Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 31, 2010

Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices

  • Witold Musial EMAIL logo , Vanja Kokol and Bojana Voncina
From the journal Chemical Papers

Abstract

Therapeutic activity of locally applied drugs depends on both the thermodynamic activity of the active molecule and the pharmaceutical system which enables the release of the molecule; also the vasoconstrictive activity of vessels plays an important role. In this study, the release of chlorhexidine was assessed considering the use of ionic and non-ionic polymeric carriers at temperatures in the range between 22°C and 42°C, including the temperature of 32°C as the reference surface body temperature. The obtained release rates and concentrations of chlorhexidine, loaded to methylcellulose and poly(acrylic acid) gels, were compared with respective viscositiy, pH, and conductivity of the assessed systems. The deposition patterns of chlorhexidine in the polymeric matrix were studied using energy dispersive X-ray spectrometry to evaluate the possible influence of chlorhexidine distribution in/on the carrier on the respective release rates. This study is significant for patients with various skin temperature conditions, who are required to receive local biocides applied on skin or into the oral cavity. The obtained precipitate of polyacrylic acid-chlorhexidine preparation was extensively studied to evaluate the chlorhexidine release and to develop an application in skin and dental care.

[1] Balanyk, T. E., & Sandham, H. J. (1985). Development of sustained-release antimicrobial dental varnishes effective against Streptococcus mutans in vivo. Journal of Dental Research, 64, 1356–1360. DOI: 10.1177/00220345850640120501. 10.1177/00220345850640120501Search in Google Scholar

[2] Bhavan, K. P., & Warren, D. K. (2009). Surgical preparation solutions and preoperative skin disinfection. The Journal of Hand Surgery, 34, 940–941. DOI: 10.1016/j.hsa.2009.03.008. http://dx.doi.org/10.1016/j.jhsa.2009.03.008Search in Google Scholar

[3] Blackburn, R. S., Harvey, A., Kettle, L. L., Manian, A. P., Payne, J. D., & Russell, S. J. (2007). Sorption of chlorhexidine on cellulose: Mechanism of binding and molecular recognition. Journal of Physical Chemistry B, 111, 8775–8784. DOI: 10.1021/jp070856r. http://dx.doi.org/10.1021/jp070856r10.1021/jp070856rSearch in Google Scholar

[4] Bonacucina, G., Cespi, M., Misici-Falzi, M., & Palmieri, G. F. (2006). Rheological, adhesive and release characterisation of semisolid Carbopol/tetraglycol systems. International Journal of Pharmaceutics, 307, 129–140. DOI: 10.1016/j.ijpharm.2005.09.034. http://dx.doi.org/10.1016/j.ijpharm.2005.09.03410.1016/j.ijpharm.2005.09.034Search in Google Scholar

[5] Ceschel, G. C., Bergamante, V., Calabrese, V., Biserni, S., Ronchi, C., & Fini, A. (2006). Design and evaluation in vitro of controlled release mucoadhesive tablets containing chlorhexidine. Drug Development and Industrial Pharmacy, 32, 53–61. DOI: 10.1080/03639040500388300. http://dx.doi.org/10.1080/0363904050038830010.1080/03639040500388300Search in Google Scholar

[6] Darmstadt, G. L., Hossain, M. M., Choi, Y., Shirin, M., Mullany, L. C., Islam, M., & Saha, S. K. (2007). Safety and effect of chlorhexidine skin cleansing on skin flora of neonates in Bangladesh. The Pediatric Infectious Disease Journal, 26, 492–495. DOI: 10.1097/01.inf.0000261927.90189.88. http://dx.doi.org/10.1097/01.inf.0000261927.90189.8810.1097/01.inf.0000261927.90189.88Search in Google Scholar

[7] Dentino, A. R., Kassab, M. M., & Renner, E. J. (2005). Prevention of periodontal diseases. Dental Clinics of North America, 49, 573–594. DOI: 10.1016/j.cden.2005.03.005. http://dx.doi.org/10.1016/j.cden.2005.03.00510.1016/j.cden.2005.03.005Search in Google Scholar

[8] Emilson, C. G. (1981). Effect of chlorhexidine gel treatment on Streptococcus mutans population in human saliva and dental plaque. Scandinavian Journal of Dental Research, 89, 239–246. DOI: 10.1111/j.1600-0722.1981.tb01677.x. 10.1111/j.1600-0722.1981.tb01677.xSearch in Google Scholar

[9] Farkas, E., Zelkó, R., Németh, Zs., Pálinkás, J., Marton, S., & Rácz, I. (2000). The effect of liquid crystalline structure on chlorhexidine diacetate release. International Journal of Pharmaceutics, 193, 239–245. DOI: 10.1016/S0378-5173(99)00346-4. http://dx.doi.org/10.1016/S0378-5173(99)00346-410.1016/S0378-5173(99)00346-4Search in Google Scholar

[10] Ford, J. L. (1999). Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. International Journal of Pharmaceutics, 179, 209–228. DOI: 10.1016/S0378-5173(98)00339-1. http://dx.doi.org/10.1016/S0378-5173(98)00339-110.1016/S0378-5173(98)00339-1Search in Google Scholar

[11] Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig, A. D., Jr., Lyman, C. E., Fiori, C., & Lifshin, E. (1992). Scanning electron microscopy and X-ray microanalysis (2nd ed., pp. 420–428). New York, NY, USA: Plenum Press. 10.1007/978-1-4613-0491-3Search in Google Scholar

[12] Guzel, A., Ozekinci, T., Ozkan, U., Celik, Y., Ceviz, A., & Belen, D. (2009). Evaluation of the skin flora after chlorhexidine and povidone-iodine preparation in neurosurgical practice. Surgical Neurology, 71, 207–210. DOI: 10.1016/j.surneu.2007.10.026. http://dx.doi.org/10.1016/j.surneu.2007.10.02610.1016/j.surneu.2007.10.026Search in Google Scholar

[13] Irwin, C. R., McCullough, K. C., & Jones, D. S. (2003). Chlorhexidine-containing mucoadhesive polymeric compacts designed for use in the oral cavity: an examination of their physical properties, in vitro/in vivo drug release properties and clinical acceptability. Journal of Materials Science: Materials in Medicine, 14, 825–832. DOI: 10.1023/A:1025637106818. http://dx.doi.org/10.1023/A:102563710681810.1023/A:1025637106818Search in Google Scholar

[14] Jamilian, A., Ghasemi, M., Gholami, D., & Kaveh, B. (2008). Clinical effects of 2% chlorhexidine gel on patients undergoing orthodontic treatment. Orthodontic Waves, 67, 162–166. DOI: 10.1016/j.odw.2008.07.001. http://dx.doi.org/10.1016/j.odw.2008.07.00110.1016/j.odw.2008.07.001Search in Google Scholar

[15] Jones, D. S., Brown, A. F., Woolfson, A. D., Dennis, A. C., Matchett, L. J., & Bell, S. E. J. (2000). Examination of the physical state of chlorhexidine within viscoelastic, bioadhesive semisolids using Raman spectroscopy. Journal of Pharmaceutical Science, 89, 563–571. DOI: 10.1002/(SICI)1520-6017(200005)89:5〈563::AID-JPS1〉3.0.CO;2-Q. http://dx.doi.org/10.1002/(SICI)1520-6017(200005)89:5<563::AID-JPS1>3.0.CO;2-Q10.1002/(SICI)1520-6017(200005)89:5<563::AID-JPS1>3.0.CO;2-QSearch in Google Scholar

[16] Kanlayanaphotporn, R., & Janwantanakul, P. (2005). Comparison of skin surface temperature during the application of various cryotherapy modalities. Archives of Physical Medicine and Rehabilitation, 86, 1411–1415. DOI: 10.1016/j.apmr.2004.11.034. http://dx.doi.org/10.1016/j.apmr.2004.11.03410.1016/j.apmr.2004.11.034Search in Google Scholar

[17] Kohli-Bardhan, K., Mukhopadhyay, S., & Chatterjee, S. R. (1985). Viscometric studies of graft copolymers of methylcellulose and polyacrylamide. Defence Science Journal, 35, 47–53. 10.14429/dsj.35.5999Search in Google Scholar

[18] Kundu, P. P., & Kundu, M. (2001). Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose. Polymer, 42, 2015–2020. DOI: 10.1016/S0032-3861(00)00506-1. http://dx.doi.org/10.1016/S0032-3861(00)00506-110.1016/S0032-3861(00)00506-1Search in Google Scholar

[19] Kuyyakanond, T., & Quesnel, L. B. (1992). The mechanism of action of chlorhexidine. FEMS Microbiology Letters, 100, 211–215. DOI: 10.1111/j.1574-6968.1992.tb14042.x. 10.1111/j.1574-6968.1992.tb14042.xSearch in Google Scholar

[20] Lboutounne, H., Chaulet, J.-F., Ploton, C., Falson, F., & Pirot, F. (2002). Sustained ex vivo skin antiseptic activity of chlorhexidine in poly(ɛ-caprolactone) nanocapsule encapsulated and as a digluconate. Journal of Controlled Release, 82, 319–334. DOI: 10.1016/S0168-3659(02)00142-6. http://dx.doi.org/10.1016/S0168-3659(02)00142-610.1016/S0168-3659(02)00142-6Search in Google Scholar

[21] Lombardi Borgia, S., Schlupp, P., Mehnert, W., & Schäfer-Korting, M. (2008). In vitro skin absorption and drug release — A comparison of six commercial prednicarbate preparations for topical use. European Journal of Pharmaceutics and Biopharmaceutics, 68, 380–389. DOI: 10.1016/j.ejpb.2007.05.003. http://dx.doi.org/10.1016/j.ejpb.2007.05.00310.1016/j.ejpb.2007.05.003Search in Google Scholar

[22] Mancuso, D. L., & Knight, K. L. (1992). Effects of prior physical activity on skin surface temperature response of the ankle during and after a 30-minute ice pack application. Journal of Athletic Training, 27, 242–249. Search in Google Scholar

[23] Nhung, D. T. T., Freydiere, A.-M., Constant, H., Falson, F., & Pirot, F. (2007). Sustained antibacterial effect of a hand rub gel incorporating chlorhexidine-loaded nanocapsules (Nanochlorex®). International Journal of Pharmaceutics, 334, 166–172. DOI: 10.1016/j.ijpharm.2006.10.017. http://dx.doi.org/10.1016/j.ijpharm.2006.10.01710.1016/j.ijpharm.2006.10.017Search in Google Scholar

[24] Park, N. A., & Irvine, T. F., Jr. (1997). Anomalous viscosity-temperature behavior of aqueous Carbopol solutions. Journal of Rheology, 41, 167–173. DOI: 10.1122/1.550813. http://dx.doi.org/10.1122/1.55081310.1122/1.550813Search in Google Scholar

[25] Roach, R. P., Hatton, J. F., & Gillespie, M. J. (2001). Prevention of the ingress of a known virulent bacterium into the root canal system by intracanal medications. Journal of Endodontics, 27, 657–660. DOI: 10.1097/00004770-200111000-00001. http://dx.doi.org/10.1097/00004770-200111000-0000110.1097/00004770-200111000-00001Search in Google Scholar

[26] Sarkar, N. (1979). Thermal gelation properties of methyl and hydroxypropyl methylcellulose. Journal of Applied Polymer Science, 24, 1073–1087. DOI: 10.1002/app.1979.070240420. http://dx.doi.org/10.1002/app.1979.07024042010.1002/app.1979.070240420Search in Google Scholar

[27] Şnel, S., İkinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M. F., & Hıncal, A. A. (2000). Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International Journal of Pharmaceutics, 193, 197–203. DOI: 10.1016/S0378-5173(99)00334-8 http://dx.doi.org/10.1016/S0378-5173(99)00334-810.1016/S0378-5173(99)00334-8Search in Google Scholar

[28] Sheppard, F. C., Mason, D. J., Bloomfield, S. F., & Gant, V. A. (1997). Flow cytometric analysis of chlorhexidine action. FEMS Microbiology Letters, 154, 283–288. DOI: 10.1111/j.1574-6968.1997.tb12657.x. http://dx.doi.org/10.1111/j.1574-6968.1997.tb12657.x10.1111/j.1574-6968.1997.tb12657.xSearch in Google Scholar PubMed

[29] Su, F., Nguyen, N. D., Wang, Z., Cai, Y., Rogiers, P., & Vincent, J.-L. (2005). Fever control in septic shock: beneficial or harmful? Shock, 23, 516–520. DOI: 10.1097/01.shk.0000161390.46688.da. Search in Google Scholar

[30] Szejtli, J., & Szente, L. (2005). Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 61, 115–125. DOI: 10.116/j.ejpb.2005.05.006. http://dx.doi.org/10.1016/j.ejpb.2005.05.00610.1016/j.ejpb.2005.05.006Search in Google Scholar PubMed

[31] United States Pharmacopoeial Convention (2007). United States pharmacopoeia-National formulary (USP31 NF26) (pp. 2155–2156). Rockville, MD, USA: United States Pharmacopoeial Convention. Search in Google Scholar

[32] Yue, I. C., Poff, J., Cortés, M. E., Sinisterra, R. D., Faris, C. B., Hildgen, P., Langer, R., & Prasad Shastri, V. (2004). A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials, 25, 3743–3750. DOI: 10.1016/j.biomaterials.2003.09.113. http://dx.doi.org/10.1016/j.biomaterials.2003.09.11310.1016/j.biomaterials.2003.09.113Search in Google Scholar PubMed

[33] Zatz, J. L., & Segers, J. D. (1998). Techniques for measuring in vitro release from semisolids. Dissolution Technologies, 5, 3–13. 10.14227/DT050198P3Search in Google Scholar

Published Online: 2010-3-31
Published in Print: 2010-6-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0013-y/html
Scroll to top button