Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2012

Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation

  • Mária Omastová EMAIL logo and Matej Mičušík
From the journal Chemical Papers

Abstract

Polypyrrole is one of the most frequently studied conducting polymers, having high electrical conductivity and stability, suitable for multi-functionalised applications. Coatings of chemically synthesised polypyrrole applied onto various organic and inorganic materials, such as polymer particles and films, nanoparticles of metal oxides, clay minerals, and carbon nanotubes are reviewed in this paper. Its primary subject is the formation of new materials and their application in which chemical oxidative polymerisation of pyrrole was used. These combined materials are used in antistatic applications, such as anti-corrosion coating, radiation-shielding, but also as new categories of sensors, batteries, and components for organic electronics are created by coating substrates with conducting polymer layers or imprinting technologies.

[1] Armelin, E., Pla, R., Liesa, F., Ramis, X., Iribarren, J. I., & Alemán, C. (2008). Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corrosion Science, 50, 721–728. DOI: 10.1016/j.corsci.2007.10.006. http://dx.doi.org/10.1016/j.corsci.2007.10.00610.1016/j.corsci.2007.10.006Search in Google Scholar

[2] Armes, S. P. (1987). Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synthetic Metals, 20, 365–371. DOI: 10.1016/0379-6779 (87)90833-2. http://dx.doi.org/10.1016/0379-6779(87)90833-210.1016/0379-6779(87)90833-2Search in Google Scholar

[3] Aydinli, B., Toppare, L., & Tinçer, T. (1999). A conducting composite of polypyrrole with ultrahigh molecular weight polyethylene foam. Journal of Applied Polymer Science, 72, 1843–1850. DOI: 10.1002/(SICI)1097-4628(19990628)72:14 〈1843::AID-APP6〉3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1097-4628(19990628)72:14<1843::AID-APP6>3.0.CO;2-L10.1002/(SICI)1097-4628(19990628)72:14<1843::AID-APP6>3.0.CO;2-LSearch in Google Scholar

[4] Baibarac, M., & Gómez-Romero, P. (2006). Nanocomposites based on conducting polymers and carbon nanotubes: From fancy materials to functional applications. Journal of Nanoscience and Nanotechnology, 6, 289–302. DOI: 10.1166/jnn.2006.002. 10.1166/jnn.2006.002Search in Google Scholar

[5] Baibarac, M., Baltog, I., & Lefrant, S. (2011). Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/carbon nanotubes composites. Current Organic Chemistry, 15, 1160–1196. DOI: 10.2174/138527211795203022. 10.2174/138527211795203022Search in Google Scholar

[6] Barthet, C., Armes, S. P., Chehimi, M.M., Bilem, C., & Omastova, M. (1998). Surface characterization of polyaniline-coated polystyrene latexes. Langmuir, 14, 5032–5038. DOI: 10.1021/la980102r. http://dx.doi.org/10.1021/la980102r10.1021/la980102rSearch in Google Scholar

[7] Ben Slimane, A., Boukerma, K., Chabut, M., & Chehimi, M. M. (2004a). An inverse gas chromatographic characterization of polypyrrole-coated poly(vinyl chloride) powder particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240, 45–53. DOI: 10.1016/j.colsurfa.2004.03.009. http://dx.doi.org/10.1016/j.colsurfa.2004.03.00910.1016/j.colsurfa.2004.03.009Search in Google Scholar

[8] Ben Slimane, A., Chehimi, M. M., & Vaulay, M. J. (2004b). Polypyrrole-coated poly(vinyl chloride) powder particles: surface chemical and morphological characterisation by means of X-ray photoelectron spectroscopy and scanning electron microscopy. Colloid and Polymer Science, 282, 314–323. DOI: 10.1007/s00396-003-0934-x. http://dx.doi.org/10.1007/s00396-003-0934-x10.1007/s00396-003-0934-xSearch in Google Scholar

[9] Berdjane, Z., Rueda, D. R., & Balta-Calleja, F. J. (1993). Influence of polymerization time on the properties of polypyrrole grown at the surface of sulfonated polyethylene films. Synthetic Metals, 55, 1153–1158. DOI: 10.1016/0379-6779(93)90216-j. http://dx.doi.org/10.1016/0379-6779(93)90216-J10.1016/0379-6779(93)90216-JSearch in Google Scholar

[10] Bhattacharya, A., & De, A. (1996). Conducting composites of polypyrrole and polyaniline. A review. Progress in Solid State Chemistry, 24, 141–181. DOI: 10.1016/0079-6786(96)00002-7. http://dx.doi.org/10.1016/0079-6786(96)00002-710.1016/0079-6786(96)00002-7Search in Google Scholar

[11] Bleha, M., Kůdela, V., Rosova, E. Y., Polotskaya, G. A., Kozlov, A. G., & Elyashevich, G. K. (1999). Synthesis and characterization of thin polypyrrole layers on polyethylene microporous films. European Polymer Journal, 35, 613–620. DOI: 10.1016/s0014-3057(98)00161-x. http://dx.doi.org/10.1016/S0014-3057(98)00161-X10.1016/S0014-3057(98)00161-XSearch in Google Scholar

[12] Boukerma, K., Mičušík, M., Mravčáková, M., Omastová, M., Vaulay, M. J., Beaunier, P., & Chehimi, M. M. (2007). Surfactant-assisted control of the surface energy and interfacial molecular interactions of polypyrrole. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 28–38. DOI: 10.1016/j.colsurfa.2006.07.005. http://dx.doi.org/10.1016/j.colsurfa.2006.07.00510.1016/j.colsurfa.2006.07.005Search in Google Scholar

[13] Boukerma, K., Omastová, M., Fedorko, P., & Chehimi, M. M. (2005). Surface properties and conductivity of bis(2-ethylhexyl) sulfosuccinate-containing polypyrrole. Applied Surface Science, 249, 303–314. DOI: 10.1016/j.apsusc.2004.12.011. http://dx.doi.org/10.1016/j.apsusc.2004.12.01110.1016/j.apsusc.2004.12.011Search in Google Scholar

[14] Boukerma, K., Piquemal, J. Y., Chehimi, M. M., Mravčáková, M., Omastová, M., & Beaunier, P. (2006). Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites. Polymer, 47, 569–576. DOI: 10.1016/j.polymer.2005.11.065. http://dx.doi.org/10.1016/j.polymer.2005.11.06510.1016/j.polymer.2005.11.065Search in Google Scholar

[15] Breimer, M. A., Yevgeny, G., Sy, S., & Sadik, O. A. (2001). Incorporation of metal nanoparticles in photopolymerized organic conducting polymers: a mechanistic insight. Nano Letters, 1, 305–308. DOI: 10.1021/nl015528w. http://dx.doi.org/10.1021/nl015528w10.1021/nl015528wSearch in Google Scholar

[16] Buruianä, T., Diaconu, I., Buruianä, E. C., Han, X., & Guo, F. (1997). Synthesis and characterization of polypyrrole-polyurethane cationomer composites. Die Angewandte Makromolekulare Chemie, 245, 139–147. DOI: 10.1002/apmc.1997.052450112. http://dx.doi.org/10.1002/apmc.1997.05245011210.1002/apmc.1997.052450112Search in Google Scholar

[17] Butterworth, M. D., Corradi, R., Johal, J., Lascelles, S. F., Maeda, S., & Armes, S. P. (1995). Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles. Journal of Colloid and Interface Science, 174, 510–517. DOI: 10.1006/jcis.1995.1418. http://dx.doi.org/10.1006/jcis.1995.141810.1006/jcis.1995.1418Search in Google Scholar

[18] Cairns, D. B., Armes, S. P., & Bremer, L. G. B. (1999a). Synthesis and characterization of submicrometer-sized polypyrrole-polystyrene composite particles. Langmuir, 15, 8052–8058. DOI: 10.1021/la990442s. http://dx.doi.org/10.1021/la990442s10.1021/la990442sSearch in Google Scholar

[19] Cairns, D. B., Armes, S. P., Chehimi, M. M., Perruchot, C., & Delamar, M. (1999b). X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole-polystyrene composites. Langmuir, 15, 8059–8066. DOI: 10.1021/la990443k. http://dx.doi.org/10.1021/la990443k10.1021/la990443kSearch in Google Scholar

[20] Cairns, D. B., Khan, M. A., Perruchot, C., Riede, A., & Armes, S. P. (2003). Synthesis and characterization of polypyrrole-coated poly(alkyl methacrylate) latex particles. Chemistry of Materials, 15, 233–239. DOI: 10.1021/cm020385f. http://dx.doi.org/10.1021/cm020385f10.1021/cm020385fSearch in Google Scholar

[21] Castillo-Ortega, M. M., Inoue, M. B., & Inoue, M. (1989). Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant. Synthetic Metals, 28, C65–C70. DOI: 10.1016/0379-6779(89)90500-6. http://dx.doi.org/10.1016/0379-6779(89)90500-610.1016/0379-6779(89)90500-6Search in Google Scholar

[22] Čeppan, M., Mikula, M., Fiala, R., Brezová, V., Blažková, A., & Panák, J. (1997). A study of photoelectrochemical deposition of organic layers on sol-gel TiO2 surfaces. Chemical Papers, 51, 193–197. Search in Google Scholar

[23] Chang, B. H., Liu, Z. Q., Sun, L. F., Tang, D. S., Zhou, W. Y., Wang, G., Qian, L. X., Xie, S. S., Fen, J. H., & Wan, M. X. (2000). Conductivity and magnetic susceptibility of nanotube/polypyrrole nanocomposites. Journal of Low Temperature Physics, 119, 41–48. DOI: 10.1023/a:1004656418144. http://dx.doi.org/10.1023/A:100465641814410.1023/A:1004656418144Search in Google Scholar

[24] Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W., Fray, D. J., & Windle, A. H. (2000). Carbon nanotube and polypyrrole composites: Coating and doping. Advanced Materials, 12, 522–526. DOI: 10.1002/(SICI)1521-4095(200004)12:7〈522::AID-ADMA522〉3.0.CO;2-S. http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-SSearch in Google Scholar

[25] Chen, H., Wang, W., Li, G., Li, C., & Zhang, Y. (2011). Synthesis of P(St-MAA)-Fe3O4/PPy core-shell composite microspheres with conductivity and superparamagnetic behaviors. Synthetic Metals, 161, 1921–1927. DOI: 10.1016/j.synthmet.2011.06.036. http://dx.doi.org/10.1016/j.synthmet.2011.06.03610.1016/j.synthmet.2011.06.036Search in Google Scholar

[26] Chen, X. B., Issi, J. P., Cassart, M., Devaux, J., & Billaud, D. (1994). Temperature dependence of the conductivity in conducting polymer composites. Polymer, 35, 5256–5258. DOI: 10.1016/0032-3861(94)90477-4. http://dx.doi.org/10.1016/0032-3861(94)90477-410.1016/0032-3861(94)90477-4Search in Google Scholar

[27] Chen, X., Issi, J. P., Devaux, J., & Billaud, D. (1995a). Chemically oxidized polypyrrole: Influence of the experimental conditions on its electrical conductivity and morphology. Polymer Engineering & Science, 35, 642–647. DOI: 10.1002/pen.760350803. http://dx.doi.org/10.1002/pen.76035080310.1002/pen.760350803Search in Google Scholar

[28] Chen, X. B., Issi, J. P., Devaux, J., & Billaud, D. (1995b). The conducting behavior and stability of conducting polymer composites. Polymer Engineering & Science, 35, 637–641. DOI: 10.1002/pen.760350802. http://dx.doi.org/10.1002/pen.76035080210.1002/pen.760350802Search in Google Scholar

[29] Cho, S. H., Kim, W. Y., Jeong, G. K., & Lee, Y. S. (2005). Synthesis of nano-sized polypyrrole-coated polystyrene latexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 79–83. DOI: 10.1016/j.colsurfa.2004.12.025. http://dx.doi.org/10.1016/j.colsurfa.2004.12.02510.1016/j.colsurfa.2004.12.025Search in Google Scholar

[30] Dai, T., Yang, X., & Lu, Y. (2007). Conductive composites of polypyrrole and sulfonic-functionalized silica spheres. Materials Letters, 61, 3142–3145. DOI: 10.1016/j.matlet.2006.11.012. http://dx.doi.org/10.1016/j.matlet.2006.11.01210.1016/j.matlet.2006.11.012Search in Google Scholar

[31] Dall’Olio, A., Dascola, G., Varacca, V., & Biochi, V. (1968). Resonance paramagnetique electronique et conductivité d’un noir d’oxypyrrol electrolytique. Comptes Rendus de l’Académie des Sciences C (Paris), 267C, 433–435. Search in Google Scholar

[32] De Jesus, M. C., Fu, Y., & Weiss, R. A. (1997). Conductive polymer blends prepared by in situ polymerization of pyrrole: A review. Polymer Engineering & Science, 37, 1936–1943. DOI: 10.1002/pen.11844. http://dx.doi.org/10.1002/pen.1184410.1002/pen.11844Search in Google Scholar

[33] de Oliveira, H. P., Andrade, C. A. S., & de Melo, C. P. (2008). Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. Journal of Colloid and Interface Science, 319, 441–449. DOI: 10.1016/j.jcis.2007.11.011. http://dx.doi.org/10.1016/j.jcis.2007.11.01110.1016/j.jcis.2007.11.011Search in Google Scholar

[34] De Paoli, M. A. (1997). Conductive polymer blends and composites. In H. S. Nalwa (Ed.), Handbook of organic conductive molecules and polymers (Vol. 2, pp. 773–798). Chichester, UK: Wiley. Search in Google Scholar

[35] De Paoli, M. A., Waltman, R. J., Diaz, A. F., & Bargon, J. (1984). Conductive composties form poly(vinyl chloride) and polypyrrole. Journal of the Chemical Society, Chemical Communications, 1984, 1015–1016. DOI: 10.1039/c39840001015. http://dx.doi.org/10.1039/c3984000101510.1039/c39840001015Search in Google Scholar

[36] Diaz, A. F., Kanazawa, K. K., & Gardini, G. P. (1979). Electrochemical polymerization of pyrrole. Journal of the Chemical Society, Chemical Communications, 1979, 635–636. DOI: 10.1039/c39790000635. http://dx.doi.org/10.1039/c3979000063510.1039/c39790000635Search in Google Scholar

[37] Fan, F. R. F., & Bard, A. J. (1986). Polymer films on electrodes. XIX. Electrochemical behavior at polypyrrole-nafion and polypyrrole-clay thin films on glassy carbon electrodes. Journal of the Electrochemical Society, 133, 301–304. DOI: 10.1149/1.2108566. 10.1149/1.2108566Search in Google Scholar

[38] Fan, J., Wan, M., Zhu, D., Chang, B., Pan, Z., & Xie, S. (1999). Synthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals, 102, 1266–1267. DOI: 10.1016/s0379-6779(98)01462-3. http://dx.doi.org/10.1016/S0379-6779(98)01462-310.1016/S0379-6779(98)01462-3Search in Google Scholar

[39] Fang, F. F., Choi, H. J., & Joo, J. (2008). Conducting polymer/clay nanocomposites and their applications. Journal of Nanoscience and Nanotechnology, 8, 1559–1581. DOI: 10.1166/jnn.2008.036. http://dx.doi.org/10.1166/jnn.2008.03610.1166/jnn.2008.036Search in Google Scholar

[40] Faverolle, F., Attias, A. J., Bloch, B., Audebert, P., & Andrieux, C. P. (1998). Highly conducting and strongly adhering polypyrrole coating layers deposited on glass substrates by a chemical process. Chemistry of Materials, 10, 740–752. DOI: 10.1021/cm970466p. http://dx.doi.org/10.1021/cm970466p10.1021/cm970466pSearch in Google Scholar

[41] Fritsche, J. (1840). Ueber das Anilin, ein neues Ersetzungsproduct des Indigo. Journal für Praktische Chemie, 20, 453–459. DOI: 10.1002/prac.18400200161. http://dx.doi.org/10.1002/prac.1840020016110.1002/prac.18400200161Search in Google Scholar

[42] Fu, Y., Weiss, R. A., Gan, P. P., & Bessette, M. D. (1998). Conductive elastomeric foams prepared by in situ vapor phase polymerization of pyrrole and copolymerization of pyrrole and N-methylpyrrole. Polymer Engineering & Science, 38, 857–862. DOI: 10.1002/pen.10251. http://dx.doi.org/10.1002/pen.1025110.1002/pen.10251Search in Google Scholar

[43] Fujii, S., Matsuzawa, S., Nakamura, Y., Ohtaka, A., Teratani, T., Akamatsu, K., Tsuruoka, T., & Nawafune, H. (2010). Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Langmuir, 26, 6230–6239. DOI: 10.1021/la9039545. http://dx.doi.org/10.1021/la903954510.1021/la9039545Search in Google Scholar PubMed

[44] Gangopadhyay, R., & De, A. (2000). Conducting polymer nanocomposites: A brief overview. Chemistry of Materials, 12, 608–622. DOI: 10.1021/cm990537f. http://dx.doi.org/10.1021/cm990537f10.1021/cm990537fSearch in Google Scholar

[45] Genies, E. M., Bidan, G., & Diaz, A. F. (1983). Spectro-electrochemical study of polypyrrole films. Journal of Electroanalytical Chemistry, 149, 101–113. DOI: 10.1016/s0022-0728(83)80561-0. http://dx.doi.org/10.1016/S0022-0728(83)80561-010.1016/S0022-0728(83)80561-0Search in Google Scholar

[46] Goldman, D., & Lellouche, J. P. (2010). An easy method for the production of functional polypyrrole/MWCNT and polycarbazole/MWCNT composites using nucleophilic multiwalled carbon nanotubes. Carbon, 48, 4170–4177. DOI: 10.1016/j.carbon.2010.07.032. http://dx.doi.org/10.1016/j.carbon.2010.07.03210.1016/j.carbon.2010.07.032Search in Google Scholar

[47] Han, M., Zhao, K., Zhang, Y., Chen, Z., & Chu, Y. (2007). Dielectric properties of polystyrene-polypyrrole core-shell conducting spheres suspended in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 174–180. DOI: 10.1016/j.colsurfa.2007.02.019. http://dx.doi.org/10.1016/j.colsurfa.2007.02.01910.1016/j.colsurfa.2007.02.019Search in Google Scholar

[48] Hao, L., Zhu, C., Chen, C., Kang, P., Hu, Y., Fan, W., & Chen, Z. (2003). Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates. Synthetic Metals, 139, 391–396. DOI: 10.1016/s0379-6779(03)00193-0. http://dx.doi.org/10.1016/S0379-6779(03)00193-010.1016/S0379-6779(03)00193-0Search in Google Scholar

[49] He, F., Omoto, M., Yamamoto, T., & Kise, H. (1995). Preparation of polypyrrole-polyurethane composite foam by vapor phase oxidative polymerization. Journal of Applied Polymer Science, 55, 283–287. DOI: 10.1002/app.1995.070550211. http://dx.doi.org/10.1002/app.1995.07055021110.1002/app.1995.070550211Search in Google Scholar

[50] Heinze, J. (1990). Electronically conducting polymers. Topics in Current Chemistry, 152, 1–47. DOI: 10.1007/bfb0034363. http://dx.doi.org/10.1007/BFb003436310.1007/BFb0034363Search in Google Scholar

[51] Hernandez, R., Diaz, A. F., Waltman, R., & Bargon, J. (1984). Surface characteristics of thin films prepared by plasma and electrochemical polymerizations. The Journal of Physical Chemistry, 88, 3333–3337. DOI: 10.1021/j150659a039. http://dx.doi.org/10.1021/j150659a03910.1021/j150659a039Search in Google Scholar

[52] Huijs, F. M., Lang, J., Kalicharan, D., Vercauteren, F. F., Van Der Want, J. J. L., & Hadziioannou, G. (2001). Formation of transparent conducting films based on core-shell latices: Influence of the polypyrrole shell thickness. Journal of Applied Polymer Science, 79, 900–909. DOI: 10.1002/1097-4628(20010131)79:5〈900::AID-APP140〉3.0.CO;2-P. http://dx.doi.org/10.1002/1097-4628(20010131)79:5<900::AID-APP140>3.0.CO;2-P10.1002/1097-4628(20010131)79:5<900::AID-APP140>3.0.CO;2-PSearch in Google Scholar

[53] Huijs, F. M., Vercauteren, F. F., & Hadziioannou, G. (2002). Resistance of transparent latex films based on acrylic latexes encapsulated with a polypyrrole shell. Synthetic Metals, 125, 395–400. DOI: 10.1016/s0379-6779(01)00484-2. http://dx.doi.org/10.1016/S0379-6779(01)00484-210.1016/S0379-6779(01)00484-2Search in Google Scholar

[54] Jang, J., & Oh, J. H. (2005). Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres. Advanced Functional Materials, 15, 494–502. DOI: 10.1002/adfm.200400095. http://dx.doi.org/10.1002/adfm.20040009510.1002/adfm.200400095Search in Google Scholar

[55] Kanazawa, K. K., Diaz, A. F., Gleiss, R. H., Gill, W. D., Kwak, J. F., Logan, J. A., Rabolt, J. F., & Street, G. B. (1979). ’Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. Journal of the Chemical Society, Chemical Communications, 1979, 854–855. DOI: 10.1039/c39790000854. http://dx.doi.org/10.1039/c3979000085410.1039/C39790000854Search in Google Scholar

[56] Kayrak-Talay, D., Akman, U., & Hortaçsu, Ö. (2008). Supercritical carbon dioxide immobilization of glucose oxidase on polyurethane/polypyrrole composite. The Journal of Supercritical Fluids, 44, 457–465. DOI: 10.1016/j.supflu.2007.09.013. http://dx.doi.org/10.1016/j.supflu.2007.09.01310.1016/j.supflu.2007.09.013Search in Google Scholar

[57] Kern, J. M., & Sauvage, J. P. (1989). Photochemical deposition of electrically conducting polypyrrole. Journal of the Chemical Society, Chemical Communications, 1989, 657–658. DOI: 10.1039/c39890000657. http://dx.doi.org/10.1039/c3989000065710.1039/c39890000657Search in Google Scholar

[58] Khan, M. A., & Armes, S. P. (2000). Conducting polymer-coated latex particles. Advanced Materials, 12, 671–674. DOI: 10.1002/(SICI)1521-4095(200005)12:9〈671::AIDADMA671〉3.0.CO;2-3. http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:9<671::AID-ADMA671>3.0.CO;2-310.1002/(SICI)1521-4095(200005)12:9<671::AID-ADMA671>3.0.CO;2-3Search in Google Scholar

[59] Kim, J. W., Liu, F., Choi, H. J., Hong, S. H., & Joo, J. (2003). Intercalated polypyrrole/Na+-montmorillonite nanocomposite via an inverted emulsion pathway method. Polymer, 44, 289–293. DOI: 10.1016/s0032-3861(02)00749-8. http://dx.doi.org/10.1016/S0032-3861(02)00749-810.1016/S0032-3861(02)00749-8Search in Google Scholar

[60] Kim, Y. T., Kim, W. S., Rhee, H. W., & Song, M. K. (2006). Iron corrosion protection by ultra-thin conductive films based on polypyrrole/poly(methyl methacrylate) composite. Molecular Crystals and Liquid Crystals, 445, 193–200. DOI: 10.1080/15421400500367116. 10.1080/15421400500367116Search in Google Scholar

[61] Kobayashi, Y., Ishida, S., Ihara, K., Yasuda, Y., Morita, T., & Yamada, S. (2009). Synthesis of metallic copper nanoparticles coated with polypyrrole. Colloid and Polymer Science, 287, 877–880. DOI: 10.1007/s00396-009-2047-7. http://dx.doi.org/10.1007/s00396-009-2047-710.1007/s00396-009-2047-7Search in Google Scholar

[62] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: do]10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar

[63] Kotal, M., Srivastava, S. K., & Paramanik, B. (2011). Enhancements in conductivity and thermal stabilities of polypyrrole/polyurethane nanoblends. The Journal of Physical Chemistry C, 115, 1496–1505. DOI: 10.1021/jp1081643. http://dx.doi.org/10.1021/jp108164310.1021/jp1081643Search in Google Scholar

[64] Kudoh, Y. (1996). Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactants. Synthetic Metals, 79, 17–22. DOI: 10.1016/s0379-6779(97)80072-0. http://dx.doi.org/10.1016/0379-6779(96)80124-X10.1016/S0379-6779(97)80072-0Search in Google Scholar

[65] Kurachi, K., & Kise, H. (1995). Anisotropy in electrical conduction of polypyrrole/polyethylene composite films by drawing. Macromolecular Chemistry and Physics, 196, 929–936. DOI: 10.1002/macp.1995.021960320. http://dx.doi.org/10.1002/macp.1995.02196032010.1002/macp.1995.021960320Search in Google Scholar

[66] Lahiff, E., Lynam, C., Gilmartin, N., O’Kennedy, R., & Diamond, D. (2010). The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Analytical and Bioanalytical Chemistry, 398, 1575–1589. DOI: 10.1007/s00216-010-4054-4. http://dx.doi.org/10.1007/s00216-010-4054-410.1007/s00216-010-4054-4Search in Google Scholar

[67] Lascelles, S. F., & Armes, S. P. (1995). Synthesis and characterization of micrometer-sized polypyrrole-coated polystyrene latexes. Advanced Materials, 7, 864–866. DOI: 10.1002/adma.19950071011. http://dx.doi.org/10.1002/adma.1995007101110.1002/adma.19950071011Search in Google Scholar

[68] Lascelles, S. F., & Armes, S. P. (1997). Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. Journal of Materials Chemistry, 7, 1339–1347. DOI: 10.1039/a700237h. http://dx.doi.org/10.1039/a700237h10.1039/a700237hSearch in Google Scholar

[69] Lascelles, S. F, Armes, S. P., Zhdan, P. A., Greaves, S. J., Brown, A. M., Watts, J. F., Leadley, S. R., & Luk, S. Y. (1997). Surface characterization of micrometre-sized, polypyrrole-coated polystyrene latexes: verification of a ‘core-shell’ morphology. Journal of Materials Chemistry, 7, 1349–1355. DOI: 10.1039/a700236j. http://dx.doi.org/10.1039/a700236j10.1039/a700236jSearch in Google Scholar

[70] Lee, J. W., Kim, J. H., Chun, Y. S., Yoo, Y. T., & Hong, S. M. (2009). The performance of nafion-based IPMC actuators containing polypyrrole/alumina composite fillers. Macromolecular Research, 17, 1032–1038. DOI: 10.1007/bf03218653. http://dx.doi.org/10.1007/BF0321865310.1007/BF03218653Search in Google Scholar

[71] Lee, J. Y., Kim, D. Y., & Kim, C. Y. (1995). Synthesis of soluble polypyrrole of the doped state in organic-solvents. Synthetic Metals, 74, 103–106. DOI: 10.1016/0379-6779(95)03359-9. http://dx.doi.org/10.1016/0379-6779(95)03359-910.1016/0379-6779(95)03359-9Search in Google Scholar

[72] Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C. W., & Lee, S. H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature0470510.1038/nature04705Search in Google Scholar PubMed

[73] Lépinay, S., Khémara, K., Millot, M. C., & Carbonnier, B. (2012). In-situ polymerized molecularly imprinted polymeric thin films used as sensing layer within surface plasmon resonance sensor: Mini review focused on 2010-2011. Chemical Papers, 66, 340–351. DOI: do]10.2478/s11696-012-0134-6. http://dx.doi.org/10.2478/s11696-012-0134-610.2478/s11696-012-0134-6Search in Google Scholar

[74] Letaïef, S., Aranda, P., & Ruiz-Hitzky, E. (2005). Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Applied Clay Science, 28, 183–198. DOI: 10.1016/j.clay.2004.02.008. http://dx.doi.org/10.1016/j.clay.2004.02.00810.1016/j.clay.2004.02.008Search in Google Scholar

[75] Letheby, H. (1862). XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society, 15, 161–163. DOI: 10.1039/js8621500161. http://dx.doi.org/10.1039/js862150016110.1039/JS8621500161Search in Google Scholar

[76] Li, T., Zeng, X., & Xu, J. (2007). Preparation and characterization of conductive polypyrrole/organophilic montorillonite nanocomposite. Polymer-Plastics Technology and Engineering, 46, 751–757. DOI: 10.1080/03602550701305005. http://dx.doi.org/10.1080/0360255070130500510.1080/03602550701305005Search in Google Scholar

[77] Mabrook, M. F., Pearson, C., & Petty, M. C. (2006). Inkjet-printed polypyrrole thin films for vapour sensing. Sensors and Actuators B: Chemical, 115, 547–551. DOI: 10.1016/j.snb.2005.10.019. http://dx.doi.org/10.1016/j.snb.2005.10.01910.1016/j.snb.2005.10.019Search in Google Scholar

[78] Madani, A., Nessark, B., Brayner, R., Elaissari, H., Jouini, M., Mangeney, C., & Chehimi, M. M. (2010). Carboxylic acid-functionalized, core-shell polystyrene@polypyrrole microspheres as platforms for the attachment of CdS nanoparticles. Polymer, 51, 2825–2835. DOI: 10.1016/j.polymer.2010.04.020. http://dx.doi.org/10.1016/j.polymer.2010.04.02010.1016/j.polymer.2010.04.020Search in Google Scholar

[79] Maeda, S., & Armes, S. P. (1995). Surface area measurements on conducting polymer-inorganic oxide nanocomposites. Synthetic Metals, 73, 151–155. DOI: 10.1016/0379-6779(95)03315-7. http://dx.doi.org/10.1016/0379-6779(95)03315-710.1016/0379-6779(95)03315-7Search in Google Scholar

[80] Malinauskas, A. (2001). Chemical deposition of conducting polymers. Polymer, 42, 3957–3972. DOI: 10.1016/s0032-3861(00)00800-4. http://dx.doi.org/10.1016/S0032-3861(00)00800-410.1016/S0032-3861(00)00800-4Search in Google Scholar

[81] Mangeney, C., Fertani, M., Bousalem, S., Zhicai, M., Ammar, S., Herbst, F., Beaunier, P., Elaissari, A., & Chehimi, M. M. (2007). Magnetic Fe2O3-polystyrene/PPy core/shell particles: Bioreactivity and self-assembly. Langmuir, 23, 10940–10949. DOI: 10.1021/la700492s. http://dx.doi.org/10.1021/la700492s10.1021/la700492sSearch in Google Scholar

[82] Mano, V., Felisberti, M. I., Matencio, T., & De Paoli, M. A. (1996). Thermal, mechanical and electrochemical behaviour of poly(vinyl chloride)/polypyrrole blends (PVC/PPy). Polymer, 37, 5165–5170. DOI: 10.1016/0032-3861(96)00339-4. http://dx.doi.org/10.1016/0032-3861(96)00339-410.1016/0032-3861(96)00339-4Search in Google Scholar

[83] Matencio, T., Mano, V., Felisberti, M. I., & De Paoli, M. A. (1994). Electrochemical study of poly(vinyl chloride)/polypyrrole blends. Electrochimica Acta, 39, 1393–1400. DOI: 10.1016/0013-4686(94)e0067-a. http://dx.doi.org/10.1016/0013-4686(94)E0067-A10.1016/0013-4686(94)E0067-ASearch in Google Scholar

[84] Mathew, K. T., Kumar, A. V. P., & John, H. (2006). Polyaniline and polypyrrole with PVC content for effective EMI shielding. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (Vol. 1–3, pp. 443–444). Washington, DC, USA: Institute of Electrical and Electronics Engineers. Search in Google Scholar

[85] McNeill, R., Siudak, R., Wardlaw, J. H., & Weiss, D. E. (1963). Electronic conduction in polymers. I. The chemical structure of polypyrrole. Australian Journal of Chemistry, 16, 1056–1075. DOI: 10.1071/ch9631056. 10.1071/CH9631056Search in Google Scholar

[86] Mengoli, G., Munari, M. T., Bianco, P., & Musiani, M. M. (1981). Anodic synthesis of polyaniline coatings onto Fe sheets. Journal of Applied Polymer Science, 26, 4247–4257. DOI: 10.1002/app.1981.070261224. http://dx.doi.org/10.1002/app.1981.07026122410.1002/app.1981.070261224Search in Google Scholar

[87] Mi, H., Zhang, X., Xu, Y., & Xiao, F. (2010). Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Applied Surface Science, 256, 2284–2288. DOI: 10.1016/j.apsusc.2009.10.053. http://dx.doi.org/10.1016/j.apsusc.2009.10.05310.1016/j.apsusc.2009.10.053Search in Google Scholar

[88] Mičušík, M., Omastová, M., Boukerma, K., Albouy, A., Chehimi, M. M., Trchová, M., & Fedorko, P. (2007). Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. Polymer Engineering & Science, 47, 1198–1206. DOI: 10.1002/pen.20690. http://dx.doi.org/10.1002/pen.2069010.1002/pen.20690Search in Google Scholar

[89] Morita, M., Hashida, I., & Nishimura, M. (1988). Conducting polypyrrole composite thin films chemically prepared by spreading on surface of aqueous solution containing oxidizing agent. Journal of Applied Polymer Science, 36, 1639–1650. DOI: 10.1002/app.1988.070360711. http://dx.doi.org/10.1002/app.1988.07036071110.1002/app.1988.070360711Search in Google Scholar

[90] Moučka, R., Mravčáková, M., Vilčáková, J., Omastová, M., & Sáha, P. (2011). Electromagnetic absorption efficiency of polypropylene/montmorillonite/polypyrrole nanocomposites. Materials and Design, 32, 2006–2011. DOI: 10.1016/j.matdes.2010.11.064. http://dx.doi.org/10.1016/j.matdes.2010.11.06410.1016/j.matdes.2010.11.064Search in Google Scholar

[91] Mravčáková, M., Boukerma, K., Omastová, M., & Chehimi, M. M. (2006). Montmorillonite/polypyrrole nanocomposites. The effect of organic modification of clay on the chemical and electrical properties. Materials Science and Engineering C, 26, 306–313. DOI: 10.1016/j.msec.2005.10.044. http://dx.doi.org/10.1016/j.msec.2005.10.04410.1016/j.msec.2005.10.044Search in Google Scholar

[92] Mravčáková, M., Omastová, M., Olejníková, K., Pukánszky, B., & Chehimi, M. M. (2007). The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites: A comparative study. Synthetic Metals, 157, 347–357. DOI: 10.1016/j.synthmet.2007.04.005. http://dx.doi.org/10.1016/j.synthmet.2007.04.00510.1016/j.synthmet.2007.04.005Search in Google Scholar

[93] Myers, R. E. (1986). Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. Journal of Electronic Materials, 15, 61–69. DOI: 10.1007/bf02649904. http://dx.doi.org/10.1007/BF0264990410.1007/BF02649904Search in Google Scholar

[94] Nakata, M., & Kise, H. (1993). Preparation of polypyrrolepoly( vinyl chloride) composite films by interphase oxidative polymerization. Polymer Journal, 25, 91–94. DOI: 10.1295/polymj.25.91. http://dx.doi.org/10.1295/polymj.25.9110.1295/polymj.25.91Search in Google Scholar

[95] Neoh, K. G., Teo, H. W., Kang, E. T., & Tan, K. L. (1998). Enhancement of growth and adhesion of electroactive polymer coatings on polyolefin substrates. Langmuir, 14, 2820–2826. DOI: 10.1021/la971380d. http://dx.doi.org/10.1021/la971380d10.1021/la971380dSearch in Google Scholar

[96] Njuguna, J., & Pielichowski, K. (2004). Recent developments in polyurethane-based conducting composites. Journal of Materials Science, 39, 4081–4094. DOI: 10.1023/b:jmsc.0000033387.51728.de. http://dx.doi.org/10.1023/B:JMSC.0000033387.51728.de10.1023/B:JMSC.0000033387.51728.deSearch in Google Scholar

[97] Nyström, G., Razaq, A., Strømme, M., Nyholm, L., & Mihranyan, A. (2009). Ultrafast all-polymer paper-based batteries. Nano Letters, 9, 3635–3639. DOI: 10.1021/nl901852h. http://dx.doi.org/10.1021/nl901852h10.1021/nl901852hSearch in Google Scholar

[98] Oh, E. J., Jang, K. S., & MacDiarmid, A. G. (2002). High molecular weight soluble polypyrrole. Synthetic Metals, 125, 267–272. DOI: 10.1016/s0379-6779(01)00384-8. http://dx.doi.org/10.1016/S0379-6779(01)00384-810.1016/S0379-6779(01)00384-8Search in Google Scholar

[99] Omastová, M., Boukerma, K., Chehimi, M. M., & Trchová, M. (2005). Novel silicon carbide/polypyrrole composites; preparation and physicochemical properties. Materials Research Bulletin, 40, 749–765. DOI: 10.1016/j.materresbull.2005.02.010. http://dx.doi.org/10.1016/j.materresbull.2005.02.01010.1016/j.materresbull.2005.02.010Search in Google Scholar

[100] Omastová, M., Chodák, I., Pionteck, J., & Pötschke, P. (1998a). Preparation and properties of conducting polyolefins composites. Journal of Macromolecular Science — Pure and Applied Chemistry, 35, 1117–1126. DOI: 10.1080/10601329808002105. http://dx.doi.org/10.1080/1060132980800210510.1080/10601329808002105Search in Google Scholar

[101] Omastová, M., Košina, S., Pionteck, J., Janke, A., & Pavlinec, J. (1996a). Electrical properties and stability of polypyrrole containing conducting polymer composites. Synthetic Metals, 81, 49–57. DOI: 10.1016/0379-6779 (96)80228-1. http://dx.doi.org/10.1016/0379-6779(96)80228-110.1016/0379-6779(96)80228-1Search in Google Scholar

[102] Omastová, M., Lazár, M., & Košina, S. (1994). Combined electrochemical and chemical synthesis of thick polypyrrole layers and their characterization. Polymer International, 34, 151–156. DOI: 10.1002/pi.1994.210340205. http://dx.doi.org/10.1002/pi.1994.21034020510.1002/pi.1994.210340205Search in Google Scholar

[103] Omastová, M., Mosnčáková, K., Trchová, M., Konyushenko, E. N., Stejskal, J., Fedorko, P., & Prokeš, J. (2010). Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synthetic Metals, 160, 701–707. DOI: 10.1016/j.synthmet.2010.01.004. http://dx.doi.org/10.1016/j.synthmet.2010.01.00410.1016/j.synthmet.2010.01.004Search in Google Scholar

[104] Omastová, M., Pavlinec, J., Pionteck, J., & Simon, F. (1997). Synthesis, electrical properties and stability of polypyrrole-containing conducting polymer composites. Polymer International, 43, 109–116. DOI: 10.1002/(SICI)1097-0126(199 706)43:2〈109::AID-PI707〉3.0.CO;2-T. http://dx.doi.org/10.1002/(SICI)1097-0126(199706)43:2<109::AID-PI707>3.0.CO;2-T10.1002/(SICI)1097-0126(199706)43:2<109::AID-PI707>3.0.CO;2-TSearch in Google Scholar

[105] Omastová, M., Pavlinec, J., Pionteck, J., Simon, F., & Košina, S. (1998b). Chemical preparation and characterization of conductive poly(methyl methacrylate)/polypyrrole composites. Polymer, 39, 6559–6566. DOI: 10.1016/s0032-3861(97)10178-1. http://dx.doi.org/10.1016/S0032-3861(97)10178-110.1016/S0032-3861(97)10178-1Search in Google Scholar

[106] Omastová, M., Pionteck, J., & Košina, S. (1996b). Preparation and characrerization of electrically conductive polypropylene/polypyrrole composites. European Polymer Journal, 32, 681–689. DOI: 10.1016/0014-3057(95)00206-5. http://dx.doi.org/10.1016/0014-3057(95)00206-510.1016/0014-3057(95)00206-5Search in Google Scholar

[107] Omastová, M., Piontek, J., Janke, A., & Košina, S. (1996c). The processing and properties of conductive polypropylene/polypyrrole composites. Macromolecular Symposia, 102, 265–272. DOI: 10.1002/masy.19961020132. http://dx.doi.org/10.1002/masy.1996102013210.1002/masy.19961020132Search in Google Scholar

[108] Omastová, M., & Simon, F. (2000). Surface characterizations of conductive poly(methyl methacrylate)/polypyrrole composites. Journal of Materials Science, 35, 1743–1749. DOI: 10.1023/a:1004728502591. http://dx.doi.org/10.1023/A:100472850259110.1023/A:1004728502591Search in Google Scholar

[109] Omastová, M., Trchová, M., Kovářová, J., & Stejskal, J. (2003). Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals, 138, 447–455. DOI: 10.1016/s0379-6779(02)00498-8. http://dx.doi.org/10.1016/S0379-6779(02)00498-810.1016/S0379-6779(02)00498-8Search in Google Scholar

[110] Onoda, M., Tada, K., & Nakayama, H. (1999). Preparation of conducting polymer/insulating polymer composite films using molecular self-assembly process. Synthetic Metals, 102, 1253. DOI: 10.1016/s0379-6779(98)01454-4. http://dx.doi.org/10.1016/S0379-6779(98)01454-410.1016/S0379-6779(98)01454-4Search in Google Scholar

[111] Oriakhi, C. O., & Lerner, M. M. (1995). Poly(pyrrole) and poly(thiophene)/clay nanocomposites via latex-colloid interaction. Materials Research Bulletin, 30, 723–729. DOI: 10.1016/0025-5408(95)00054-2. http://dx.doi.org/10.1016/0025-5408(95)00054-210.1016/0025-5408(95)00054-2Search in Google Scholar

[112] Ormond-Prout, J., Dupin, D., Armes, S. P., Foster, N. J., & Burchell, M. J. (2009). Synthesis and characterization of polypyrrole-coated poly(methyl methacrylate) latex particles. Journal of Materials Chemistry, 19, 1433–1442. DOI: 10.1039/b816839c. http://dx.doi.org/10.1039/b816839c10.1039/b816839cSearch in Google Scholar

[113] Ouyang, M., & Chan, C. M. (1996). Electrical and mechanical properties of pre-localized polypyrrole/poly(vinyl chloride) conductive composites. Polymer Engineering & Science, 36, 2676–2682. DOI: 10.1002/pen.10666. http://dx.doi.org/10.1002/pen.1066610.1002/pen.10666Search in Google Scholar

[114] Ouyang, M., & Chan, C. M. (1998). Conductive polymer composites prepared by polypyrrole-coated poly(vinyl chloride) powder: relationship between conductivity and surface morphology. Polymer, 39, 1857–1862. DOI: 10.1016/s0032-3861(97)00308-x. http://dx.doi.org/10.1016/S0032-3861(97)00308-X10.1016/S0032-3861(97)00308-XSearch in Google Scholar

[115] Pandis, C., Logakis, E., Peoglos, V., Pissis, P., Omastová, M., Mravčáková, M., Janke, A., Pionteck, J., Peneva, Y., & Minkova, L. (2009). Morphology, microhardness, and electrical properties of composites based on polypropylene, montmorillonite, and polypyrrole. Journal of Polymer Science Part B: Polymer Physics, 47, 407–423. DOI: 10.1002/polb.21646. http://dx.doi.org/10.1002/polb.2164610.1002/polb.21646Search in Google Scholar

[116] Park, D. P., Sung, J. H., Lim, S. T., Choi, H. J., & Jhon, M. S. (2003). Synthesis and characterization of soluble polypyrrole and polypyrrole/organoclay nanocomposites. Journal of Materials Science Letters, 22, 1299–1302. DOI: 10.1023/a:1025482807726. http://dx.doi.org/10.1023/A:102548280772610.1023/A:1025482807726Search in Google Scholar

[117] Park, K. S., Schougaard, S. B., & Goodenough, J. B. (2007). Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Advanced Materials, 19, 848–851. DOI: 10.1002/adma.200600369. http://dx.doi.org/10.1002/adma.20060036910.1002/adma.200600369Search in Google Scholar

[118] Pecher, J., & Mecking, S. (2010). Nanoparticles of conjugated polymers. Chemical Reviews, 110, 6260–6279. DOI: 10.1021/cr100132y. http://dx.doi.org/10.1021/cr100132y10.1021/cr100132ySearch in Google Scholar

[119] Perruchot, C., Chehimi, M. M., Delamar, M., & Dardoize, F. (2002). Characterisation of the chromatographic properties of a silica-polypyrrole composite stationary phase by inverse liquid chromatography. Journal of Chromatography A, 969, 167–180. DOI: 10.1016/s0021-9673(02)00379-5. http://dx.doi.org/10.1016/S0021-9673(02)00379-510.1016/S0021-9673(02)00379-5Search in Google Scholar

[120] Perruchot, C., Chehimi, M. M., Delamar, M., Eccles, A. J., Steele, T. A., & Mair, C. D. (2000). SIMS analysis of conducting polypyrrole-silica gel composites. Synthetic Metals, 113, 53–63. DOI: 10.1016/s0379-6779(99)00303-3. http://dx.doi.org/10.1016/S0379-6779(99)00303-310.1016/S0379-6779(99)00303-3Search in Google Scholar

[121] Perruchot, C., Chehimi, M. M., Delamar, M., Lacaze, P. C., Eccles, A. J., Steele, T. A., & Mair, C. D. (1999). The role of a silane coupling agent in the preparation of novel hybrid polypyrrole-silica particles. Synthetic Metals, 102, 1194–1197. DOI: 10.1016/s0379-6779(00)89054-2. http://dx.doi.org/10.1016/S0379-6779(00)89054-210.1016/S0379-6779(00)89054-2Search in Google Scholar

[122] Perruchot, C., Chehimi, M. M., Mordenti, D., Briand, M., & Delamar, M. (1998). The role of a silane coupling agent in the synthesis of hybrid polypyrrole-silica gel conducting particles. Journal of Materials Chemistry, 8, 2185–2193. DOI: 10.1039/a803019g. http://dx.doi.org/10.1039/a803019g10.1039/a803019gSearch in Google Scholar

[123] Pionteck, J., Omastová, M., Pötschke, P., Simon, F., & Chodák, I. (1999). Morphology, conductivity, and mechanical properties of polypyrrole-containing composites. Journal of Macromolecular Science, Part B: Physics, 38, 737–748. DOI: 10.1080/00222349908248135. http://dx.doi.org/10.1080/0022234990824813510.1080/00222349908248135Search in Google Scholar

[124] Planche, M. F., Thiéblemont, J. C., Mazars, N., & Bidan, G. (1994). Kinetic study of pyrrole polymerization with iron(III) chloride in water. Journal of Applied Polymer Science, 52, 1867–1877. DOI: 10.1002/app.1994.070521304. http://dx.doi.org/10.1002/app.1994.07052130410.1002/app.1994.070521304Search in Google Scholar

[125] Pron, A., Gawrys, P., Zagorska, M., Djurado, D., & Demadrille, R. (2010). Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chemical Society Reviews, 39, 2577–2632. DOI: 10.1039/b907999h. http://dx.doi.org/10.1039/b907999h10.1039/b907999hSearch in Google Scholar

[126] Proń, A., Kucharski, Z., Budrowski, C., Zagórska, M., Krichene, S., Suwalski, J., Dehe, G., & Lefrant, S. (1985). Mössbauerspectroscopy studies of selected conducting polypyrroles. The Journal of Chemical Physics, 83, 5923–5927. DOI: 10.1063/1.449624. http://dx.doi.org/10.1063/1.44962410.1063/1.449624Search in Google Scholar

[127] Pron, A., & Rannou, P. (2002). Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science, 27, 135–190. DOI: 10.1016/s0079-6700 (01)00043-0. http://dx.doi.org/10.1016/S0079-6700(01)00043-010.1016/S0079-6700(01)00043-0Search in Google Scholar

[128] Pumera, M., Šmíd, B., Peng, X., Golberg, D., Tang, J., & Ichinose, I. (2007). Spontaneous coating of carbon nanotubes with an ultrathin polypyrrole layer. Chemistry — A European Journal, 13, 7644–7649. DOI: 10.1002/chem.200700211. http://dx.doi.org/10.1002/chem.20070021110.1002/chem.200700211Search in Google Scholar

[129] Qu, B., Xu, Y. T., Lin, S. J., Zheng, Y. F., & Dai, L. Z. (2010). Fabrication of Pt nanoparticles decorated PPy-MWNTs composites and their electrocatalytic activity for methanol oxidation. Synthetic Metals, 160, 732–742. DOI: 10.1016/j.synthmet.2010.01.012. http://dx.doi.org/10.1016/j.synthmet.2010.01.01210.1016/j.synthmet.2010.01.012Search in Google Scholar

[130] Rajapakse, R. M. G., Murakami, K., Bandara, H. M. N., Rajapakse, R. M. M. Y., Velauthamurti, K., & Wijeratne, S. (2010). Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction. Electrochimica Acta, 55, 2490–2497. DOI: 10.1016/j.electacta.2009.12.015. http://dx.doi.org/10.1016/j.electacta.2009.12.01510.1016/j.electacta.2009.12.015Search in Google Scholar

[131] Ramanavičius, A., Ramanavičienè, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51, 6025–6037. DOI: 10. 1016/j.electacta.2005.11.052. http://dx.doi.org/10.1016/j.electacta.2005.11.05210.1016/j.electacta.2005.11.052Search in Google Scholar

[132] Rapi, S., Bocchi, V., & Gardini, G. P. (1988). Conducting polypyrrole by chemical synthesis in water. Synthetic Metals, 24, 217–221. DOI: 10.1016/0379-6779(88)90259-7. http://dx.doi.org/10.1016/0379-6779(88)90259-710.1016/0379-6779(88)90259-7Search in Google Scholar

[133] Redondo, M. I., García, M. V., Sánchez de la Blanca, E., Pablos, M., Carrillo, I., González-Tejera, M. J., & Enciso, E. (2010). Polypyrrole nanocoatings of poly(styrene-co-methacrylic acid) particles. Polymer, 51, 1728–1736. DOI: 10.1016/j.polymer.2010.02.027. http://dx.doi.org/10.1016/j.polymer.2010.02.02710.1016/j.polymer.2010.02.027Search in Google Scholar

[134] Rinaldi, A. W., Kunita, M. H., Santos, M. J. L., Radovanovic, E., Rubira, A. F., & Girotto, E. M. (2005). Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix. European Polymer Journal, 41, 2711–2717. DOI: 10.1016/j.eurpolymj.2005.05.029. http://dx.doi.org/10.1016/j.eurpolymj.2005.05.02910.1016/j.eurpolymj.2005.05.029Search in Google Scholar

[135] Robila, G., Ivanoiu, M., Buruiana, T., & Buruiana, E. C. (1997). Sulfonated polyurethane anionomer-polypyrrole molecular composite. Journal of Applied Polymer Science, 66, 591–595. DOI: 10.1002/(SICI)1097-4628(19971017)66:3〈591::AIDAPP21〉3.0.CO;2-X. http://dx.doi.org/10.1002/(SICI)1097-4628(19971017)66:3<591::AID-APP21>3.0.CO;2-X10.1002/(SICI)1097-4628(19971017)66:3<591::AID-APP21>3.0.CO;2-XSearch in Google Scholar

[136] Robilă, G., Diaconu, I., Buruiană, T., Buruiană, E., & Coman, P. (2000). Carboxylated polyurethane anionomers and their composites with polypyrrole. Journal of Applied Polymer Science, 75, 1385–1392. DOI: 10.1002/(SICI)1097-4628(20000314)75:11〈1385::AID-APP10〉3.0.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1385::AID-APP10>3.0.CO;2-Q10.1002/(SICI)1097-4628(20000314)75:11<1385::AID-APP10>3.0.CO;2-QSearch in Google Scholar

[137] Ruckenstein, E., & Park, J. S. (1991). New method for the preparation of thick conducting polymer composites. Journal of Applied Polymer Science, 42, 925–934. DOI: 10.1002/app.1991.070420406. http://dx.doi.org/10.1002/app.1991.07042040610.1002/app.1991.070420406Search in Google Scholar

[138] Ruckenstein, E., & Yang, S. (1993). Processable conductive polypyrrole/poly(alkyl methacrylate) composites prepared by an emulsion pathway. Polymer, 34, 4655–4660. DOI: 10.1016/0032-3861(93)90698-a. http://dx.doi.org/10.1016/0032-3861(93)90698-A10.1016/0032-3861(93)90698-ASearch in Google Scholar

[139] Rueda, D. R., Arribas, C., Balta Calleja, F. J., Fierro, J. L. G., & Palacios, J. M. (1989). Growth of polypyrrole at the surface of sulphonated polyethylene. Synthetic Metals, 28, C77–C81. DOI: 10.1016/0379-6779(89)90502-x. http://dx.doi.org/10.1016/0379-6779(89)90502-X10.1016/0379-6779(89)90502-XSearch in Google Scholar

[140] Sadki, S., Schottland, P., Brodie, N., & Sabouraud, G. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29, 283–293. DOI: 10.1039/a807124a. http://dx.doi.org/10.1039/a807124a10.1039/a807124aSearch in Google Scholar

[141] Sapurina, I., Kazantseva, N. E., Ryvkina, N. G., Prokeš, J., Sáha, P., & Stejskal, J. (2005a). Electromagnetic radiation shielding by composites of conducting polymers and wood. Journal of Applied Polymer Science, 95, 807–814. DOI: 10.1002/app.21240. http://dx.doi.org/10.1002/app.2124010.1002/app.21240Search in Google Scholar

[142] Sapurina, I., Stejskal, J., Špírková, M., Kotek, J., & Prokeš, J. (2005b). Polyurethane latex modified with polyaniline. Synthetic Metals, 151, 93–99. DOI: 10.1016/j.synthmet.2005.03.014. http://dx.doi.org/10.1016/j.synthmet.2005.03.01410.1016/j.synthmet.2005.03.014Search in Google Scholar

[143] Saravanan, C., Shekhar, R. C., & Palaniappan, S. (2006). Synthesis of polypyrrole using benzoyl peroxide as a novel oxidizing agent. Macromolecular Chemistry and Physics, 207, 342–348. DOI: 10.1002/macp.200500376. http://dx.doi.org/10.1002/macp.20050037610.1002/macp.200500376Search in Google Scholar

[144] Selvaraj, V., & Alagar, M. (2007). Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochemistry Communications, 9, 1145–1153. DOI: 10.1016/j.elecom.2007.01.011. http://dx.doi.org/10.1016/j.elecom.2007.01.01110.1016/j.elecom.2007.01.011Search in Google Scholar

[145] Sevil, B., & Zuhal, K. (2010). Synthesis and characterization of polypyrrole nanoparticles and their nanocomposites with poly(propylene). Macromolecular Symposia, 295, 59–64. DOI: 10.1002/masy.200900164. http://dx.doi.org/10.1002/masy.20090016410.1002/masy.200900164Search in Google Scholar

[146] Shakoor, A., Foot, P. J. S., & Rizvi, T. Z. (2010). Conductive poly(methyl methacrylate)-polypyrrole dodecylbenzenesulfonate (PMMA-PPy.DBSA) blends prepared in solution in the presence of hydroquinone. Journal of Materials Science: Materials in Electronics, 21, 1270–1276. DOI: 10.1007/s10854-010-0060-8. http://dx.doi.org/10.1007/s10854-010-0060-810.1007/s10854-010-0060-8Search in Google Scholar

[147] Shenoy, S. L., Cohen, D., Erkey, C., & Weiss, R. A. (2002). A solvent-free process for preparing conductive elastomers by an in situ polymerization of pyrrole. Industrial & Engineering Chemistry Research, 41, 1484–1488. DOI: 10.1021/ie0108346. http://dx.doi.org/10.1021/ie010834610.1021/ie0108346Search in Google Scholar

[148] Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1977, 578–580. DOI: 10.1039/c39770000578. http://dx.doi.org/10.1039/c3977000057810.1039/c39770000578Search in Google Scholar

[149] SinhaRay, S., & Biswas, M. (1999). Preparation and evaluation of composites from montmorillonite and some heterocyclic polymers: 3. A water dispersible nanocomposite from pyrrole-montmorillonite polymerization system. Materials Research Bulletin, 34, 1187–1194. DOI: 10.1016/s0025-5408(99)00121-x. http://dx.doi.org/10.1016/S0025-5408(99)00121-X10.1016/S0025-5408(99)00121-XSearch in Google Scholar

[150] Snook, G. A., Kao, P., & Best, A. S. (2011). Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084. http://dx.doi.org/10.1016/j.jpowsour.2010.06.08410.1016/j.jpowsour.2010.06.084Search in Google Scholar

[151] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. 10.1351/pac200274050857Search in Google Scholar

[152] Stejskal, J., Omastová, M., Fedorova, S., Prokeš, J., & Trchová, M. (2003). Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer, 44, 1353–1358. DOI: 10.1016/s0032-3861(02)00906-0. http://dx.doi.org/10.1016/S0032-3861(02)00906-010.1016/S0032-3861(02)00906-0Search in Google Scholar

[153] Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815. http://dx.doi.org/10.1351/pac20057705081510.1351/pac200577050815Search in Google Scholar

[154] Stejskal, J., Sapurina, I., Prokeš, J., & Zemek, J. (1999). In-situ polymerized polyaniline films. Synthetic Metals, 105, 195–202. DOI: 10.1016/s0379-6779(99)00105-8. http://dx.doi.org/10.1016/S0379-6779(99)00105-810.1016/S0379-6779(99)00105-8Search in Google Scholar

[155] Street, G. B. (1986). Polypyrrole from powers to plastics. In T. A. Skotheim (Ed.), Handbook of conducting polymers (Vol. 1, pp. 265–291). New York, NY, USA: Marcel Dekker. Search in Google Scholar

[156] Su, P. G., & Wang, C. P. (2008). Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride composite materials. Sensors and Actuators B: Chemical, 129, 538–543. DOI: 10.1016/j.snb.2007.09.011. http://dx.doi.org/10.1016/j.snb.2007.09.01110.1016/j.snb.2007.09.011Search in Google Scholar

[157] Suryanarayanan, V., Wu, C. T., & Ho, K. C. (2010). Molecularly imprinted electrochemical sensors. Electroanalysis, 22, 1795–1811. DOI: 10.1002/elan.200900616. http://dx.doi.org/10.1002/elan.20090061610.1002/elan.200900616Search in Google Scholar

[158] Tallman, D. E., Levine, K. L., Siripirom, C., Gelling, V. G., Bierwagen, G. P., & Croll, S. G. (2008). Nanocomposite of polypyrrole and alumina nanoparticles as a coating filler for the corrosion protection of aluminium alloy 2024-T3. Applied Surface Science, 254, 5452–5459. DOI: 10.1016/j.apsusc.2008.02.099. http://dx.doi.org/10.1016/j.apsusc.2008.02.09910.1016/j.apsusc.2008.02.099Search in Google Scholar

[159] Tishchenko, G., Rosova, E., Elyashevich, G. K., & Bleha, M. (2000). Porosity of microporous polyethylene membranes modified with polypyrrole and their diffusion permeability to low-molecular weight substances. Chemical Engineering Journal, 79, 211–217. DOI: 10.1016/s1385-8947(00)00209-6. http://dx.doi.org/10.1016/S1385-8947(00)00209-610.1016/S1385-8947(00)00209-6Search in Google Scholar

[160] Tsukamoto, J., Takahashi, A., & Kawasaki, K. (1990). Structure and electrical-properties of polyacetylene yielding a conductivity of 105 S/cm. Japanese Journal of Applied Physics, 29, 125–130. DOI: 10.1143/jjap.29.125. http://dx.doi.org/10.1143/JJAP.29.12510.1143/JJAP.29.125Search in Google Scholar

[161] Ueno, T., Arntz, H. D., Flesch, S., & Bargon, J. (1988). Transparent, electrically conductive composites derived from polypyrrole and poly(vinyl chloride) by vapor-phase polymerization: Effect of environment on polymerization and reaction mechanism. Journal of Macromolecular Science: Part A — Chemistry, A25, 1557–1573. DOI: 10.1080/10601328808055088. http://dx.doi.org/10.1080/1060132880805508810.1080/10601328808055088Search in Google Scholar

[162] Virji, S., Fowler, J. D., Baker, C. O., Huang, J., Kaner, R. B., & Weiller, B. H. (2005). Polyaniline nanofiber composites with metal salts: chemical sensors for hydrogen sulfide. Small, 1, 624–627. DOI: 10.1002/smll.200400155. http://dx.doi.org/10.1002/smll.20040015510.1002/smll.200400155Search in Google Scholar

[163] Wallace, G. G., Spinks, G. M., Kane-Maquire, L. A. P., & Teasdale, P. R. (2003). Conductive electroactive polymers: intelligent materials systems (2nd ed., Chapter 2, pp. 51–88). Boca Raton, FL, USA: CRC Press. Search in Google Scholar

[164] Waltman, R. J., & Bargon, J. (1986). Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Canadian Journal of Chemistry, 64, 76–95. DOI: 10.1139/v86-015. http://dx.doi.org/10.1139/v86-01510.1139/v86-015Search in Google Scholar

[165] Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of conductive polypyrrole/polyurethane composite foams by in situ polymerization of pyrrole. Chemistry of Materials, 20, 2574–2582. DOI: 10.1021/cm800005r. http://dx.doi.org/10.1021/cm800005r10.1021/cm800005rSearch in Google Scholar

[166] Wen, T. C., Hung, S. L., & Digar, M. (2001). Effect of polypyrrole on the morphology and ionic conductivity of TPU electrolyte containing LiClO4. Synthetic Metals, 118, 11–18. DOI: 10.1016/s0379-6779(00)00272-1. http://dx.doi.org/10.1016/S0379-6779(00)00272-110.1016/S0379-6779(00)00272-1Search in Google Scholar

[167] Weng, B., Shepherd, R. L., Crowley, K., Killard, A. J., & Wallace, G. G. (2010). Printing conducting polymers. Analyst, 135, 2779–2789. DOI: 10.1039/c0an00302f. http://dx.doi.org/10.1039/c0an00302f10.1039/c0an00302fSearch in Google Scholar

[168] Wiersma, A. E., & Van de Steeg, L. M. A. (1994). Dispersion of electrically conductive particles in a dispersing medium. European Patent No. EP 0589529 (A1). The Hague, The Netherlands: European Patent Office. Search in Google Scholar

[169] Wiersma, A. E., vd Steeg, L. M. A., & Jongeling, T. J. M. (1995). Waterborne core-shell dispersions based on intrinsically conducting polymers for coating applications. Synthetic Metals, 71, 2269–2270. DOI: 10.1016/0379-6779(94)03254-4. http://dx.doi.org/10.1016/0379-6779(94)03254-410.1016/0379-6779(94)03254-4Search in Google Scholar

[170] Wu, T. M., & Lin, S. H. (2006). Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. Journal of Polymer Science Part A: Polymer Chemistry, 44, 6449–6457. DOI: 10.1002/pola.21724. http://dx.doi.org/10.1002/pola.2172410.1002/pola.21724Search in Google Scholar

[171] Wu, T. M., Yen, S. J., Chen, E. C., & Chiang, R. K. (2008). Synthesis, characterization, and properties of monodispersed magnetite coated multi-walled carbon nanotube/polypyrrole nanocomposites synthesized by in-situ chemical oxidative polymerization. Journal of Polymer Science Part B: Polymer Physics, 46, 727–733. DOI: 10.1002/polb.21404. http://dx.doi.org/10.1002/polb.2140410.1002/polb.21404Search in Google Scholar

[172] Xu, P., Han, X., Zhang, B., Mack, N. H., Jeon, S. H., & Wang, H. L. (2009). Synthesis and characterization of nanostructured polypyrroles: Morphology-dependent electrochemical responses and chemical deposition of Au nanoparticles. Polymer, 50, 2624–2629. DOI: 10.1016/j.polymer.2009.03.005. http://dx.doi.org/10.1016/j.polymer.2009.03.00510.1016/j.polymer.2009.03.005Search in Google Scholar

[173] Yao, T., Wang, C., Wu, J., Lin, Q., Lv, H., Zhang, K., Yu, K., & Yang, B. (2009). Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 338, 573–577. DOI: 10.1016/j.jcis.2009.05.001. http://dx.doi.org/10.1016/j.jcis.2009.05.00110.1016/j.jcis.2009.05.001Search in Google Scholar

[174] Yip, Y., Benabderrahmane, S., Zhicai, M., Bousalem, S., Mangeney, C., & Chehimi, M. M. (2006). Interactions of reactive polypyrrole-coated polystyrene latex particles with gold nanoparticles and silanized glass. Surface and Interface Analysis, 38, 535–538. DOI: 10.1002/sia.2234. http://dx.doi.org/10.1002/sia.223410.1002/sia.2234Search in Google Scholar

[175] Yoon, C. O., Moses, R. M. D., & Heeger, A. J. (1994). Transport near the metal-insulator transition: Polypyrrole doped with PF6. Physical Review B, 49, 10851–10863. DOI: 10.1103/PhysRevB.49.10851. http://dx.doi.org/10.1103/PhysRevB.49.1085110.1103/PhysRevB.49.10851Search in Google Scholar

[176] Yoshino, K., Morita, S., Yin, X. H., Onoda, M., Yamamoto, H., Watanuki, T., & Isa, I. (1993a). Electrical property of polypyrrole-insulating polymer composite. Synthetic Metals, 55–57, 3562–3565. DOI: 10.1016/0379-6779(93)90476-d. http://dx.doi.org/10.1016/0379-6779(93)90476-D10.1016/0379-6779(93)90476-DSearch in Google Scholar

[177] Yoshino, K., Yin, X. H., Morita, S., Nakanishi, Y., Nakagawa, S. Yamamoto, H., Watanuki, T., & Isa, I. (1993b). Preparation and electrical property of polypyrrole-polyethylene composite. Japanese Journal of Applied Physics Part 1,32, 979–981. DOI: 10.1143/jjap.32.979. http://dx.doi.org/10.1143/JJAP.32.97910.1143/JJAP.32.979Search in Google Scholar

[178] Zhang, B., Xu, Y., Zheng, Y., Dai, L., Zhang, M., Yang, J., Chen, Y., Chen, X., & Zhou, J. (2011). A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Research Letters, 6, 431. DOI: 10.1186/1556-276x-6-431. http://dx.doi.org/10.1186/1556-276X-6-43110.1186/1556-276X-6-431Search in Google Scholar

[179] Zhang, X., Zhang, J., Wang, R., Zhu, T., & Liu, Z. (2004) Surfactant-directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties. ChemPhysChem, 5, 998–1002. DOI: 10.1002/cphc.200301217. http://dx.doi.org/10.1002/cphc.20030121710.1002/cphc.200301217Search in Google Scholar

[180] Zheng, W., Razal, J. M., Whitten, P. G., Ovalle-Robles, R., Wallace, G. G., Baughman, R. H., & Spinks, G. M. (2011). Artificial muscles based on polypyrrole/carbon nanotubes laminates. Advanced Materials, 23, 2966–2970. DOI: 10.1002/adma.201100512. http://dx.doi.org/10.1002/adma.20110051210.1002/adma.201100512Search in Google Scholar

[181] Zinger, B., & Kijel, D. (1991). Electrically conducting polyethylene/polypyrrole films. Synthetic Metals, 41–43, 1013–1023. DOI: 10.1016/0379-6779(91)91548-o. http://dx.doi.org/10.1016/0379-6779(91)91548-O10.1016/0379-6779(91)91548-OSearch in Google Scholar

Published Online: 2012-4-5
Published in Print: 2012-5-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0120-4/html
Scroll to top button