Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2012

A new bis(azine) tetradentate ligand and its transition metal complexes: Synthesis, characterisation, and extraction properties

  • Sultan Kulaksızoğlu EMAIL logo and Ramazan Gup
From the journal Chemical Papers

Abstract

A new bis(bidentate) azine ligand was prepared by linking (1Z,1′Z)-1,1′-{butane-1,4-diylbis[oxybenzene-4,1-diyl(1Z)ethyl-1-ylidene]}dihydrazine to salicylaldehyde. Two kinds of binuclear copper(II) and nickel(II) complexes with different stoichiometries were prepared. Reaction of bis(azine) ligand with Cu(II) and Ni(II) acetate at a 1: 1 mole ratio gave double-stranded binuclear bis(azine) complexes with stoichiometry [M(L)(H2O)2]2 containing [M(II)N2O2] centres while at a 2: 1 mole ratio, reaction of Cu(II) and Ni(II) chloride with bis(azine) resulted in dinuclear metal complexes with the general stoichiometry [M2(L)Cl2(H2O)2]. Structures of the bis(azine) ligand and its complexes were identified by elemental analysis, IR and UV-VIS spectra, magnetic susceptibility measurements, TGA, and powder XRD. Extraction properties of the bis(azine) ligand towards some transition metal cations and dichromate anions were also reported. It was found that the bis(azine) ligand does not extract cations but it has high extraction ability towards dichromate anions.

[1] Abd El-halim, H. F., Omar, M. M., & Mohamed, G. G. (2011). Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes. Spectrochimica Acta Part A, 78, 36–44. DOI:10.1016/j.saa.2010.06.003. http://dx.doi.org/10.1016/j.saa.2010.06.00310.1016/j.saa.2010.06.003Search in Google Scholar

[2] Abu-El-Wafa, S. M., Issa, R. M., & McAuliffe, C. A. (1985). Unusual Cu(III)—Schiff’s base complexes. Inorganica Chimica Acta, 99, 103–106. DOI: 10.1016/s0020-1693(00)86056-9. http://dx.doi.org/10.1016/S0020-1693(00)86056-910.1016/S0020-1693(00)86056-9Search in Google Scholar

[3] Bozkurt, S., Kocabas, E., Durmaz, M., Yilaz, M., & Sirit, A. (2009). Synthesis and dichromate anion sorption of silica gelimmobilized calix[4]arenes. Journal of Hazardous Materials, 165, 974–979. DOI:10.1016/j.jhazmat.2008.10.096. http://dx.doi.org/10.1016/j.jhazmat.2008.10.09610.1016/j.jhazmat.2008.10.096Search in Google Scholar PubMed

[4] Burrows, C. J., & Muller, J. G. (1998). Oxidative nucleobase modifications leading to strand scission. Chemical Reviews, 98, 1109–1152. DOI: 10.1021/cr960421s. http://dx.doi.org/10.1021/cr960421s10.1021/cr960421sSearch in Google Scholar PubMed

[5] Chen, G. S., Anthamatten, M., Barnes, C. L., & Glaser, R. (1994). Stereochemistry and stereoelectronics of azines. A solid-state study of symmetrical, (E,E)-configured, parasubstituted (H, F, Cl, Br, CN) acetophenone azines. The Journal of Organic Chemistry, 59, 4336–4340. DOI: 10.1021/jo00094a059. http://dx.doi.org/10.1021/jo00094a05910.1021/jo00094a059Search in Google Scholar

[6] Chen, G. S., Wilbur, J. K., Barnes, C. L., & Glaser, R. (1995). Push-pull substitution versus intrinsic or packing related N-N gauche preferences in azines. Synthesis, crystal-structures and packing of asymmetrical acetophenone azines. Journal of the Chemical Society, Perkin Transactions 2, 1995, 2311–2317. DOI: 10.1039/p29950002311. 10.1039/P29950002311Search in Google Scholar

[7] Chi, S. M., Wang, Y. F., Gan, X., Wang, D. H., & Fu, W. F. (2009). Synthesis, structures, and spectroscopic properties of copper(I) complexes bearing 7-acetamido-4-methyl-1,8-naphthyridin-2-carbaldehyde azine and 1,2-bis(diphenylphosphino) ethane ligands. Central European Journal of Chemistry, 7, 923–928. DOI: 10.2478/s11532-009-0087-y. http://dx.doi.org/10.2478/s11532-009-0087-y10.2478/s11532-009-0087-ySearch in Google Scholar

[8] Creaven, B. S., Gernon, T. L., McCormac, T., McGinley, J., Moore, A. M., & Toftlund, H. (2005). Unusual reactivity of copper(I) complexes of functionalised calix[4]arenes. Inorganica Chimica Acta, 358, 2661–2670. DOI:10.1016/j.ica.2005.03.003. http://dx.doi.org/10.1016/j.ica.2005.03.00310.1016/j.ica.2005.03.003Search in Google Scholar

[9] Davidson, M. G., Johnson, A. L., Jones, M. D., Lunn, M. D., & Mahon, M. F. (2006). Titanium(IV) complexes of hydrazones and azines. European Journal of Inorganic Chemistry, 2006, 4449–4454. DOI:10.1002/ejic.200600501. http://dx.doi.org/10.1002/ejic.200600501Search in Google Scholar

[10] Dede, B., Karipcin, F., Arabalı, F., & Cengiz, M. (2010). Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes. Chemical Papers, 64, 25–33. DOI: 10.2478/s11696-009-0095-6. http://dx.doi.org/10.2478/s11696-009-0095-610.2478/s11696-009-0095-6Search in Google Scholar

[11] Dede, B., Özme, I., Karipcin, F., & Cengiz, M. (2009). Homoand heteropolynuclear copper(II) complexes containing a new diimine-dioxime ligand and 1,10-phenanthroline: synthesis, characterization, solvent-extraction studies, catalaselike functions and DNA cleavage abilities. Applied Organometallic Chemistry, 23, 512–519. DOI: 10.1002/aoc.1557. http://dx.doi.org/10.1002/aoc.155710.1002/aoc.1557Search in Google Scholar

[12] Dömer, J., Hupka, F., Hahn, F. E., & Fröhlich, R. (2009). Mono- and dinuclear coordination compounds with directional bis(bidentate) ligands. European Journal of Inorganic Chemistry, 2009, 3600–3606. DOI:10.1002/ejic.200900505. http://dx.doi.org/10.1002/ejic.20090050510.1002/ejic.200900505Search in Google Scholar

[13] El-Sayed, B. A., Abo Aly, M. M., Emara, A. A. A., & Khalil, S. M. E. (2002). Synthesis and structural study of the ligand o-OH acetophenone azine and its Cu(II), Ni(II), Co(II) and Zn(II) complexes. Vibrational Spectroscopy, 30, 93–100. DOI:10.1016/s0924-2031(02)00043-7. http://dx.doi.org/10.1016/S0924-2031(02)00043-710.1016/S0924-2031(02)00043-7Search in Google Scholar

[14] Glaser, R., Chen, N., Wu, H., Knotts, N., & Kaupp, M. (2004). 13C NMR study of halogen bonding of haloarenes: Measurements of solvent effects and theoretical analysis. Jour nal of the American Chemical Society, 126, 4412–4419. DOI:10.1021/ja0383672. http://dx.doi.org/10.1021/ja038367210.1021/ja0383672Search in Google Scholar PubMed

[15] Gup, R. (2006). A new unsymmetrical vic-dioxime bearing salicylaldehyde 4-aminobenzoylhydrazone and its homo- and heterotrinuclear complexes with copper(II) and nickel(II) ions. Russian Journal of Coordination Chemistry, 32, 99–108. DOI:10.1134/s1070328406020047. http://dx.doi.org/10.1134/S107032840602004710.1134/S1070328406020047Search in Google Scholar

[16] Gup, R., Alpoguz, H. K., & Beduk, A. D. (2002). Synthesis and extraction properties of 1,2-bis(amidoxime) derivatives. Collection of Czechoslovak Chemical Communications, 67, 209–218. DOI:10.1135/cccc20020209. http://dx.doi.org/10.1135/cccc2002020910.1135/cccc20020209Search in Google Scholar

[17] Gup, R., & Giziroğlu, E. (2006). Metal complexes and solvent extraction properties of isonitrosoacetophenone 2-aminobenzoylhydrazone. Spectrochimica Acta Part A, 65, 719–726. DOI:10.1016/j.saa.2006.01.004. http://dx.doi.org/10.1016/j.saa.2006.01.00410.1016/j.saa.2006.01.004Search in Google Scholar PubMed

[18] Gup, R., Kirkan, B., & Giziroğlu, E. (2006). Synthesis and characterization of complexes of copper(II), nickel(II) and cobalt(II) with vic-dioximes bearing N′-p-aminobenzoyl benzaldehyde hydrazone. Chinese Journal of Chemistry, 24, 199–204. DOI:10.1002/cjoc.200690038. http://dx.doi.org/10.1002/cjoc.20069003810.1002/cjoc.200690038Search in Google Scholar

[19] Hatay, I., Gup, R., & Ersöz, M. (2008). Silica gel functionalized with 4-phenylacetophynone 4-aminobenzoylhydrazone: Synthesis of a new chelating matrix and its application as metal ion collector. Journal of Hazardous Materials, 150, 546–553 DOI:10.1016/j.jhazmat.2007.05.002. http://dx.doi.org/10.1016/j.jhazmat.2007.05.00210.1016/j.jhazmat.2007.05.002Search in Google Scholar PubMed

[20] Krishna, P. G., Gladis, J. M., Rambabu, U., Rao, T. P., & Naidu, G. R. K. (2004). Preconcentrative separation of chromium(VI) species from chromium(III) by coprecipitation of its ethyl xanthate complex onto naphthalene. Talanta, 63, 541–546. DOI:10.1016/j.talanta.2003.11.032. http://dx.doi.org/10.1016/j.talanta.2003.11.03210.1016/j.talanta.2003.11.032Search in Google Scholar PubMed

[21] Kulaksızoğlu, S. (2011). Synthesis of transition metal complexes of p-hydroxyacetophenone azines and investigation of liquidliquid extraction properties. M.Sc. thesis, Mugla University, Mugla, Turkey. Search in Google Scholar

[22] Mahon, M. F., McGinley, J., Rooney, A. D., & Walsh, J. M. D. (2008). Calix[4]arene Schiff bases—potential ligands for fluorescent studies. Tetrahedron, 64, 11058–11066. DOI:10.1016/j.tet.2008.09.091. http://dx.doi.org/10.1016/j.tet.2008.09.09110.1016/j.tet.2008.09.091Search in Google Scholar

[23] Memon, S., Roundhill, D. M., & Yilmaz, M. (2004). Remediation and liquid-liquid phase transfer extraction of chromium(VI). A review. Collection of Czechoslovak Chemical Communications, 69, 1231–1250. DOI:10.1135/cccc20041231. http://dx.doi.org/10.1135/cccc2004123110.1135/cccc20041231Search in Google Scholar

[24] Moreno-Mañnas, M., Pleixats, R., Andreu, R., Garín, J., Orduna, J., Villacampa, B., Levillain, E., & Sallé, M. (2001). The first 1,3-dithiol-2-ylidene donor-π-acceptor chromophores containing an azine spacer: synthesis, electrochemical and nonlinear optical properties. Journal of Materials Chemistry, 11, 374–380. DOI: 10.1039/b007629p. http://dx.doi.org/10.1039/b007629p10.1039/b007629pSearch in Google Scholar

[25] McLoughlin, C., Clyburne, J. A. C., & Weinberg, N. (2007). Azines: conjugation stoppers or conjugation switches. Journal of Materials Chemistry, 17, 4304–4308. DOI: 10.1039/b706964b. http://dx.doi.org/10.1039/b706964b10.1039/b706964bSearch in Google Scholar

[26] Nakamoto, K. (1978). Infrared and Raman spectra of inorganic and coordination compounds (3rd ed.). New York, NY, USA: Wiley. Search in Google Scholar

[27] Nour, E. M., Taha, A. A., & Alnaimi, I. S. (1988). Infrared and Raman studies of [UO2(salen)(L)] (L = H2O and CH3OH). Inorganica Chimica Acta, 141, 139–144. DOI:10.1016/s0020-1693(00)86387-2. http://dx.doi.org/10.1016/S0020-1693(00)86387-210.1016/S0020-1693(00)86387-2Search in Google Scholar

[28] Pedersen, C. J. (1968). Ionic complexes of macrocyclic polyethers. Federation Proceedings, 27, 1305–1309. Search in Google Scholar

[29] Picón-Ferrer, I., Hueso-Ureñna, F., Illán-Cabeza, N. A., Jiménez-Pulido, S. B., Martínez-Martos, J. M., Ramírez-Expósito, M. J., & Moreno-Carretero, M. N. (2009). Chloro-fac-tricarbonylrhenium(I) complexes of asymmetric azines derived from 6-acetyl-1,3,7-trimethylpteridine-2,4(1H,3H)-dione with hydrazine and aromatic aldehydes: Preparation, structural characterization and biological activity against several human tumor cell lines. Journal of Inorganic Biochemistry, 103, 94–100. DOI:10.1016/j.jinorgbio.2008.09.014. http://dx.doi.org/10.1016/j.jinorgbio.2008.09.01410.1016/j.jinorgbio.2008.09.014Search in Google Scholar

[30] Pogozelski, W. K., & Tullius, T. D. (1998). Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chemical Reviews, 98, 1089–1108. DOI: 10.1021/cr960437i. http://dx.doi.org/10.1021/cr960437i10.1021/cr960437iSearch in Google Scholar

[31] Raji, C., & Anirudhan, T. S. (1998). Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Research, 32, 3772–3780. DOI: 10.1016/s0043-1354(98)00150-x. http://dx.doi.org/10.1016/S0043-1354(98)00150-X10.1016/S0043-1354(98)00150-XSearch in Google Scholar

[32] Serin, M., Karayel, G., & Gup, R. (2007). Homo- and heteronuclear complexes of a new, vicinal dioxime ligand. Chemical Papers, 61, 286–291. DOI: 10.2478/s11696-007-0035-2. http://dx.doi.org/10.2478/s11696-007-0035-210.2478/s11696-007-0035-2Search in Google Scholar

[33] Sreeja, P. B, Sreekanth, A., Nayar, C. R., Kurup, M. R. P., Usman, A., Razak, I. A., Chantrapromma, S., & Fun, H. K. (2003). Synthesis, spectral studies and structure of 2-hydroxyacetophenone nicotinic acid hydrazine. Journal of Molecular Structure, 645, 221–226. DOI: 10.1016/s0022-2860(02)00563-x. http://dx.doi.org/10.1016/S0022-2860(02)00563-X10.1016/S0022-2860(02)00563-XSearch in Google Scholar

[34] Tabakci, M., Memon, S., & Yilmaz, M. (2007). Synthesis and extraction properties of new ‘proton-switchable’ tri- and tetra-substituted calix[4]arene derivatives bearing pyridinium units. Tetrahedron, 63, 6861–6865. DOI:10.1016/j.tet.2007.04.060. http://dx.doi.org/10.1016/j.tet.2007.04.06010.1016/j.tet.2007.04.060Search in Google Scholar

[35] Tabakci, M., Memon, S., Yilmaz, M., & Roundhill, D. M. (2003). Synthesis and extraction studies of a versatile calix[4]arene-based “proton-switchable extractant” for toxic metals and dichromate anions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 45, 265–270. DOI:10.1023/a:1024503708830. http://dx.doi.org/10.1023/A:102450370883010.1023/A:1024503708830Search in Google Scholar

[36] Tang, X. D., Ding, Z. J., & Zhang, Z. M. (2009). High pressure study of acetophenone azine. Solid State Communications, 149, 301–306. DOI:10.1016/j.ssc.2008.11.034. http://dx.doi.org/10.1016/j.ssc.2008.11.03410.1016/j.ssc.2008.11.034Search in Google Scholar

[37] Tiwari, A. D., Mishra, A.K., Mishra, S. B., Mamba, B. B., Maji, B., & Bhattacharya, S. (2011). Synthesis and DNA binding studies of Ni(II), Co(II), Cu(II) and Zn(II) metal complexes of N1,N5-bis[pyridine-2-methylene]-thiocarbohydrazone Schiff-base ligand. Spectrochimica Acta Part A, 79, 1050–1056. DOI:10.1016/j.saa.2011.04.018. http://dx.doi.org/10.1016/j.saa.2011.04.01810.1016/j.saa.2011.04.018Search in Google Scholar PubMed

[38] Usluer, Ö., & Gup, R. (2007). Synthesis and characterization of copper(II) and nickel(II) complexes of isonitrosoacetophenone 4-aminobenzoylhydrazone. Polish Journal of Chemistry, 81, 1257–1265. Search in Google Scholar

[39] Viñnuelas-Zahínos, E., Luna-Giles, F., Torres-García P., & Bernalte-García, A. (2009). Chloride-bridged Ni(II) complexes with ferromagnetic exchange interaction from thiazoline hydrazone derivative ligands. Polyhedron, 28, 1362–1368. DOI:10.1016/j.poly.2009.02.030. http://dx.doi.org/10.1016/j.poly.2009.02.03010.1016/j.poly.2009.02.030Search in Google Scholar

[40] Wang, B. D., Yang, Z. Y, Wang, Q., Cai, T. K., & Crewdson, P. (2006). Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with naringenin Schiff-base. Bioorganic & Medicinal Chemistry, 14, 1880–1888. DOI:10.1016/j.bmc.2005.10.031. http://dx.doi.org/10.1016/j.bmc.2005.10.03110.1016/j.bmc.2005.10.031Search in Google Scholar PubMed

[41] West, J. D., & Marnett, L. J. (2006). Endogenous reactive intermediates as modulators of cell signaling and cell death. Chemical Research in Toxicology, 19, 173–194. DOI:10.1021/tx050321u. http://dx.doi.org/10.1021/tx050321u10.1021/tx050321uSearch in Google Scholar PubMed

[42] Zhang, G., Shuang, S., Dong, C., Liu, D., & Choi, M. M. F. (2004). Investigation on DNA assembly to neutral redcyclodextrin complex by molecular spectroscopy. Journal of Photochemistry and Photobiology B: Biology, 74, 127–134. DOI:10.1016/j.jphotobiol.2004.03.006. http://dx.doi.org/10.1016/j.jphotobiol.2004.03.00610.1016/j.jphotobiol.2004.03.006Search in Google Scholar PubMed

Published Online: 2012-1-8
Published in Print: 2012-3-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0126-y/html
Scroll to top button