
� Organization, Technology and Management in Construction 2020; 11: 2137–2146

Research Paper� Open Access

Merve Kuru and Gulben Calis*

Application of time series models for heating 
degree day forecasting
DOI 10.2478/otmcj-2020-0009 
Received December 27, 2019; accepted February 10, 2020

Abstract: This study aims at constructing short-term 
forecast models by analyzing the patterns of the heating 
degree day (HDD). In this context, two different time series 
analyses, namely the decomposition and Box–Jenkins 
methods, were conducted. The monthly HDD data in 
France between 1974 and 2017 were used for analyses. The 
multiplicative model and 79 SARIMA models were con-
structed by the decomposition and Box–Jenkins method, 
respectively. The performance of the SARIMA models was 
assessed by the adjusted R2 value, residual sum of squares, 
the Akaike Information Criteria, the Schwarz Information 
Criteria, and the analysis of the residuals. Moreover, the 
mean absolute percentage error, mean absolute devia-
tion, and mean squared deviation values were calculated 
to evaluate the performance of both methods. The results 
show that the decomposition method yields more accept-
able forecasts than the Box–Jenkins method for support-
ing short-term forecasting of the HDD.

Keywords: heating degree days, short-term forecasting, 
time series, Box–Jenkins method, SARIMA models

1  Introduction
Today, buildings have become the main consumers of 
world energy use (Cao et al. 2016). It is stated that 50% of 
the energy is spent on heating and cooling in buildings 
and industry (EU Strategy for Heating and Cooling 2019). 
Moreover, heating and hot water alone constitute 79% 
of total final energy use in EU households (EU Strategy 
for Heating and Cooling 2019). The heating demand is 
affected by several factors such as the building shell, the 

type of heating system, outdoor temperature, and occu-
pant behavior. Among all factors, the outdoor tempera-
ture is the only one directly affected by climate change 
(Wu et al. 1992; Neto and Fiorelli 2008; Amber et al. 2018; 
Li 2018). To understand the variations in the demand for 
energy required to heat a building due to climate change, 
a technical index, called heating degree days (HDD) has 
been developed (IPCC, 2007). HDD is defined as the inten-
sity of coldness (in other words, the need for heating) in 
a given period of time, considering the outdoor tempera-
ture and the average room temperature (Statistical Office 
of the European Union 2019). The calculation of HDD is 
based on the base temperature, which is defined as the 
lowest daily average air temperature that does not result 
in indoor heating. The value of the base temperature 
depends, in principle, on various factors related to the 
building and the environment. Using a general climatic 
approach, the base temperature is set to a constant 15°C 
in the HDD calculation. Moreover, it is assumed that the 
building does not need any heating for any temperature 
above 18°C. The HDD is calculated over a period of time 
(typically 1 year) by adding the differences between the 
daily average temperature and 18°C (weatheronline.
co.uk 2019).

If Tm ≤ 15°C [HDD = Si (18°C - Tim)]; else [HDD = 0]

in which Tim is the average air temperature of day i. As a 
result, it can be said that if there are 10% more degree 
days on any day/week/month/year, 10% more heating 
energy consumption is expected in that day/week/month/
year when all other variables remain the same, and, thus, 
the amount of energy needed to heat a building in a given 
frequency is directly related to the number of HDD in that 
particular frequency. Therefore, HDD can be used to nor-
malize the energy consumption of buildings with respect 
to heating. In addition, it is indicated that HDD is a more 
reliable measure of climatic impact on energy consump-
tion than temperature alone (Mourshed 2012). Moreover, 
models based on HDD can be beneficial to evaluate the 
impact of design parameters (i.e., area of windows) with 
less data input (Durmayaz et al. 2000; Durmayaz and 
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Tab. 1: A part of the HDD data from 1974 to 2017.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1974 434.2 385.8 327.9 248.8 128.5 24.71 4.658 2.940 30.13 150.3 297.2 398.4
1975 368.1 345.4 386.7 270.5 186.6 77.73 17.10 11.21 40.27 215.6 331.3 469.7
.
.
.
2015 414.6 402.0 320.5 200.5 117.4 31.28 9.428 8.295 77.75 184.5 222.4 279.9
2016 363.3 341.3 347.9 254.1 135.3 41.40 12.62 8.048 21.08 180.9 289.1 390.3
2017 486.8 321.9 256.0 236.1 109.4 24.20 6.902 10.01 71.63 113.2 300.3 400.1

Kadioglu 2003; Sarak and Satman 2003; Dombayci 2007; 
Bolattürk 2008; Yu et al. 2009; Idchabani et al. 2015). 
Accordingly, many researchers integrated HDD in the 
building energy demand prediction models to improve 
accuracy (Meng and Mourshed 2017; Trigaux et al. 2017; 
Özmen et al. 2018). D’Amico et al. (2019) identified the 
relationship between HDD and heating energy perfor-
mance. Fan et al. (2019) estimated the impacts of climatic 
factors including HDD and cooling degree day (CDD) on 
electricity demand in China. Kurekci (2016) investigated 
the optimum insulation thickness for building walls by 
using HDD and CDD values of Turkey’s provincial centers. 
Kohler et al. (2016) developed a new degree-day method 
that provides accurate estimates of annual building 
energy demand for space heating. It should be noted that 
the performance of the models might be affected by the 
selection of HDD data.

Moreover, several studies focused on investigating 
the HDD patterns to understand and predict the heating 
demand of the buildings. Elizbarashvili et al. (2018) esti-
mated daily, monthly, and annual HDD and CDD for 14 
different sites of Georgia based on daily mean air temper-
ature data for the 30-year period (1961–1990). The results 
show that there are significant differences for HDD and 
CDD among the 14 examined cities of Georgia. OrtizBeviá 
et al. (2012) estimated trends and interannual variability 
in the evolution of HDD and CDD in Spain from observa-
tions at 31 stations for an extended period of 1958–2005. 
The results show that there is a trend which is found to 
be statistically significant at roughly two-thirds of the 
Spanish stations used in the study. Although OrtizBeviá 
et al. (2012) concluded that these trends are similar to 
those obtained from observations in other parts of Europe, 
and France is said to be the most temperature-sensitive 
country in Europe (Annual Electricity Report 2016). In a 
recent study, SARIMA models were constructed based on 
HDD data of France between 1974 and 2017. The results 
show that the SARIMA models yield fairly acceptable fore-
casts for supporting short-term forecasting of HDD (Kuru 
and Calis 2019).

This article is based on and is an extended version of 
a paper presented at the CCC2019 (Kuru and Calis 2019). 
This study aimed to construct short-term forecast models 
by analyzing the patterns of the HDD. In this context, 
two-time series analyses, namely the decomposition and 
Box–Jenkins methods, were conducted, and the perfor-
mance of the models was assessed. The following sec-
tions describe datasets and the methodology. Next, the 
findings are presented. Finally, discussion and conclu-
sions are provided.

2  Dataset and methodology

2.1  Dataset

In this study, the monthly HDD data in France were 
obtained from the official website of the Statistical Office 
of the European Union (2019). A total of 528 data covering 
the period of January 1974 and December 2017 were used 
to develop the forecasting model. The unit of data is°C * 
day. Table 1 presents a part of the HDD data used in the 
analysis.

2.2  Methodology

A time series consists of four different components, 
namely trend, seasonal, cyclical, and random compo-
nents. The individual component analysis of the time 
series is the basis for the decomposition method. There 
are two decomposition approaches, which are additive 
and multiplicative decomposition. In the analysis of con-
secutive data, the multiplicative decomposition approach 
is preferred. Therefore, in this study, this approach was 
used, in which time series can be expressed as the product 
of the four components of the series and are Y = T.S.C.I, 
where Y represents the original data, whereas T, S, C, 
and I represent the trend, seasonal, cyclical, and random 
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components of the series, respectively (Calis et al. 2017). 
In this method, first, the effect of the random change is 
reduced by applying an exponential correction to the data. 
Then, the seasonal and trend components of the data are 
eliminated by calculating the seasonal index and trend 
equation, respectively. Finally, the model was created 
assuming that the seasonal and trend components are in 
multiplication.

The Box–Jenkins method, also known as the autore-
gressive integrated moving average (ARIMA) model, was 
used for time-based analysis and time-based modeling 
of HDD data. This method applies the autoregressive 
moving average (ARMA) or ARIMA models to find the 
best fit of a time series model to the historical values of 
a time series (Baldigara and Koic 2015; Box et al. 2015). 
The seasonal autoregressive integrated moving average 
model (SARIMA) is an expanded form of ARIMA. SARIMA 
processes are designed to model trends, seasonal pat-
terns, and correlated time series and have proven to be 
successful in estimating short-term fluctuations (Kam et 
al. 2010; Baldigara and Koic 2015). The SARIMA model 
consists of (1) automatic regression, (2) difference, and (3) 
moving average. SARIMA model is represented as SARIMA 
(p, d, q) (P, D, Q)S in which p, d, q represent the degree 
of nonseasonal linear autoregressive model (AR), non-
seasonal difference, and degree of nonseasonal moving 
average (MA) model, respectively, whereas P, D, Q repre-
sent the degree of seasonal AR, seasonal difference, and 
the degree of seasonal MA. In addition, the seasonality 
length is represented by S. The d and D parameters are 
considered when the series is not stationary. In this study, 
to select the most appropriate SARIMA (p, d, q) (P, D, Q)S 
model for HDD series, the significance of the coefficients 
of the models was checked by the Ljung-Box-Pierce Chi-
squared statistics and t-test. In addition, the corrected R2 
values, the sum of the squares of the residuals, the Akaike 
Information Criteria (AIC) and the Schwarz Information 
Criteria (SIC) were considered. Furthermore, the residuals 
analysis including the autocorrelation function (ACF) and 

the partial autocorrelation function (PACF) of the residu-
als were conducted. Minitab 18.0 and EViews 10.0 packet 
programs were used to calculate all the statistics and the 
model selection criteria.

To evaluate the performances of the models devel-
oped by the decomposition and Box–Jenkins methods, the 
accuracy of the fitted values was determined by calculat-
ing mean absolute percentage error (MAPE), mean abso-
lute deviation (MAD), and mean squared deviation (MSD), 
which are formulated as follows:
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MAPE corresponds to the relative scale of the predic-
tion error between the forecasted value and the actual 
value. It should be noted that the smaller the error is in 
MAPE, the more accurate the prediction is (Kam et al. 
2010). Similarly, the smaller the MAD and MSD are, the 
more accurate the prediction is.

3  Findings
Figure 1 shows the plot of a time series graph to evaluate 
the overall behavior of the HDD series over time. Figure 1 
indicates that the HDD series shows similar periodic fluc-
tuations per month which specifies that the series has a 
seasonal effect, in other words, it has a seasonality char-
acteristic. Therefore, it can be concluded that the series is 
not stable.

Fig. 1: Time series graph of the HHD series.
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In addition to the time series graph, the correlo-
gram of the series was plotted for the k=36-month delay  
(Figure 2). This correlogram was created in EViews to 
examine the seasonality.

When the correlogram of the series (Figure 2) is exam-
ined, it is observed that the seasonality shows a struc-
ture similar to each other in terms of 12-month delays. In 
other words, there is a strong association between sea-
sonal neighboring observations. For example, ACF (1), 
ACF (13), and ACF (25) show similar positive autocorrela-
tions, which are statistically significant (p = 0.000 < 0.05). 
In addition, for the delays defined by ACF (3), ACF (15), 
and ACF (27), the autocorrelations are zero. As a result, it 

can be confirmed from Figure 2 that these autocorrelation 
structures continue systematically and regularly in other 
delays. Therefore, in addition to the time-series graph, 
the correlogram shows that there is a high association 
between seasonal observations of the series and that the 
series is not stationary.

3.1  Findings of the decomposition method

In this study, the ratio-to-moving-average method was 
used for calculating the seasonal index. In this method, 
first, the moving averages were calculated and the 

Fig. 2: The correlogram of the HDD series for k=36 month delays.
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effects of seasonal and random changes were eliminated. 
Since the period numbers were equal to the season type 
numbers and the months of the year represented the 
seasons in the HDD data set, 12-months moving averages 
were calculated. Then, using the calculated moving aver-
ages, the central moving averages and the ratios of the 
actual data to these averages were calculated. Most of the 
random changes were eliminated by calculating the arith-
metic mean of these ratios.

It should be noted that the sum of the calculated 
averages of each month should be 12.00. However, the 
fact that the sum of the averages was obtained as 11.99, 
the correction factor (1.0008) was calculated and applied 
to the calculated averages of the months. The corrected 
averages, in other words, seasonal indices, were obtained 
by multiplying the average ratio value of each month 
by this correction factor (Table 2). It can be said that 
the number of HDD in January is 109% higher than the 
typical index which is 100%, whereas in July and August, 
it is 94% less.

Next, the actual HDD data were divided into the 
seasonal indices to obtain the seasonally adjusted data. 
Actual data and the seasonally adjusted data are shown 
in Figure 3.

After the seasonal effect was eliminated from the 
series, the trend effect of the data was determined and 
eliminated to develop the forecasting model. For this 
purpose, the trend equation was determined for the sea-
sonally adjusted data. It should be noted that the time 

Fig. 3: The plot of actual and seasonal adjusted HDD data sets.

Tab. 2: Monthly rate averages and seasonal indices.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Arithmetic mean 
of ratios 2.09 1.78 1.54 1.13 0.59 0.21 0.06 0.06 0.27 0.79 1.50 1.97 11.99

Seasonal index 2.09 1.78 1.54 1.13 0,59 0.21 0.06 0.06 0.27 0.79 1.50 1.97 12.00
Seasonal index(%) 209 178 154 113 59 21 6 6 27 79 150 197 1200

data are numbered as 1, 2, 3..., 528 for the trend equa-
tion. Accordingly, the trend line and trend equation were 
obtained, as shown in Figure 4.

The trend values were calculated by using the trend 
equation. The trend component was removed from the 
data set by dividing the seasonally adjusted data by the 
trend values. The graph of trend corrected data is pre-
sented in Figure 5.

After eliminating the trend effect, the random compo-
nent effect in each time series was removed by the expo-
nential correction method. In this method, the corrected 
time series data at time t was calculated by substituting 
the numbers from 0.1 to 0.9 with intervals of 0.1 instead of 
a in the equation below.

α α α α α α( ) ( ) ( )= + − + − +…+ −− −
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t
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2

2
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α( )≤ ≤ = …t n0 1; 1,2,3,

In addition, the sum of the squares of the differences 
between the actual data and the corrected data was calcu-
lated for each a value. The least squares sum was obtained 
for a = 0.9. Therefore, this a value was chosen for fore-
casting future observations. As a result of the first-order 
exponential correction by taking a = 0.9, the random com-
ponent is removed and the graph of the obtained cyclic 
indices is given in Figure 6.

As a result, since the random component is elimi-
nated, the forecast equation is obtained as follows:
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		  =Y T *S*Tc c

where Yc represents the forecasted HDD values; Tc 
represents the trend and the seasonality effect eliminated 
HDD values; S is the seasonal index and T is the trend 
index. The actual HDD values and the forecasted values 
calculated by using the equation are presented in Figure 7.

3.2  Findings of the Box–Jenkins method

In this study, 79 tentative models were generated.  
Table 3 presents 44 of these models. It should be noted 
that 44 tentative models shown in the table were generated 

without constant. Tentative models other than those with 
a star are also tested by including constant.

As a first step, the models which comply with both 
of the following conditions were selected: (1) the models 
with correlations that are statistically significant; (2) the 
models with the Chi-squared statistics of the residuals of 
k=12, 24, 36 months delay are statistically insignificant, in 
other words, the residuals of the models are not correlated 
with each other. As a result, nine models were selected for 
further analysis. In the next step, the adjusted R2 value, 
the residual sum of squares, the AIC, and the SIC were 
calculated to select the appropriate model. The selected 
models and the selection criteria values are presented in 
Table 4.

Fig. 4: The plot of seasonally adjusted data and trend line.

Fig. 5: The graph of trend corrected data.

Fig. 6: Distribution of cyclic indices.
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Regarding the selection of the most appropriate fore-
casting model among the models selected in the first step, 
the criteria shown in Table 5 were considered. The higher 
the model’s adjusted R2 value, the lower the residual sum 
of squares, the lower the AIC and the SIC are, the better 
the model is. Accordingly, the model that addresses most 
of the criteria at the same time is selected. Table 3 shows 
that the adjusted R2 value of the models varies between 
0.464422 and 0.936911 and the highest values are observed 
in the first and the seventh models. Then, the residuals 
sum of squares and AIC and SIC values of these models 

were compared. The values of the aforementioned crite-
ria for the seventh model are smaller than those of the 1st 
model. As a result, the seventh model, namely SARIMA 
(2,0,1)(1,0,1)12, was selected as the suitable and the final 
forecasting model. However, it should be noted that the 
graph of the residuals should be examined to check the 
appropriateness of the final forecasting model. The graphs 
obtained through Minitab are presented in Figure 8.

It should be noted that the residuals should be nor-
mally distributed with zero mean and constant variance. 
The normal probability plot and histogram in Figure 5 show 

Fig. 7: Actual and forecasted values obtained by the decomposition method.

Tab. 3: Tentative models generated in this study.

Models

*SARIMA (1,0,1)(1,0,1)12 SARIMA (1,0,0)(1,1,1)12 SARIMA (1,1,1)(1,1,0)12 *SARIMA (1,0,2)(0,1,1)12

SARIMA (0,0,1)(1,0,1)12 *SARIMA (1,0,1)(0,1,1)12 SARIMA (0,1,0)(1,1,1)12 SARIMA (1,0,1)(0,1,2)12

SARIMA (1,0,0)(1,0,1)12 SARIMA (1,0,1)(1,1,0)12 SARIMA (1,1,0)(1,1,0)12 *SARIMA (0,0,2)(0,1,1)12

SARIMA (1,0,1)(0,0,1)12 SARIMA (1,0,0)(1,1,0)12 SARIMA (0,1,1)(1,1,0)12 SARIMA (0,0,1)(0,1,2)12

SARIMA (1,0,1)(1,0,0)12 SARIMA (0,0,1)(1,1,0)12 *SARIMA (0,1,1)(0,1,1)12 SARIMA (2,0,0)(0,1,1)12

SARIMA (1,0,0)(1,0,0)12 *SARIMA (0,0,1)(0,1,1)12 SARIMA (1,1,0)(0,1,1)12 SARIMA (1,0,0)(0,1,2)12

SARIMA (0,0,1)(1,0,0)12 *SARIMA (1,0,0)(0,1,1)12 *SARIMA (2,0,1)(1,0,1)12 SARIMA (2,1,1)(0,1,1)12

SARIMA (1,0,0)(0,0,1)12 SARIMA (1,1,1)(1,1,1)12 SARIMA (1,0,2)(1,0,1)12 SARIMA (1,1,2)(0,1,1)12

SARIMA (0,0,1)(0,0,1)12 SARIMA (0,1,1)(1,1,1)12 SARIMA (1,0,1)(2,0,1)12 SARIMA (1,1,1)(0,1,2)12

SARIMA (1,0,1)(1,1,1)12 SARIMA (1,1,0)(1,1,1)12 SARIMA (1,0,1)(1,0,2)12 SARIMA (0,1,2)(0,1,1)12

SARIMA (0,0,1)(1,1,1)12 *SARIMA (1,1,1)(0,1,1)12 SARIMA (2,0,1)(0,1,1)12 SARIMA (0,1,1)(0,1,2)12

Tab. 4: The selected models in the first step and second step selection criteria.

Model Adjusted R2 Residual sum of squares AIC SIC

1 SARIMA (1,0,1)(1,0,1)12 0.936654 828032.9 10.33716 10.37759
2 SARIMA (1,0,1)(0,1,1)12 0.475825 812361.4 10.26529 10.29820
3 SARIMA (0,0,1)(0,1,1)12 0.464422 831655.0 10.27557 10.30026
4 SARIMA (1,0,0)(0,1,1)12 0.615053 1090103.0 10.57437 10.59910
5 SARIMA (1,1,1)(0,1,1)12 0.721348 787551.5 10.27085 10.30382
6 SARIMA (0,1,1)(0,1,1)12 0.715896 804533.5 10.28096 10.30569
7 SARIMA (2,0,1)(1,0,1)12 0.936911 816848.7 10.32561 10.37412
8 SARIMA (1,0,2)(0,1,1)12 0.487184 793205.5 10.26017 10.30132
9 SARIMA (0,0,2)(0,1,1)12 0.467373 825461.2 10.27325 10.30617
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that residuals except for the last residuals approximately 
suit to normal distribution. In addition, “versus fits”  
graph shows that the variance tends to increase slightly. 
It should be noted that this situation can be caused by 
the large variation of the data in the series. In addition to 
the plots in Figure 3, ACF and PACF plots of the residuals, 
which are the most examined plots in the model selection, 
are presented in Figures 9 and 10.

The plots indicate that most of the autocorrelations of 
the residuals are zero, in other words, they are not corre-
lated. Thus, it can be concluded that the chosen model is 
appropriate.

The monthly actual HDD values, as well as the 
monthly forecasted HDD values and the confidence 
intervals obtained through the SARIMA (2,0,1) (1,0,1)12 
model, are shown in Figure 11. The plot shows that 
the forecasted HDD values are close to the actual HDD 
values. In addition, the actual and forecasted HDD 

values of 2017 are presented in Table 4, which also indi-
cates that the forecasted HDD values are close to the 
actual HDD values.

4  Discussion
In this study, two methods, namely the decomposition 
and Box–Jenkins, are used to forecast the number of HDD 
of France. The results of both methods show that fore-
casted values are close to the actual values. The results for 
the next 12 months are shown in Table 5.

In addition to the comparison of actual and forecasted 
values, MAPE, MAD, and MSD values have to be evaluated 
to determine the performance of the model. MAPE, MAD, 
and MSD values for both the decomposition and the Box–
Jenkins methods are shown in Table 6. According to Lewis 
(1982), if the MAPE values are below 10%, it can be said 
that the model is “very good,” and for the values between 
10% and 20%, it can be said that the model is “good.” Fur-
thermore, according to Witt and Witt (1992), if the MAPE 

Tab. 5: The actual and forecasted HDD values for 2017.

Months Actual 
(kWh)

Forecasted 
(°C*day)

Forecasted 
(°C*day)

2017M01 497.52 490.2 417.986
2017M02 303.62 315.16 361.840
2017M03 248.77 251.1 308.607
2017M04 233.89 228.96 217.635
2017M05 95.36 97.75 111.711
2017M06 14.73 16.71 32.316
2017M07 4.98 4.95 4.335
2017M08 10.36 9.84 5.148
2017M09 78.48 75 48.420
2017M010 117.86 127.85 151.317
2017M011 321.16 313.33 294.122
2017M012 411.22 411.29 395.733

Fig. 8: Plots of the HDD series’ residuals according to the selected 
model.

Fig. 9: ACF plot of residuals.

Fig. 10: PACF plot of residuals.
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value is ≤10%, it can be said that the model has a high 
accuracy degree, if this value is between 10% and 20%, 
the model can be called a “true prediction model.” As can 
be seen in the Table, the multiplicative model constructed 
by the decomposition method is “very good” and has a 
high accuracy degree, whereas the SARIMA model con-
structed by the Box–Jenkins method is “good” and a “true 
prediction model.”

The results show that the decomposition method 
yields an acceptable number of HDD forecasts for sup-
porting accurate energy prediction models. It can be con-
cluded that the decomposition method can be preferred to 
forecast the number of HDD based on time. In addition to 
its performance, the advantage of this method is its capa-
bility of removing irregular changes and seasonal factors 
within the forecast.

It can be concluded that the decomposition method 
can be selected to forecast the number of HDD. In addition 
to its performance, the advantage of this method is its capa-
bility of removing irregular changes and seasonal factors 
within the forecast. For seasonal (monthly, weekly, or quar-
terly) data, the decomposition methods are often as accu-
rate as of the ARIMA methods and they provide additional 
information about the trend and cycle, which may not  
be available in ARIMA methods (NCSS data analysis 2019).

5  Conclusion
In this study, two different time series analysis methods, 
namely the decomposition and Box–Jenkins, were con-
ducted by the monthly HDD data in France between 
1974 and 2017. The multiplicative model and 79 SARIMA 
models were constructed by the decomposition and Box–
Jenkins method, respectively. The SARIMA models were 

evaluated according to the adjusted R2 value, residual sum 
of squares, AIC and SIC criteria, as well as the analysis of 
the residuals. Finally, MAPE, MAD, and MSD values were 
calculated to evaluate both multiplicative and SARIMA 
models. As a result, the SARIMA (2,0,1)(1,0,1)12 model was 
selected as the final forecasting model. In addition, the 
multiplicative model constructed by the decomposition 
method is “very good” and has a high accuracy degree, 
whereas the SARIMA model constructed by the Box–
Jenkins method is “good” and a “true prediction model.” 
Therefore, the results show that the decomposition 
method yields acceptable forecasts for supporting short-
term forecasting of HDD. Future studies can focus on the 
integration of these models in the forecasting models of 
the heating demand in buildings.
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