Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 2, 2008

Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon

  • Paweł Głuszcz EMAIL logo , Katarzyna Zakrzewska , Irene Wagner-Doebler and Stanisław Ledakowicz
From the journal Chemical Papers

Abstract

Wide industrial use of mercury led to significant mercury pollution of the environment. It requires development of cleanup technologies which would allow treating large volumes of mercury contaminated water in a cost effective and environmentally friendly way. A novel bio-technology, developed from laboratory to industrial scale in Germany at HZI (former GBF), is based on enzymatic reduction of highly toxic Hg(II) to water-insoluble and relatively non-toxic Hg(0) using live mercury resistant bacteria immobilized on a porous carrier material in a fixed-bed bioreactor. Improvement of the original method was based on the use of activated carbon as a carrier for microorganisms and an adsorbent for mercury. Such integration of the process should increase the technology efficiency. In order to compare different carrier materials, activated carbon and pumice stones were used. The strain Pseudomonas putida was immobilized in bioreactors continuously fed with solutions of HgCl2 enriched with nutrients. Simultaneously, experiments in two more reactors were run in the absence of microorganisms to investigate the influence of nutrients on the adsorption process. In the bioreactor with activated carbon, the outlet mercury concentration was approximately 50 % of that supplied with pumice. It may be concluded that the use of activated carbon in a fixed-bed bioreactor enables improvement of the technology by process integration.

[1] Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40, 1335–1351. DOI: 10.1016/S0045-6535(99)00283-0. http://dx.doi.org/10.1016/S0045-6535(99)00283-010.1016/S0045-6535(99)00283-0Search in Google Scholar

[2] von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W.-D, & Wagner-Döbler, I. (1999). Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology, 65, 5279–5284. 10.1128/AEM.65.12.5279-5284.1999Search in Google Scholar

[3] von Canstein, H., Li, Y., & Wagner-Döbler, I. (2001). Long-term performance of bioreactors cleaning mercury-contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnology & Bioengineering, 74, 212–219. DOI: 10.1002/bit.1110. http://dx.doi.org/10.1002/bit.111010.1002/bit.1110Search in Google Scholar

[4] Chiarle, S., Ratto, M., & Rovatti, M. (2000). Mercury removal from water by ion-exchange resins adsorption. Water Research, 34, 2971–2978. DOI: 10.1016/S0043-1354(00)00044-0. http://dx.doi.org/10.1016/S0043-1354(00)00044-010.1016/S0043-1354(00)00044-0Search in Google Scholar

[5] Eurochlor (2005). Chlorine online. Information resource. http://www.eurochlor.org Search in Google Scholar

[6] Głuszcz, P., Zakrzewska, K., & Ledakowicz, S. (2004). Mercury sorption from aqueous solutions onto activated carbons. Inżynieria Chemiczna i Procesowa (Chemical and Process Engineering), 22, 234–237. Search in Google Scholar

[7] Głuszcz, P., Zakrzewska, K., & Ledakowicz, S. (2005a). Mercury sorption in activated carbon in a flow-through fixed-bed column. Inżynieria i Aparatura Chemiczna, 4, 23–26. (in Polish) Search in Google Scholar

[8] Głuszcz, P., Ledakowicz, S., Zakrzewska, K., & Deckwer, W.-D. (2005b). Modification of the microbiological method for mercury remediation of industrial wastewater. Journal of Biotechnology, 118, S163. DOI: 10.1016/j.jbiotec.2005.06.005. 10.1016/j.jbiotec.2005.06.005Search in Google Scholar

[9] Głuszcz, P., Zakrzewska, K., Ledakowicz, S., Deckwer, W.-D., & Wagner-Döbler, I. (2006). Removal of mercury from industrial wastewater by bioreduction. In Proceedings of the 17 th International Congress of Chemical & Process Engineering, 27–31 August 2006. Prague: CHISA. Search in Google Scholar

[10] Hobman, J. L., Essa, A. M. M., & Brown, N. L. (2002). Mercury resistance (mer) operons in enterobacteria. Biochemical Society Transactions, 30, 719–722. http://dx.doi.org/10.1042/BST030071910.1042/bst0300719Search in Google Scholar

[11] Irukayama, K. (1977). Case history of Minamata disease. In T. Tubaki, & K. Irukayama (Eds.), Minamata disease (pp. 1–59). New York: Elsevier. Search in Google Scholar

[12] Jaysankar, D., Sarkar, A., & Ramaiah, B. (2006). Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology, 15, 385–389. DOI: 10.1007/s10646-007-0142-4. http://dx.doi.org/10.1007/s10646-006-0066-410.1007/s10646-007-0142-4Search in Google Scholar

[13] Kurland, L. T., Faro, S. N., & Siedler, H. (1960). Minamata disease: The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurology, 1, 370–395. Search in Google Scholar

[14] Ledakowicz, S., & Deckwer, W.-D. (1993). Mercury removal from aqueous solutions by biotransformation. Biotechnologia, 3(22), 99–107. (in Polish) Search in Google Scholar

[15] Misra, T. K. (1992). Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid, 27, 4–16. DOI: 10.1016/0147-619X(92)90002-R. http://dx.doi.org/10.1016/0147-619X(92)90002-R10.1016/0147-619X(92)90002-RSearch in Google Scholar

[16] Morby, A. P., Parkhill, J., Lee, B. T. O., Brown, N. L., Rouch, D. A., Camakaris, J., & Williams, T. (1991). Bacterial resistances to mercury and copper. Journal of Cellular Biochemistry, 46, 106–114. DOI: 10.1002/jcb.240460204. http://dx.doi.org/10.1002/jcb.24046020410.1002/jcb.240460204Search in Google Scholar PubMed

[17] Mukherjee, A. B., Zevenhoven, R., Brodersen, J., Hylander, L. D., & Bhattacharya, P. (2004). Mercury waste in the European Union: sources, disposal methods and risks. Resources, Conservation and Recycling, 42, 155–182. DOI: 10.1016/j.resconrec.2004.02.009. http://dx.doi.org/10.1016/j.resconrec.2004.02.00910.1016/j.resconrec.2004.02.009Search in Google Scholar

[18] Nagarethinam, K., & Ananthakrishan, R. (2001). Suitability of various indigenously prepared activated carbons for the adsorption of mercury(II) ions. Toxicological & Environmental Chemistry, 84, 7–19. DOI: 10.1080/02772240309816. 10.1080/02772240309816Search in Google Scholar

[19] Nies, D. H., & Silver, S., Eds. (2007). Molecular biology of heavy metals. Berlin: Springer Verlag. 10.1007/978-3-540-69771-8Search in Google Scholar

[20] Osborn, A. M., Bruce, K. D., Strike, P., & Ritchie, D. A. (1997). Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Reviews, 19, 239–262. DOI: 10.1111/j.1574-6976.1997.tb00300.x. http://dx.doi.org/10.1111/j.1574-6976.1997.tb00300.x10.1111/j.1574-6976.1997.tb00300.xSearch in Google Scholar

[21] Silver, S. (1996). Bacterial resistances to toxic metal ions — a review. Gene, 179(1), 9–19. DOI: 10.1016/S0378-1119(96)00323-X. http://dx.doi.org/10.1016/S0378-1119(96)00323-X10.1016/S0378-1119(96)00323-XSearch in Google Scholar

[22] Summers, A. O., & Silver, S. (1972). Mercury resistance in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology, 112, 1228–1236. 10.1128/jb.112.3.1228-1236.1972Search in Google Scholar PubMed PubMed Central

[23] Summers, A. O., & Lewis, E. (1973). Volatilization of mercuric chloride by Mercury-Resistant Plasmid-Bearing Strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Bacteriology, 113, 1070–1072. 10.1128/jb.113.2.1070-1072.1973Search in Google Scholar PubMed PubMed Central

[24] Summers, A. O., & Silver, S. (1978). Microbial transformations of metals. Annu. Rev. Microbiol., 32, 637–672. doi:10.1146/annurev.mi.32.100178.003225. http://dx.doi.org/10.1146/annurev.mi.32.100178.00322510.1146/annurev.mi.32.100178.003225Search in Google Scholar PubMed

[25] Wagner-Döbler, I., von Canstein, H., Li, Y., Timmis, K. N., & Deckwer, W.-D. (2000). Removal of mercury from Chemical wastewater by microorganisms in technical scale. Environmental Science & Technology, 34, 4628–4634. DOI: 10.1021/es0000652. http://dx.doi.org/10.1021/es000065210.1021/es0000652Search in Google Scholar

[26] Wagner-Doebler, I. (2003a). Pilot plant for bioremediation of mercury-containing industrial wastewater. Applied Microbiology and Biotechnology, 62, 124–133. DOI: 10.1007/s00253-003-1322-7. http://dx.doi.org/10.1007/s00253-003-1322-710.1007/s00253-003-1322-7Search in Google Scholar PubMed

[27] Wagner-Doebler, I. (2003b). Removal of mercury from industrial wastewater by bacteria. 1. — Pilot-plant design. www.gbf.de/mercury_remediation1/pilotplant1.html Search in Google Scholar

[28] Wagner-Doebler, I. (2004). Worldwide remediation of mercury hazards through biotechnology. http://www.biomercury.de Search in Google Scholar

[29] Yamaguchi, A. I., Tamang, D. G., & Saier, M. H. (2007). Mercury transport in bacteria. Water, Air & Soil Pollution, 182, 219–234. DOI: 10.1007/s11270-007-9334-z. http://dx.doi.org/10.1007/s11270-007-9334-z10.1007/s11270-007-9334-zSearch in Google Scholar

[30] Yin, Y., Allen, H. E., Huang, C. P., Sparks, D. L., & Sanders, P. F. (1997). Kinetics of mercury(II) adsorption and desorption by soil. Environmental Science & Technology, 31, 496–503. DOI: 10.1021/es9603214. http://dx.doi.org/10.1021/es960321410.1021/es9603214Search in Google Scholar

[31] Zhao, X. W., Zhou, M. H., Li, Q. B., Lu, Y. H., He, N., Sun, D. H., & Deng, X. (2005). Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochemistry, 40, 1611–1616. DOI: 10.1016/j.procbio.2004.06.014. http://dx.doi.org/10.1016/j.procbio.2004.06.01410.1016/j.procbio.2004.06.014Search in Google Scholar

Published Online: 2008-5-2
Published in Print: 2008-6-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-008-0017-z/html
Scroll to top button