé, A. C., Cavaleiro, J. A. S., & Cunha, Â. (2009). Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. Journal of Applied Microbiology, 106, 1086–1995. DOI: 10.1111/j.1365-2672.2009.04168.x. 10.1111/j.1365-2672.2009.04168.xSearch in Google Scholar PubMed

[39] Ou, Z. M., Yao, H., & Kimura, K. (2007). Preparation and optical properties of organic nanoparticles of porphyrins without self-aggregation. Journal of Photochemistry and Photobiology A: Chemistry, 189, 7–14. DOI: 10.1016/j.jphotochem.2006.12.042. http://dx.doi.org/10.1016/j.jphotochem.2006.12.04210.1016/j.jphotochem.2006.12.042Search in Google Scholar

[40] Oviatt, H. W., Shea, K. J., & Small, J. H. (1993). Alkylenebridged silsesquioxane sol-gel synthesis and xerogel characterization. Molecular requirements for porosity. Chemistry of Materials, 5, 943–950. DOI: 10.1021/cm00031a012. http://dx.doi.org/10.1021/cm00031a01210.1021/cm00031a012Search in Google Scholar

[41] Rychtáriková, R. (2011). Antimicrobial effects of immobilized porphyrins. Ph.D. thesis. Prague, Czech Republic: Institute of Chemical Technology. Search in Google Scholar

[42] Rychtáriková, R., & Kuncová, G. (2011). Assessment of antimicrobial activity via computational tresholding of colours. Chemické Listy, 105, 493–498. Search in Google Scholar

[43] Rychtarikova, R., Sabata, S., Hetflejs, J., & Kuncova, G. (2012). Composites with photosensitive 5,10,15,20-tetrakis(Nmethylpyridinium-4-yl)porphyrin entrapped into silica gels. Journal of Sol-Gel Science and Technology, 61, 119–125. DOI: 10.1007/s10971-011-2600-y. http://dx.doi.org/10.1007/s10971-011-2600-y10.1007/s10971-011-2600-ySearch in Google Scholar

[44] Šabata, S., Hetflejš, J., Rychtáriková, R., Kuncová, G., Lang, K., & Kubát, P. (2009). Immobilization of porphyrins in poly(hydroxymethyl)siloxane. Chemical Papers, 63, 438–444. DOI: 10.2478/s11696-009-0037-3. http://dx.doi.org/10.2478/s11696-009-0037-310.2478/s11696-009-0037-3Search in Google Scholar

[45] Sigler, K., Chaloupka, J., Brozmanová, J., Stadler, N., & Höfer, M. (1999). Oxidative stress in microorganisms—I. Microbial vs. higher cells—damage and defenses in relation to cell aging and death. Folia Microbiologica, 44, 587–624. DOI: 10.1007/bf02825650. http://dx.doi.org/10.1007/BF0282565010.1007/BF02825650Search in Google Scholar PubMed

[46] Simon, V., Devaux, C., Darmon, A., Donnet, T., Thiénot, E., Germain, M., Honnorat, J., Duval, A., Pottier, A., Borghi, E., Levy, L., & Marrill, J. (2010). Pp IX silica nanoparticles demonstrate differential interactions with in vitro tumor cell lines and in vivo mouse models of human cancers. Photochemistry and Photobiology, 86, 213–222. DOI: 10.1111/j.1751-1097.2009.00620.x. http://dx.doi.org/10.1111/j.1751-1097.2009.00620.x10.1111/j.1751-1097.2009.00620.xSearch in Google Scholar

[47] Strawbridge, I., & James, P. F. (1986). Thin silica films prepared by dip coating. Journal of Non-Crystalline Solids, 82, 366–372. DOI: 10.1016/0022-3093(86)90153-5. http://dx.doi.org/10.1016/0022-3093(86)90153-510.1016/0022-3093(86)90153-5Search in Google Scholar

[48] Ulatowska-Jarża, A., Zychowicz, J., Hołowacz, I., Bauer, J., Razik, J., Wieliczko, A., Podbielska, H., Müller, G., Stręk, W., & Bindig, U. (2006). Antimicrobial PDT with chlorophyll-derived photosensitizer and semiconductor laser. Medical Laser Application, 21, 177–183. DOI: 10.1016/j.mla.2006.05.003 http://dx.doi.org/10.1016/j.mla.2006.05.00310.1016/j.mla.2006.05.003Search in Google Scholar

[49] Vergeldt, F. J., Koehorst, R. B. M., van Hoek, A., & Schaafsma, T. J. (1995). Intramolecular interactions in the ground and excited-state of tetrakis(N-methylpyridyl)porphyrins. The Journal of Physical Chemistry, 99, 4397–4405. DOI: 10.1021/j100013a007. http://dx.doi.org/10.1021/j100013a00710.1021/j100013a007Search in Google Scholar

[50] Yokoi, H., Shiragami, T., Hirose, J., Kawauchi, T., Hinoue, K., Fueda, Y., Nobuhara, K., Akazaki, I., & Yasuda, M. (2003). Bactericidal effect of a silica gel-supported porphyrinatoantimony(V) complex under visible light irradiation. World Journal of Microbiology and Biotechnology, 19, 559–563. DOI: 10.1023/a:1025104032318. http://dx.doi.org/10.1023/A:102510403231810.1023/A:1025104032318Search in Google Scholar

[51] Yoshida, A., Kakegawa, N., & Ogawa, M. (2003). Adsorption of cationic porphyrin onto mesoporous silicas. Research on Chemical Intermediates, 29, 721–731. DOI: 10.1163/156856703322601735. http://dx.doi.org/10.1163/15685670332260173510.1163/156856703322601735Search in Google Scholar

[52] Zhu, J., Wang, H., Liao, L., Zhao, L., Zhou, L., Yu, M., Wang, Y., Liu, B., & Yu, C. (2011). Small mesoporous silica nanoparticles as carriers for enhanced photodynamic therapy. Chemistry-An Asian Journal, 6, 2332–2338. DOI: 10.1002/asia.201100064. http://dx.doi.org/10.1002/asia.20110006410.1002/asia.201100064Search in Google Scholar PubMed

Published Online: 2012-2-29
Published in Print: 2012-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0153-3/html
Scroll to top button