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Abstract: This paper presents a postprocessing technique for estimating the local regularity of numerical solutions in high-
resolution finite element schemes. A derivative of degree p ≥ 0 is considered to be smooth if a discontinuous
linear reconstruction does not create new maxima or minima. The intended use of this criterion is the identification
of smooth cells in the context of p-adaptation or selective flux limiting. As a model problem, we consider a 2D
convection equation discretized with bilinear finite elements. The discrete maximum principle is enforced using
a linearized flux-corrected transport algorithm. The deactivation of the flux limiter in regions of high regularity
makes it possible to avoid the peak clipping effect at smooth extrema without generating spurious undershoots
or overshoots elsewhere.
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1. Introduction

The design of high-resolution finite element schemes for convection-dominated transport problems requires certainmodifications of the standard Galerkin approximation in regions where unresolved small-scale features are present.To prevent nonphysical oscillations in these regions, the numerical scheme must contain a mechanism for adaptivelyreducing the order of approximation and/or generating shock-capturing artificial diffusion. In discontinuous Galerkin
∗ E-mail: kuzmin@am.uni-erlangen.de
† E-mail: schiewec@ovgu.de

1478



D. Kuzmin, F. Schieweck

(DG) methods, this task is commonly accomplished by means of slope limiters that switch to a piecewise-constantapproximation in “troubled” cells [1, 2, 4, 6, 11, 16]. Obviously, this approach is not an option in the context of continuousfinite element schemes. The discrete maximum principle for (bi-)linear approximations can be enforced, e.g., using theflux-corrected transport (FCT) algorithm [3, 5]. However, its extension to higher-order finite elements is still an openproblem.The use of limiting techniques increases the computational cost and may degrade the order of accuracy at smoothextrema. On the other hand, it is generally safe to use the standard Galerkin method and higher-order basis functionsin elements where the numerical solution exhibits sufficient regularity. For this reason, many strategies for identifying“smooth” and “troubled” cells have been proposed in the literature [2, 4, 11–13, 16]. A typical troubled cell marker for DGmethods measures the interelement jumps or highest-order components of the shape function. A smoothness indicator fordeactivation of shock capturing terms in continuous stabilized finite element schemes was designed in [15] using a simplepostprocessing technique. The difference between the numerical solution and its reconstruction from cell averages wasfound to be a good shock detector.It is relatively easy to design a sensor that has large values in the neighborhood of discontinuities and small valuesin smooth regions. However, there is no simple way to find the threshold for a troubled cell marker. The use of fixedtolerances for the absolute or relative values of smoothness sensors may result in a poor estimate of local regularity [11].The failure to detect a trouble cell may cause a violation of the maximum principle and give rise to numerical instabilities.Another alarming side effect is the loss of accuracy due to unnecessary limiting in unrecognized smooth cells. Last butnot least, heuristic indicators are unable to predict if the local regularity is sufficient for p-enrichment to be safe andprofitable.In this paper, we introduce a hierarchical smoothness estimator for the solution and its partial derivatives. It is somewhatsimilar to the postprocessing indicator employed in [15] but the reconstructed solution is generally discontinuous, and nofree parameters are involved. The proposed approach to regularity analysis is based on the same design philosophy asthe hierarchical vertex-based slope limiter developed by the first author for DG approximations to hyperbolic conservationlaws [6, 7]. When it comes to regularity estimation for a derivative of degree p ≥ 0, we use variational gradient recoveryto compute the (p+1)-st derivatives and define a discontinuous reconstruction in each cell. The p-th derivative is smoothif the reconstructed shape function is bounded by the original values at cell centers. No flux limiting is required if asmooth derivative is found. If the highest-order derivative is smooth, then the cell is a candidate for p-enrichment. Toassess the usefulness of the new smoothness sensor, we use it to activate and deactivate the flux limiter in an FEM-FCTdiscretization of a linear convection equation. The first results indicate that the proposed methodology is well suitedfor this purpose.
2. Regularity estimator

We begin with the presentation of the postprocessing technique for estimating the local regularity of continuous(multi-)linear finite element approximations. Its extension to higher-order elements and DG methods is straightfor-ward.Let uh ∈ Vh denote a finite element approximation to the weak solution u ∈ V of a given (initial–)boundary valueproblem. Since we are interested in estimating the regularity of uh, our analysis will be independent of the underlyingPDE. The restriction of uh to a single element K of the computational mesh Th is given by a linear or bilinear shapefunction uh�K . To estimate the smoothness of uh in a neighborhood of cell K , we consider a linear approximation of theform
ûh(x) = uh(xc) + Rhuh(xc) · (x− xc), (1)where xc denotes the center of K and Rh : Vh → Vh×Vh is a gradient recovery operator. In contrast to ∇uh, thereconstructed gradient is continuous, and Rhuh(xc) depends on the data in all elements that share a vertex with K . Inthis paper, we construct Rhuh = (R1

huh, R2
huh)T using an L2 projection (see the next section).The shape functions given by (1) define a discontinuous piecewise-linear approximation ûh. The difference between uhand ûh may serve as a smoothness indicator. We label the cell K as smooth if the value of ûh at each vertex xi ∈ K isbounded by the values of uh at the centers of surrounding elements thus
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umin
i < ûh(xi) < umax

i for all xi ∈ K, (2)where
umax
i = max{uh(xc) : there exists K ∈ Th such that xi, xc ∈ K},
umin
i = min{uh(xc) : there exists K ∈ Th such that xi, xc ∈ K}. (3)

In DG methods, such maximum principles can be enforced by limiting the derivatives of ûh. Hence, the proposed regularitycriterion is equivalent to the application of a vertex-based slope limiter [6, 7] to the postprocessed solution ûh. Notethat the inequalities in (2) are strict, which implies that a constant function is not regarded as smooth. This conventionis adopted to avoid unnecessary p-refinements in the context of hp-adaptivity. In practice, we use inequality constraintsof the form umin
i + ε < ûh(xi) < umax

i − ε, where ε is a small positive number.Since conditions (2)–(3) are violated at the local maxima and minima of uh, all cells containing these extrema are markedas “troubled” [11]. To distinguish between smooth peaks and spurious undershoots/overshoots, the regularity estimatormust be applied to each component of the gradient ∇uh = (ux , uy)T.Building on the analogy with [6, 7], we use the derivatives of the recovered gradient Rhuh = (R1
huh, R2

huh)T to define thelinear reconstructions
û 1
h (x) = ∂uh

∂x (xc) +∇R1
huh(xc) · (x− xc), û 2

h (x) = ∂uh
∂y (xc) +∇R2

huh(xc) · (x− xc). (4)
The gradient is regarded as smooth if the values of û 1

h and û 2
h at all vertices of K are bounded by the centroid valuesof ∂uh/∂x and ∂uh/∂y, respectively. The corresponding maximum principle is given by (2)–(3) with ûh replaced by û kh ,

k = 1, 2.As shown in [6, 7], no shock capturing is required if the finite element solution uh and/or both components of its gradientare found to be smooth. Since the regularity estimates for the derivatives w.r.t. x and y are independent, they may beused to steer anisotropic refinement in hp-adaptive finite element codes.
3. Gradient reconstruction

Many a posteriori error estimates for adaptive finite element schemes are based on gradient recovery techniques [18].Given a finite element solution uh ∈ Vh, where Vh = span{φ1, . . . , φN}, the operator Rh : Vh → Vh×Vh is defined by
Rk
huh = N∑

j=1 g
k
j φj , k = 1, 2. (5)

The coefficients g1
j ≈ (∂u/∂x)(xj ) and g2

j ≈ (∂u/∂y)(xj ) can be determined, e.g., using superconvergent patch recovery[19, 20] or the general transfer operator developed by the second author [14]. Another popular recovery technique is the
L2 projection ∫

ΩφiRhuh dx = ∫Ωφi∇uh dx, i = 1, . . . , N.
Invoking (5), one obtains the linear systems for the vectors of nodal derivatives

MCgk = bk , (6)
where MC = {mij} is the consistent mass matrix and bk = {bki }, k = 1, 2, is the load vector associated with the k-thderivative. By virtue of (6), we have

mij = ∫Ωφiφj dx, (b1
i , b2

i )T = ∫Ωφi∇uh dx.
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Since the mass matrix MC is well-conditioned, the cost of solving a linear system of the form (6) is rather low. Weremark that the use of row-sum mass lumping would produce a smooth low-order approximation to ∇u. As a result, thesmoothness sensor based on (1) and (4) may overestimate the local regularity. For this reason, it is essential to use theconsistent-mass version of the L2 projection.
4. Algebraic flux correction

We will estimate the regularity of finite element approximations to the weak solution of the unsteady linear convectionequation
∂u
∂t +∇· (vu) = 0 in Ω, (7)

where u is the concentration of a conserved quantity, v is a given velocity field, and Ω is a bounded domain. Sinceequation (7) is of hyperbolic type, we prescribe a Dirichlet boundary condition on the inflow part of the boundary Γ,
u = uD on ΓD = {x ∈ Γ : v ·n < 0},

where n is the unit outward normal to Γ. The initial condition is given by u(x, 0) = u0(x), x ∈ Ω. The discretizationin space by the standard or stabilized Galerkin method yields a system of equations that can be written in the genericform
MC dudt = Ku, (8)

where u is the vector of time-dependent nodal values, MC = {mij} is the consistent mass matrix, and K = {kij} is thediscrete transport operator.A semi-discrete scheme of the form (8) proves local extremum diminishing (for ∇·v = 0 only) and positivity-preserving(for any v) if mii > 0, mij = 0, kij ≥ 0 for all j 6= i; see [8, 9]. The standard Galerkin discretization fails to satisfy thesesufficient conditions and gives rise to nonphysical oscillations in “troubled” cells. To enforce the maximum principle inthese cells, we will use algebraic flux correction [8] to control the contribution of matrix entries that have a wrong sign(mij > 0 and kij < 0).To begin with, we replace the matrix MC with its lumped counterpart
ML = diag{mi}, mi =∑

j
mij .

Next, we fix K by adding a discrete diffusion operator D = {dij} with dij = max {−kij , 0,−kji} = dji for j 6= i [8, 9], sothat K +D has no negative off-diagonal coefficients. The diagonal entries of D are defined so that this symmetric matrixhas zero row sums dii = −∑j 6=i dij . Due to symmetry, the column sums are also equal to zero. In the 1D case, thelumped-mass Galerkin approximation on a uniform mesh of linear finite elements is equivalent to the central differencescheme, while the modified operator K +D corresponds to the first-order upwind difference [9].In summary, the semi-discrete Galerkin scheme (8) can be split as follows:
ML dudt = (K +D)u+ f(u),

where f(u) is the sum of antidiffusive terms that may destroy positivity
f(u) = (ML−MC) dudt −Du. (9)

1481



A parameter-free smoothness indicator for high-resolution finite element schemes

Since ML−MC and D are symmetric with zero row sums, we have
(MLu−MCu)i = miui −

∑
j
mijuj =∑

j 6=i mij (ui−uj ),
(Du)i =∑

j
dijuj = diiui +∑

j 6=i dijuj =∑
j 6=i dij (uj −ui).

(10)

Thus, each component of (9) admits a flux decomposition of the form fi = ∑
j 6=i fij , fji = −fij . The formula for the raw

antidiffusive fluxes fij follows from (10),
fij = (mij

ddt + dij
)(ui−uj ), j 6= i.

Some fluxes are harmless but others may create undershoots or overshoots in proximity to troubled cells. The contributionof these “bad” fluxes must be limited so as to make the antidiffusive term local extremum diminishing. After this correction,the generic form of the semi-discrete problem becomes
ML dudt = (K +D)u+ f(u), (11)

where f(u) is a vector containing the sums of limited antidiffusive fluxes
f i =∑

j 6=i αijfij , 0 ≤ αij ≤ 1.
A well-designed flux limiter produces αij ≈ 1 in smooth regions and αij = 0 in troubled cells. We will calculate thecorrection factors using a nonclipping version of Zalesak’s limiter [17] presented in the next section.In the numerical examples that follow, we discretize (11) in time using the Crank–Nicolson method. The result is anonlinear algebraic system

Aun+1 = Bun + f, (12)
where f is the fully discrete counterpart of the limited antidiffusive term,

A = 1∆t ML − 12 (K +D), (13)
B = 1∆t ML + 12 (K +D).

Since the implicit part of f depends on the unknown solution un+1, it must be linearized or calculated in an iterativeway. We will use an FCT algorithm [5, 9] in which the raw antidiffusive fluxes
fij = (

mij∆t + dij2
)(u∗i −u∗j )− (mij∆t − dij2

)(uni −unj )
are evaluated using the unconstrained Galerkin approximation u∗ to u(tn+1).
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5. Limiting strategy

In this section, we present Zalesak’s limiter [17] that we use to calculate the correction factors αij . The right-hand sideof (12) is a vector with components
bi = mi∆t ũi +∑

j 6=i αijfij , (14)
where ũ = M−1L ∆tBun is an explicit low-order approximation to u(tn+1/2). As shown in [8, 9], it inherits positivity of ununder the CFL-like condition ∆t ≤ − 2mi

kii + dii
for all i.

Let Si = {j 6= i : mij 6= 0} be the set of nearest neighbors of node i. The local maxima and minima of the auxiliarysolution ũ are given by
umax
i = max{ũi, max

j∈Si
ũj
}
, umin

i = min{ũi, min
j∈Si

ũj
}
.

In accordance with the FCT philosophy, the flux limiting procedure must render the antidiffusive term local extremumdiminishing. To this end, the constrained solution to (14) must satisfy the local discrete maximum principle
miumin

i ≤ ∆tbi ≤ miumax
i . (15)

The process of flux correction begins with the optional “prelimiting” step
fij

def= 0 if fij (ũj − ũi) > 0.
This adjustment was found to eliminate spurious ripples created by fluxes that flatten the solution profiles instead ofsteepening them [8, 17].The choice of the correction factors αij must guarantee that a positive sum of limited antidiffusive fluxes αijfij cannotcreate an overshoot, and its negative counterpart cannot create an undershoot. Assuming the worst-case scenario, weenforce condition (15) using Zalesak’s multidimensional FCT algorithm [17]:

1. Compute the sums of positive and negative antidiffusive fluxes
P+
i =∑

j 6=i max{0, fij}, P−i =∑
j 6=i min{0, fij}.

2. Define the upper and lower bounds for admissible increments
Q+
i = mi∆t (umax

i − ũi), Q−i = mi∆t (umin
i − ũi).

3. Compute the nodal correction factors for the components of P±i
R+
i = min{1, Q+

i
P+
i

}
, R−i = min{1, Q−iP−i

}
.

4. Check the sign of the unconstrained flux and multiply fij by
αij = {min{R+

i , R−j } if fij > 0,min{R−i , R+
j } if fij < 0.
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This symmetric limiting strategy guarantees that (15) holds for both nodes. By the M-matrix property of (13), positivityof ũ carries over to un+1 [8, 9].A disturbing side effect associated with flux correction of FCT type is known as clipping [8, 17]. Since the sum of limitedantidiffusive fluxes is forced to be local extremum diminishing, even smooth peaks lose a little bit of amplitude after eachtime step. To avoid peak clipping, we deactivate the flux limiter by setting
R±i = 1

at vertices surrounded by smooth cells. These vertices are identified using the regularity estimate for the gradient ofthe auxiliary solution ũ. Since the solution has higher regularity than its derivatives, it is also safe to deactivate thelimiter in cells where conditions (2)–(3) hold for the linear reconstruction given by (1).
6. Numerical results

To illustrate the capability of the hierarchical regularity estimator to locate shocks and smooth peaks, we perform anumerical study for the solid body rotation problem [3, 10]. In this example, we solve equation (7) with the velocity field
v(x, y) = (0.5−y, x− 0.5)

which describes a counterclockwise rotation about the center of Ω = (0, 1)× (0, 1).The exact solution to the solid body rotation problem reproduces the initial state u0 exactly after each full revolution(t = 2πk , k ∈ N). Hence, the challenge of this test is to preserve the shape of u0. Following LeVeque [10], we considera slotted cylinder, a sharp cone, and a smooth hump, see Figure 1. Initially, the geometry of each body is given by afunction G(x, y) defined within the circle
r(x, y) = 1

r0
√(x− x0)2 + (y−y0)2 ≤ 1

of radius r0 = 0.15 centered at a point with Cartesian coordinates (x0, y0).

Figure 1. Initial data / exact solution at the final time t = 2π.
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For the slotted cylinder, the reference point is (x0, y0) = (0.5, 0.75) and [10]
G(x, y) = {1 if |x − x0| ≥ 0.025 or y ≥ 0.85,0 otherwise.

The cone is centered at (x0, y0) = (0.5, 0.25) and its geometry is defined by
G(x, y) = 1− r(x, y).

The peak of the hump is located at (x0, y0) = (0.25, 0.5) and the shape is
G(x, y) = 1 + cos(πr(x, y))4 .

The diagrams in Figure 2 show the results of regularity estimation for the above initial data projected onto a uniform meshof 128×128 bilinear elements. The smoothness sensor η0
i equals 1 if conditions (2)–(3) hold in all elements containingthe vertex xi. If this is not the case, we set η0

i = 0. The markers η1
i and η2

i measure the regularity of the derivativesw.r.t. x and y. The last marker is defined as ηmax
i = max {η0

i ,min{η1
i , η2

i }}. In Figure 2, the marker values 0 and 1 areshown in blue and red, respectively. In accordance with criterion (2), all nodes inside or around the slotted cylinder aremarked as non-smooth since the solution is piecewise-constant in this region. The deactivation of flux limiting at verticeswith η1
i = η2

i = 1 or ηmax
i = 1 makes it possible to avoid peak clipping without generating undershoots or overshoots inthe neighborhood of discontinuities.

(a) η0 (b) η1 (c) η2 (d) ηmax
Figure 2. Solid body rotation: regularity of the initial data.

The numerical solutions displayed in Figure 3 were obtained with the global and local versions of the FCT limiter usingthe Crank–Nicolson time-stepping and ∆t = 10−3. For a better comparison, the solution profiles along the lines y = 0.5and x = 0.5 are presented in Figures 4 and 5, respectively. It can readily be seen that the local version of the FCTlimiter yields a much better resolution of the smooth hump and a minor reduction in peak clipping at the tip of the cone.The results for the slotted cylinder are identical since all nodes located in proximity to discontinuities are correctlyidentified as non-smooth. We remark that the small local maximum at x ≈ 0.625 is caused by numerical diffusion thatgradually increases the values of u in the middle of the slot. In summary, the recovery-based smoothness sensor yieldsa quite realistic estimate of local regularity. The numerical cost of recovery-based regularity estimation is comparableto that of global flux limiting. This added cost may be compensated by skipping the smooth nodes when it comes tocomputation of nodal correction factors for the FCT.As shown by John and Schmeyer [3], the solid body rotation problem is a challenging test for stabilized finite elementmethods. Therefore, we feel that the results presented in this section are representative enough to draw preliminaryconclusions regarding the quality of local regularity estimates. Of course, there is no guarantee that the new markerwill perform so well for all problems of practical interest. For example, it might fail to recognize a discontinuity smearedby numerical diffusion. This problem can be cured using adaptive mesh refinement.
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(a) Global limiting (b) Local limiting

Figure 3. Solid body rotation: FEM-FCT solutions at t = 2π.

Figure 4. Solid body rotation: FEM-FCT solution profiles at y = 0.5.

Figure 5. Solid body rotation: FEM-FCT solution profiles at x = 0.5.
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7. Conclusions

This note sheds some light on various aspects of a posteriori regularity estimation for adaptive high-resolution finiteelement schemes. We have shown that the variations of derivatives play an important role in the detection of smooth cells.Hierarchical smoothness sensors based on variational gradient recovery provide a useful tool for the design of troubledcell markers and adaptive p-refinement strategies for continuous and discontinuous finite elements. The lack of freeparameters makes the proposed methodology an attractive alternative to traditional smoothness sensors. In particular,we envisage its usage in the context of hp-adaptive finite element schemes for convection-dominated transport problems.
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