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Abstract: The formation energy of the mono-vacancy and both the formation energy and binding

energy of the di- and tri-vacancy in BCC alkali metals and transition metals have been calculated

by using the modified analytical embedded-atom method (MAEAM). The formation energy of each

type of configuration of the vacancies in the alkali metals is much lower than that in the transition

metals. From minimum of the formation energy or maximum of the binding energy, the favorable

configuration of the di-vacancy and tri-vacancy respectively is the first-nearest-neighbor (FN) or

second-nearest-neighbor (SN) di-vacancy and the [112] tri-vacancy constructed by two first- and

one second-nearest-neighbor vacancies. It is indicated that there is a concentration tendency for

vacancies in BCC metals.
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1 Introduction

The configuration and concentration of vacancies that exist in metals affect directly the

physical, chemical and mechanical properties of the metals [1]. The migration of vacancies

or interstitials, as is well known, is the dominant mechanism of atom transport or diffu-

sion in processes like solid phase transformation, crack formation and expanding and the

other defects (including dislocation and interface) migration [2]. Vacancies also play an
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important role for surface morphology [3]. So, a detailed knowledge of the configuration

and energy of vacancies is very important for understanding many phenomena associated

with vacancies. Many indirect experimental methods, such as by measurements of heat

capacity (special heat) [4], electrical resistivity [5], differential-dilatometer (thermal ex-

pansion not caused by the lattice but by increased number of vacancies) [6] and positron

annihilation spectrum [7], have been used to measure the vacancy formation energy. A

theoretical calculation or simulation is a useful supplement method.

In this paper, the formation energy of the mono-vacancy and both the formation

energy and binding energy of three-type configurations of the di-vacancy and eight-type

configurations of the tri-vacancy in body-central cubic (BCC) alkali metals and transition

metals have been calculated by using the modified analytical embedded atom method

(MAEAM). The MAEAM is an extension to the analytical embedded atom method

(AEAM) [8–10] developed by Johnson and his coworkers by adding a modified term to de-

scribe the energy change due to the non-spherical distribution of electrons and deviation

from the linear superposition of atomic electronic density.

2 MAEAM

In the MAEAM, the total energy of a system Et is expressed as [11, 12]

Et =
∑

i

F (ρi) +
1

2

∑

i

∑

j( 6=i)

φ(rij) +
∑

i

M(Pi) (1)

ρi =
∑

j( 6=i)

f(rij) (2)

Pi =
∑

j( 6=i)

f 2(rij) (3)

where F (ρi) is the energy to embed an atom in site i with electron density ρi, which is

given by a linear superposition of the spherical averaged atomic electron density of other

atoms f(rij), rij is the separation distance of atom j from atom i, φ(rij) is the interaction

potential between atoms i and j, and M(Pi) is the modified term that describes the

energy change due to the non-spherical distribution of electron Pi and deviation from

the linear superposition of atomic electronic density. The embedding function F (ρi), pair

potential φ(rij), modified term M(Pi) and atomic electron density f(rij) are taken as

following forms [13]

F (ρi) = −F0 [1 − n ln(ρi/ρe)] (ρi/ρe)
n (4)

φ(rij) = k0 + k1(rij/r1e)
2 + k2(rij/r1e)

4 + k3(r1e/rij)
12 (5)

M(Pi) = α(P/Pe − 1)2 exp[−(P/Pe − 1)2] (6)

f(rij) = fe(r1e/rij)
6 (7)

where the subscript e indicates equilibrium state and r1e is the first-nearest-neighbor

distance at equilibrium. The cut-off distance of interaction potential for BCC metal rc,
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where the pair potential and its slope are zero, lies between the second- and third-nearest-

neighbor distance. That is

rc = r2e + 0.75(r3e − r2e) (8)

According to the principle that the energy vs. separation distance curve fits the Rose

equation [14] as far as possible and the ref. [12, 15], eight model parameters, F0, n, α, fe,

ki (i = 0 ∼ 3) can be calculated with the following equations from the lattice constant

a, the cohesive energy Ec, mono-vacancy formation energy E1f and the elastic constants

C11, C12 and C44 of the BCC metal considered.

F0 = Ec − E1f (9)

n =
√

Ω(C11 + 2C12)(C11 − C12)/(216E1fC44) (10)

α = Ω(C12 − C44)/5126.4 − n2F0/8 (11)

fe = [(Ec − E1f )/Ω]3/5 (12)

k0 = −E1f/7 − Ω(51519C44 + 57111C12 − 57111C11)/75582360 (13)

k1 = Ω(33327C44 + 52563C12 − 52563C11)/43189920 (14)

k2 = Ω(147456C11 − 147456C12 − 59049C44)/302329440 (15)

k3 = 1536Ω(4C44 − C11 + C12)/66134565 (16)

where Ω = a3/2 is the atomic volume in BCC metals.

For convenience, the input physical parameters and calculated model parameters for

BCC metals are listed in Table 1 and Table 2 respectively.

Table 1 Input parameters for BCC metals [16–18].

Metals a/nm Ec/eV E1f/eV C11/eV·nm−3 C12/eV·nm−3 C44/eV·nm−3

Li 0.35093 1.63 0.48 84 71 55

Na 0.42096 1.113 0.34 46 39 26

K 0.5321 0.934 0.34 28 23 16

Rb 0.5703 0.852 0.341 18 15 10

Cs 0.6141 0.804 0.322 15 9 13

Fe 0.28664 4.28 1.79 1440 840 730

W 0.31650 8.90 3.95 3230 1270 980

Mo 0.31468 6.82 3.10 2870 1050 690

Cr 0.28846 4.10 1.60 2160 410 620

Ta 0.33026 8.10 2.95 1640 970 520

Nb 0.33007 7.57 2.75 1530 820 180

V 0.30282 5.31 2.10 1440 750 270
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Table 2 Calculated model parameters for BCC metals.

Metals F0/eV n α fe k0/eV k1/eV k2/eV k3/eV

Li 1.1500 0.1055 -0.0015 0.1720 -0.0694 0.0006 -0.0001 0.0001

Na 0.7730 0.1302 -0.0015 0.0977 -0.0492 0.0004 -0.0001 0.0001

K 0.5940 0.1540 -0.0017 0.0547 -0.0494 0.0005 -0.0001 0.0001

Rb 0.5110 0.1347 -0.0011 0.0441 -0.0493 0.0004 -0.0001 0.0001

Cs 0.4820 0.1592 -0.0016 0.0373 -0.0470 0.0003 0.0001 0.0001

Fe 2.4900 0.2795 -0.0241 0.3937 -0.2610 -0.0020 0.0018 0.0006

W 4.9500 0.4630 -0.1318 0.4974 -0.5725 -0.0121 0.0121 0.0007

Mo 3.7200 0.5523 -0.1407 0.4234 -0.4480 -0.0262 0.0117 0.0003

Cr 2.5000 0.5405 -0.0918 0.3901 -0.2321 -0.0198 0.0088 0.0002

Ta 5.1500 0.3611 -0.0824 0.4718 -0.4269 -0.0075 0.0041 0.0006

Nb 4.8200 0.6152 -0.2258 0.4539 -0.3941 -0.0130 0.0056 0.0001

V 3.2100 0.4796 -0.0910 0.4153 -0.3018 -0.0088 0.0039 0.0001

3 Energy calculation and discussion

3.1 Mono-vacancy

Mono-vacancy can be formed by removing one atom from the central site of a crystal

with N atoms and the formation energy of mono-vacancy E1f can be calculated by

E1f = EN−1
t −

EN
t

N
(N − 1) (17)

where EN−1
t and EN

t is the total energy of the crystal with and without mono-vacancy

respectively. In order to avoid the influence of the boundary, we assume the inner com-

putational cell of the crystal is surrounded by a mantle of atoms fixed at their perfect

lattice positions. The computational cell is a 10a×10a×10a crystal, where a is the lattice

constant. The mantle ensures that each atom in the computational cell has a complete

set of neighbors with the range of the interatomic potential used.

The energies of the atoms near the vacancies were affected by the vacancies, therefore,

the computational cell should include all the affected atoms. The fewer the number of

the vacancies, the fewer the number of atoms there are in the computational cell. But

for consistency, we only choose the same 10a× 10a× 10a computational cell in the whole

paper. Of course, if there are many vacancies considered, the computational cell should

be changed.

Calculated formation energies of mono-vacancy are listed in Table 3 together with the

available experimental values for BCC alkali metals [18] and transition metals [19]. It can

be seen that the calculated results are in good agreement with the available experimental

values. The highest mono-vacancy formation energy corresponds to transition metal W,

and the formation energy of the mono-vacancy in alkali metals is much lower than that

in the transition metals. As is well known and obvious, the value of the mono-vacancy
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formation energy of each metal is related directly to its cohesive energy Ec, that is, the

higher the cohesive energy is, the higher the mono-vacancy formation energy is.

Table 3 Formation energy (eV) of the mono-vacancy in BCC metals.

Metals Li Na K Rb Cs Fe

Cal. 0.4809 0.3408 0.3413 0.3420 0.3249 1.8173

Exp. 0.482 0.342 0.348 1.8

Metals W Mo Cr Ta Nb V

Cal. 4.0632 3.1978 1.6759 2.9857 2.7509 2.1215

Exp. 3.6 3.2 2.1 3.1 2.7 2.1

3.2 Di-vacancy

A similar calculation is also conducted for the di-vacancy. Three-type configurations of

the di-vacancy, the first-, second- and third-nearest-neighbor di-vacancy (simply noted as

FN, SN and TN respectively), are considered. As shown in Fig. 1. they are introduced

by removing two atoms from sites (0,0,0) and (a/2, a/2, a/2) (a), (0,0,0), and (a,0,0) (b),

and (0,0,0) and (a,0,a) (c) respectively in the inner computational cell.

         

(a) FN

         

(b) SN

         

(c) TN

Fig. 1 Three-type configurations of the di-vacancy: (a) the first-nearest-neighbor (FN),

(b) the second-nearest-neighbor (SN), (c) the third-nearest-neighbor (TN).

The formation and binding energy of the di-vacancy can be calculated by

E2f = EN−2
t −

EN
t

N
(N − 2) (18)

E2b = 2E1f − E2f (19)

where EN−2
t and EN

t is the total energy of the crystal with and without di-vacancy

respectively. The calculated results are listed in Table 4 for three-type configurations of

the di-vacancy in BCC metals. It can be seen that, similar to the mono-vacancy, the

formation energy of each type of configuration of the di-vacancy in alkali metals is much

lower than that in transition metals. For each metal, the formation energy increases
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with FN, SN and TN di-vacancy successively, that is EFN
2f < ESN

2f < ETN
2f , however, the

binding energy decreases with FN, SN and TN successively, that is EFN
2b > ESN

2b > ETN
2b .

With nearly the same formation and binding energies for the FN and the SN di-vacancies,

this shows that these two-type configurations of the di-vacancy exist simultaneously in

BCC metals. The negative binding energy corresponding to the TN di-vacancy indicates

the TN di-vacancy is difficult to form in BCC metals.

Table 4 Calculated formation and binding energy (eV) of three-type configurations of

the di-vacancy in BCC metals.

Metals EFN
2f EFN

2b ESN
2f ESN

2b ETN
2f ETN

2b

Li 0.8934 0.0684 0.8935 0.0683 0.9621 -0.0003

Na 0.6333 0.0483 0.6333 0.0483 0.6819 -0.0003

K 0.6342 0.0484 0.6344 0.0482 0.6829 -0.0003

Rb 0.6354 0.0486 0.6355 0.0485 0.6842 -0.0002

Cs 0.6037 0.0461 0.6038 0.0460 0.6500 -0.0002

Fe 3.3795 0.2551 3.3807 0.2539 3.6381 -0.0035

W 7.5705 0.5559 7.5756 0.5508 8.1450 -0.0186

Mo 5.9650 0.4306 5.9701 0.4255 6.4153 -0.0197

Cr 3.1293 0.2225 3.1325 0.2193 3.3645 -0.0127

Ta 5.5604 0.4110 5.5639 0.4075 5.9832 -0.0118

Nb 5.1510 0.3508 5.1587 0.3431 5.5332 -0.0314

V 3.9571 0.2859 3.9606 0.2824 4.2559 -0.0129

3.3 Tri-vacancy

Eight-type configurations of the tri-vacancy are considered (as shown in Fig. 2): (a)

two first- and one second-nearest-neighbor noted as [112] for simplicity; (b) two first-

and one third-nearest-neighbor [113]; (c) two first- and one fifth-nearest-neighbor [115];

(d) one first-, one second- and one forth-nearest-neighbor [124]; (e) two second- and one

third-nearest-neighbor [223]; (f) two second- and one sixth-nearest-neighbor [226]; (g)

one second-, one third- and one fifth-nearest-neighbor [235]; and (h) three third-nearest-

neighbor [333].

Similar to the di-vacancy, the formation and binding energy of the tri-vacancy can be

calculated by

E3f = EN−3
t −

EN
t

N
(N − 3) (20)

E3b = 3E1f − E3f (21)

The calculated values of the formation energy and binding energy are listed in Table 5

and Table 6 for eight-type configurations of the tri-vacancy in BCC metals.

The formation energies of eight-type configurations of the tri-vacancy in BCC alkali

metals and transition metals are illustrated in Fig. 3 and Fig. 4 respectively. Similar
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(a) [112] (b) [113] (c) [115] (d) [124]

(e) [223] (f) [226] (g) [235] (h) [333]

Fig. 2 Eight-type configurations of the tri-vacancy: (a) two first- and one second-nearest-

neighbor [112]; (b) two first- and one third-nearest-neighbor [113]; (c) two first- and one

fifth-nearest-neighbor [115]; (d) one first-, one second- and one forth-nearest-neighbor

[124]; (e) two second- and one third-nearest-neighbor [223]; (f) two second- and one

sixth-nearest-neighbor [226]; (g) one second-, one third- and one fifth-nearest-neighbor

[235]; and (h) three third-nearest-neighbor [333].

Table 5 Formation energy (eV) of eight-type configurations of the tri-vacancy in BCC

metals.

Metals E
[112]
3f E

[113]
3f E

[115]
3f E

[124]
3f E

[223]
3f E

[226]
3f E

[235]
3f E

[333]
3f

Li 1.2375 1.3061 1.3060 1.3061 1.3065 1.3062 1.3749 1.4435

Na 0.8773 0.9259 0.9257 0.9259 0.9262 0.9259 0.9746 1.0232

K 0.8787 0.9273 0.9272 0.92274 0.9277 0.9274 0.9761 1.0249

Rb 0.8801 0.9289 0.9288 0.9289 0.9292 0.9290 0.9778 1.0266

Cs 0.8362 0.8826 0.8824 0.8826 0.8829 0.8826 0.9290 0.9754

Fe 4.6855 4.9439 4.9419 4.9441 4.9484 4.9440 5.2037 5.4630

W 10.5148 11.0897 11.0792 11.0897 11.1108 11.0881 11.6689 12.2484

Mo 8.2936 8.7447 8.7337 8.7445 8.7661 8.7425 9.1995 9.6555

Cr 4.3550 4.5908 4.5837 4.5905 4.6044 4.5892 4.8288 5.0677

Ta 7.7200 8.1428 8.1360 8.1430 8.1571 8.1422 8.5690 8.9948

Nb 7.1868 7.5710 7.5535 7.5703 7.6040 7.5668 7.9600 8.3518

V 5.5017 5.8010 5.7936 5.8009 5.8154 5.7997 6.1030 6.4054

to the mono-vacancy and di-vacancy, the formation energy of each type of configuration

of the tri-vacancy in alkali metals is much lower than that in transition metals. Fur-

thermore, in the five alkali metals, Li corresponds to the highest formation energy, Na,

K and Rb are nearly same and Cs is the lowest. In the seven transition metals, the
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Table 6 Binding energy (eV) of eight-type configurations of the tri-vacancy in BCC

metals.

Metals E
[112]
3b E

[113]
3b E

[115]
3b E

[124]
3b E

[223]
3b E

[226]
3b E

[235]
3b E

[333]
3b

Li 0.2053 0.1367 0.1368 0.1366 0.1363 0.1366 0.0679 -0.0007

Na 0.1452 0.0966 0.0968 0.0966 0.0963 0.0966 0.0479 -0.0008

K 0.1454 0.0967 0.0969 0.0967 0.0963 0.0967 0.0479 -0.0008

Rb 0.1460 0.0972 0.0973 0.0972 0.0969 0.0971 0.0483 -0.0005

Cs 0.1385 0.0922 0.0923 0.0921 0.0918 0.0921 0.0457 -0.0007

Fe 0.7665 0.5081 0.5101 0.5079 0.5035 0.5079 0.2483 -0.0110

W 1.6748 1.0999 1.1104 1.0999 1.0788 1.1088 0.5208 -0.0588

Mo 1.2998 0.8486 0.8597 0.8489 0.8272 0.8509 0.3938 -0.0622

Cr 0.6729 0.4370 0.4441 0.4373 0.4234 0.4386 0.1990 -0.0399

Ta 1.2370 0.8142 0.8210 0.8140 0.7999 0.8148 0.3881 -0.0378

Nb 1.0658 0.6816 0.6991 0.6823 0.6486 0.6858 0.2926 -0.0992

V 0.8629 0.5636 0.5709 0.5637 0.5492 0.5649 0.2616 -0.0409

formation energy of each type configuration of the tri-vacancy decreases for W, Mo, Ta,

Nb, V, Fe and Cr successively. For each metal, the [112] tri-vacancy constructed by two

first- and one second-nearest-neighbor vacancies corresponds to the lowest formation en-

ergy, the [113], [115], [124], [223] and [226] tri-vacancies are nearly the same, and the

[235] and [333] tri-vacancies are the two highest formation energies. Combining with the

formation energies corresponding to three-type configurations of the di-vacancy, we can

conclude that the favorable configurations of the multi-vacancy are those composed with

the nearest-neighbor vacancies. On the other hand, there is a concentration tendency for

the vacancies in BCC metals and maybe the other structured metals. This conclusion is

consistent with the experimental results that the voids [20, 21] and crackles [22] are often

observed in the materials.
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Fig. 3 Formation energy for eight-type configurations of tri-vacancy in BCC alkali metals.
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Fig. 4 Formation energy for eight-type configuration of tri-vacancy in BCC transition

metals.

The binding energies of eight-type configurations of the tri-vacancy in alkali metals

and transition metals are illustrated in Fig. 5 and Fig. 6 respectively. Except for the

[333] tri-vacancy which is difficult to form due to its negative binding energy, the binding

energy of each type of configuration of the remaining tri-vacancies in the alkali metals is

lower than that in transition metals. Furthermore, in the five alkali metals, Li corresponds

to the highest binding energy, Na, K and Rb are nearly the same and Cs is the lowest.

In the seven transition metals, the binding energy of each type of configuration of the

tri-vacancy decreases for W, Mo, Ta, Nb, V, Fe and Cr successively. These are similar

to the results of the di-vacancy. For each metal, the [112] tri-vacancy corresponds to

the highest binding energy, which shows the [112] tri-vacancy is the most stable. In the

remaining formable seven-type configurations of the tri-vacancy, the [113], [115], [124],

[223] and [226] tri-vacancies are nearly the same, and the [235] tri-vacancy has the lowest

binding energy.
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Fig. 5 The binding energy for eight-type configurations of tri-vacancy in BCC alkali

metals.
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Fig. 6 The binding energy for eight-type configurations of tri-vacancy in BCC transition

metals.

In fact, there is a correlation between the atomic number and the formation energy

of the mono-, di- and tri- vacancy in the alkali metals and the transition metals. As

shown in Fig. 7 and Fig. 8 respectively, the formation energies of the mono-, di- and tri-

vacancy decrease with increasing the atomic number of the alkali metals, but increase

with increasing the atomic number of the transition metals. Such a correlation also exists

between the atomic number and the cohesive energy Ec of the alkali metals and the

transition metals and can be explained in view of the cohesive energy. From Eqs. (19)

and (21), we know that there is an inverse correlation between the atomic number and the

binding energy of the di- and tri- vacancy in the alkali metals and the transition metals.
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tri-vacancy
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mono-vacancy

Fig. 7 Correlation between the atomic number and the formation energies of the mono-,

di- and tri- vacancy.
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Fig. 8 Correlation between the atomic number and formation energies of the mono-, di-

and tri- vacancy in transition metals.

4 Conclusions

The formation energy of the mono-vacancy and both the formation energy and binding

energy of three-type configurations of the di-vacancy and eight-type configurations of the

tri-vacancy in BCC alkali metals and transition metals have been calculated by using the

modified analytical embedded atom method (MAEAM). The following conclusions are

obtained.

(1) The formation energies of the mono-vacancy, three-type configurations of the di-

vacancy and eight-type configurations of the tri-vacancy in the alkali metals are much

lower than that in the transition metals. Furthermore, in the five alkali metals, Li

corresponds to the highest formation energy, Na, K and Rb are nearly the same and

Cs is the lowest. In seven transition metals, the formation energy decreases for W,

Mo, Ta, Nb, V, Fe and Cr successively.

(2) From the minimum of the formation energy or maximum of the binding energy, the

favorable configurations of the di-vacancy are the first-nearest-neighbor (FN) and

the second-nearest-neighbor (SN), and the favorable configuration of the tri-vacancy

is [112] constructed by two first- and one second-nearest-neighbor vacancies. That

is the favorable configurations of the multi-vacancy are those composed with the

nearest-neighbor vacancies. On the other hand, there is a concentration tendency

for the vacancies in BCC metals.

(3) The formation energies of the mono-, di- and tri- vacancy decrease with increasing

the atomic number of the alkali metals, but increase with increasing the atomic

number of the transition metals.
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