
EVOLUTIONARY ALGORITHM WITH A
CONFIGURABLE SEARCH MECHANISM

Krystian Łapa1,∗, Krzysztof Cpałka1, Łukasz Laskowski2,
Andrzej Cader3, Zhigang Zeng4

1Czestochowa University of Technology, Department of Computational Intelligence,
Częstochowa, Poland

2Polish Academy of Sciences, Institute of Nuclear Physics,
Kraków, Poland

3Information Technology Institute,
University of Social Sciences, Łódź, Poland

and Clark University, Worcester, USA

4Huazhong University of Science and Technology, School of Automation,
Wuhan, Hubei, China

∗E-mail: krystian.lapa@pcz.pl

Submitted: 5th September 2019; Accepted: 1st April 2020

Abstract

In this paper, we propose a new population-based evolutionary algorithm that automati-
cally configures the used search mechanism during its operation, which consists in choos-
ing for each individual of the population a single evolutionary operator from the pool. The
pool of operators comes from various evolutionary algorithms. With this idea, a flexible
balance between exploration and exploitation of the problem domain can be achieved.
The approach proposed in this paper might offer an inspirational alternative in creating
evolutionary algorithms and their modifications. Moreover, different strategies for mu-
tating those parts of individuals that encode the used search operators are also taken into
account. The effectiveness of the proposed algorithm has been tested using typical bench-
marks used to test evolutionary algorithms.
Keywords: evolutionary algorithm, population-based algorithm, optimization, operator
pool, operator selection, individual selection.

1 Introduction

Evolutionary algorithms that base on a popu-
lation (PBAs) belong to meta-heuristic methods.
These are methods of solving (usually optimiza-
tion) problems that can be described by the con-
cepts defined within them. They do not guarantee
finding the optimal solution, but they are well suited
for solving NP class problems. Normally, for such

problems, the search time for finding an optimal so-
lution is unacceptably long. The effectiveness of
meta-heuristic algorithms depends on the effective-
ness of the search mechanisms and their configura-
tion (parameter selection).

PBAs are currently often used in real applica-
tions as the main and supporting methods alike.
They are used in control [2, 25], modeling [5,
6, 26, 37], hardware applications [19, 30], iden-

JAISCR, 2020, Vol. 10, No. 3, pp. 151
10.2478/jaiscr-2020-0011

 – 171

152 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

tity verification [52]-[56], measuring systems [48],
text recognition [44], etc. They also complement
each other well with other Soft Computing meth-
ods [5, 9, 12, 28, 33, 34, 39, 42].

Table 1. The main features of the OP1 algorithm
proposed in this paper.

Method f1 f2 f3 f4 f5 f6
Geem Z.W. et al. [17] yes no no no no no
Teodorovic D. et al. [45] yes no no yes no no
Chu S. et al. [7] yes no yes yes no no
Atashpaz-Gargari E. [4] yes no yes no no no
Yang X. [49] yes no no yes no no
Yang X., Deb S [50] no no no no no no
Rashedi E. [36] yes no no yes no no
Tan Y., Zhu Y. [43] yes no yes yes no no
Yang X. [51] yes yes yes no no no
Gandomi A.H., Alavi A.H. [15]no yes yes no no no
Wang B. et al. [46] yes yes no yes no no
Osaba E. et al. [35] yes yes yes yes no no
Mirjalili S. et al. [31] yes no no no no no
Łapa K. et al. [27] yes yes yes yes no no
Łapa K. et al. [29] yes yes yes yes yes no
proposed method yes yes yes yes yes yes
f1 - Does the way the search mechanism works have an
interpretation? f2 - Does the way the search mechanism
works fit into the problem under consideration? f3 - Is the
way the search mechanism operates assessed/evaluated
and does it include the value of the evaluation function?
f4 - Can the search mechanism work differently for dif-
ferent individuals in the population? f5 - Has the search
engine working method been optimized with regard to the
number of operators used? f6 - Does the search mecha-
nism provide flexible specialization of population indi-
viduals?

A multitude of applications is one of the fac-
tors affecting their intensive development and pop-
ularity. Currently, there are over one hundred dif-
ferent population algorithms, and each of them has
many variations. Several conclusions follow from
this fact. First of all, this field is becoming so ex-
tensive that it is difficult to find detailed compar-
ative papers [20]. Existing reviews of population-
based algorithms mainly concern specific methods
and their variations [14]. Secondly, the develop-
ment of new methods shows that universal and ef-
fective algorithms in various areas of application
are still being sought [1]. Thirdly, the multitude
of algorithm variants causes difficulties in choosing
one for a specific application. It is also uncertain
whether the solution found by one PBA could not
be easily improved by using other PBAs. When se-

lecting a PBA, it is also not possible to do it by the
trial and error method because the number of PBAs
is too high. Fourth, the emergence of new varia-
tions of algorithms may raise doubts about the de-
sirability of such actions [40]. Therefore, an inter-
esting research thread concerning PBAs may be cre-
ating general methods and using ensembles of dif-
ferent population-based algorithms [13]. This paper
is specifically devoted to this topic. The algorithms
proposed in it use known mechanisms of searching
the solution search space and automatically adapt
them to the problem under consideration. This is a
new subject, but the solutions we proposed in our
previous papers confirm that it is worth further in-
vestigation [27, 29].

1.1 Motivation

The primary mechanism of each PBA is the pro-
cessing of individuals of a population. For this pur-
pose dedicated operators are used. Some exam-
ples of such operators include the mutation operator
from a Genetic Algorithm [38], and the wolf move-
ment operator from the Grey Wolf Algorithm [31],
etc.

If the operator’s action on an individual is based
on a small change in parameters, such operator is
called an exploitation operator. However, if the op-
erator’s action is to look up a set of coded parame-
ters in another part of the search space, the operator
is then called the exploration operator. Some op-
erators can balance smoothly between exploration
and exploitation, or change the mode of operation
depending on the distribution of individuals in the
population [31]. Such operators can be included in
both groups of operators. However, at the same time
it is difficult to decide which operator/algorithm is
suitable for solving a specific problem being con-
sidered.

The problem of proper balancing between ex-
ploration and exploitation is also considered in the
literature [10, 32]. The effectiveness of PBAs also
depends on it. This efficiency is understood as the
appropriate quality of generated solutions, conver-
gence and resistance to getting stuck in local op-
tima. For this reason, many papers are published
in which their authors create hybrids of different
population-based algorithms. This increases the
number of used operators and facilitates their tem-
porary activation (depending e.g. on the evaluation

153Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

tity verification [52]-[56], measuring systems [48],
text recognition [44], etc. They also complement
each other well with other Soft Computing meth-
ods [5, 9, 12, 28, 33, 34, 39, 42].

Table 1. The main features of the OP1 algorithm
proposed in this paper.

Method f1 f2 f3 f4 f5 f6
Geem Z.W. et al. [17] yes no no no no no
Teodorovic D. et al. [45] yes no no yes no no
Chu S. et al. [7] yes no yes yes no no
Atashpaz-Gargari E. [4] yes no yes no no no
Yang X. [49] yes no no yes no no
Yang X., Deb S [50] no no no no no no
Rashedi E. [36] yes no no yes no no
Tan Y., Zhu Y. [43] yes no yes yes no no
Yang X. [51] yes yes yes no no no
Gandomi A.H., Alavi A.H. [15]no yes yes no no no
Wang B. et al. [46] yes yes no yes no no
Osaba E. et al. [35] yes yes yes yes no no
Mirjalili S. et al. [31] yes no no no no no
Łapa K. et al. [27] yes yes yes yes no no
Łapa K. et al. [29] yes yes yes yes yes no
proposed method yes yes yes yes yes yes
f1 - Does the way the search mechanism works have an
interpretation? f2 - Does the way the search mechanism
works fit into the problem under consideration? f3 - Is the
way the search mechanism operates assessed/evaluated
and does it include the value of the evaluation function?
f4 - Can the search mechanism work differently for dif-
ferent individuals in the population? f5 - Has the search
engine working method been optimized with regard to the
number of operators used? f6 - Does the search mecha-
nism provide flexible specialization of population indi-
viduals?

A multitude of applications is one of the fac-
tors affecting their intensive development and pop-
ularity. Currently, there are over one hundred dif-
ferent population algorithms, and each of them has
many variations. Several conclusions follow from
this fact. First of all, this field is becoming so ex-
tensive that it is difficult to find detailed compar-
ative papers [20]. Existing reviews of population-
based algorithms mainly concern specific methods
and their variations [14]. Secondly, the develop-
ment of new methods shows that universal and ef-
fective algorithms in various areas of application
are still being sought [1]. Thirdly, the multitude
of algorithm variants causes difficulties in choosing
one for a specific application. It is also uncertain
whether the solution found by one PBA could not
be easily improved by using other PBAs. When se-

lecting a PBA, it is also not possible to do it by the
trial and error method because the number of PBAs
is too high. Fourth, the emergence of new varia-
tions of algorithms may raise doubts about the de-
sirability of such actions [40]. Therefore, an inter-
esting research thread concerning PBAs may be cre-
ating general methods and using ensembles of dif-
ferent population-based algorithms [13]. This paper
is specifically devoted to this topic. The algorithms
proposed in it use known mechanisms of searching
the solution search space and automatically adapt
them to the problem under consideration. This is a
new subject, but the solutions we proposed in our
previous papers confirm that it is worth further in-
vestigation [27, 29].

1.1 Motivation

The primary mechanism of each PBA is the pro-
cessing of individuals of a population. For this pur-
pose dedicated operators are used. Some exam-
ples of such operators include the mutation operator
from a Genetic Algorithm [38], and the wolf move-
ment operator from the Grey Wolf Algorithm [31],
etc.

If the operator’s action on an individual is based
on a small change in parameters, such operator is
called an exploitation operator. However, if the op-
erator’s action is to look up a set of coded parame-
ters in another part of the search space, the operator
is then called the exploration operator. Some op-
erators can balance smoothly between exploration
and exploitation, or change the mode of operation
depending on the distribution of individuals in the
population [31]. Such operators can be included in
both groups of operators. However, at the same time
it is difficult to decide which operator/algorithm is
suitable for solving a specific problem being con-
sidered.

The problem of proper balancing between ex-
ploration and exploitation is also considered in the
literature [10, 32]. The effectiveness of PBAs also
depends on it. This efficiency is understood as the
appropriate quality of generated solutions, conver-
gence and resistance to getting stuck in local op-
tima. For this reason, many papers are published
in which their authors create hybrids of different
population-based algorithms. This increases the
number of used operators and facilitates their tem-
porary activation (depending e.g. on the evaluation

EVOLUTIONARY ALGORITHM WITH . . .

of an individual). This is an interesting thread, but
it allows one to create a virtually unlimited number
of algorithm combinations. Its serious disadvantage
is also the rigid connection of PBAs (and their op-
erators) [3, 16, 21]. Furthermore, this method of
hybridizing algorithms also causes problems typi-
cal for individual methods.

The authors’ solutions are based on the use of
a pool of evolutionary operators. Therefore, the
method of modification of each individual depends
on the operator associated with it. During the evolu-
tion of the population, individuals may change their
operators. Of course, operators that achieve better
optimization results can be automatically promoted,
protected or propagated in the population. Thanks
to this, the search mechanism and compromise be-
tween exploration and exploitation change dynam-
ically and adapt to the problem and the temporary
needs of the evolution process.

This topic was also dealt with in our previous
works. Comments on the obtained results can be
summarized as follows:

– OPn algorithm [27]. The algorithm used a pool
of exploration and exploitation operators. They
came from various PBAs. From this set, during
its operation, the OPn selects a subset of n op-
erators for each individual and they are used to
generate new individuals of the population. The
simulations presented in [27] showed that the
average number of active operators used by the
algorithm changed dynamically during the opti-
mization process and ranged from 3 to 5. The
algorithm presented in [27] was focused on de-
signing the structure and parameters of the con-
troller and its filters. For this reason, an impor-
tant feature of the OPn method was that it was
created by combining a genetic algorithm [18]
and an algorithm based on the Particle Swarm
Optimization (PSO) [24]. The purpose of the ge-
netic algorithm was to select the structure of the
controller, while the purpose of the PSO-based
part was to optimize the parameters of the con-
troller.

– OP11 algorithm [29]. This algorithm used
a pool of operators, similar to the OPn. How-
ever, unlike the OPn, it was based on the se-
lection of a single operator for exploration and
a single operator for exploitation for each indi-

vidual. A certain disadvantage of the OP11 was
the need to allocate each operator from the pool
to one of the three groups: exploration, exploita-
tion or universal. This defect, combined with the
conclusions from the simulation, encouraged us
to develop the method proposed in this paper.

1.2 Novelty elements

In this paper, we propose an approach in which
a PBA can use a pool of operators from differ-
ent PBAs. However, unlike the OPn [27] and
OP11 [29] methods, it is based on the selection
of a single evolutionary operator. This operator is
flexibly selected from the pool of operators during
the evolution process. The selection is made inde-
pendently for each individual of the population and
based on the value of its fitness function. This so-
lution facilitates the specialization of individuals of
the population, resulting from the use of appropri-
ate operators. In the OPn and OP11 algorithms, the
individuals of the population have universal charac-
teristics.

Further on in this paper the basic version of
the proposed algorithm will be called the OP1 for
short (OPerator-based algorithm with 1 search op-
erator). The features of this algorithm are shown in
Table 1.

The original contribution of this paper can be
summarized as follows:

– Describes the new OP1 algorithm that makes
it possible to flexibly adjust the search space
mechanism to the simulation problem. The use
of one operator in the OP1 makes it easier to
create a pool of operators that the OP1 uses -
there is no need for each of the pool operators
to specify its task: exploration or exploitation of
the search space. This algorithm has not been
previously presented in the literature.

– Describes the variation of the OP1 algorithm,
which is characterized by a specific method of
operator selection. It consists in the fact that in
the initial phase of the evolution process, explo-
ration operators have a better chance of being
drawn. With each step of the algorithm’s opera-
tion, the chance of random selection of exploita-
tion operators increases linearly. In the basic
version of the OP1, the probability of drawing
any operator from the pool is constant at every

154 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

step of the evolution. This mechanism of opera-
tor selection has not been previously presented
in the literature. The algorithm that uses this
specific mechanism will be called the OP1L.

– Contains the simulation results presenting the
dynamics of changes in the search mechanism
that occur during the OP1 operation. In partic-
ular, it contains the results of the analysis of the
average percentage use of the operators, which
are included in Section 3.

– Describes the new operator selection method for
PBAs that use the operator pool. It determines
the strategy of operator exchange in the popu-
lation and protects the operators of those indi-
viduals that have a favorable value of the fitness
function. This approach has not been previously
presented in the literature.

1.3 Structure of the paper

In Section 2 the proposed OP1 algorithm is de-
scribed, Section 3 presents the simulation results
and in Section 4 the conclusions are drawn.

2 Description of the OP1 algorithm

Comments on the OP1 algorithm proposed in
this paper can be summarized as follows:

– In the OP1, each individual of population Xch
(ch = 1,2, . . . ,Nind) has been extended with the
use of additional parameter Xop

ch =
{

Xop
ch,1

}
(see

Figure 1). It encodes the search operator. This
solution makes the OP1 less computationally
complex than the OP11 and OPn algorithms,
which simultaneously used a larger number of
operators.

– In the OP1, a set of used operators (derived
from different PBAs) was placed in a com-
mon pool (see Figure 1) without distinguish-
ing between exploration, exploitation and uni-
versal operators. They are indexed as follows
op1,op2, . . . ,opNop. This facilitates the imple-
mentation of the operator pool compared to the
solution used in the OP11 [29].

– The OP1 algorithm is based on the way the PSO
algorithm works [24] (see Algorithm 1). Thus,

in each individual an additional set of parame-
ters (besides Xop

ch and problem parameters Xpar
ch)

representing the best-found-so-far solution en-
coded in Xbst

ch and individual’s velocity Xvel
ch is

added (interpreted as in the PSO [24]). In the
next steps of the algorithm, the velocity of each
Xch can be gradually decreased depending on the
operators used.

2.1 Individual’s structure

In the OP1 a single individual’s structure Xch
from population P is defined as follows

Xch =
{

Xpar
ch ,X

vel
ch ,X

bst
ch ,X

op
ch

}

=
{

Xch,1, ...,Xch,Nc

}
,

(1)

where Nc stands for the total number of the pa-
rameters in individual Xch, Xpar

ch encodes problem
parameters, Xvel

ch encodes velocity parameters Xch,
Xbst

ch encodes the best solution found by individual

Xch, Xop
ch =

{
Xop

ch,1

}
encodes indexes of search op-

erators (see Fig 1 and Table 2).

Further on in the paper, it was assumed that no-
tation ’Xch : Xbst

ch ’ refers to component Xbst
ch encoded

in individual Xch (ch = 1,2, . . . ,Nind).

Figure 1. The structure of population individuals
adopted in the OP1 algorithm.

a set of selected search operators

par

1X
par

2X

par

NindX

vel

1X
vel

2X

vel

NindX

bst

1X
bst

2X

bst

NindX

op

1X
op

2X

op

NindX

1X

2X

NindX

op

1,1X

op

2,1X

op

Nind,1X

exploration
operators

(rough
searching)

operation
operators
(precise

searching)

universal operators

op1 op2 opNop

lists of coded parameters
describing the velocity

lists of coded parameters
of the best solutions

lists of coded indexes
of the search operators

population

list of coded parameters of
the optimized problem

155Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

step of the evolution. This mechanism of opera-
tor selection has not been previously presented
in the literature. The algorithm that uses this
specific mechanism will be called the OP1L.

– Contains the simulation results presenting the
dynamics of changes in the search mechanism
that occur during the OP1 operation. In partic-
ular, it contains the results of the analysis of the
average percentage use of the operators, which
are included in Section 3.

– Describes the new operator selection method for
PBAs that use the operator pool. It determines
the strategy of operator exchange in the popu-
lation and protects the operators of those indi-
viduals that have a favorable value of the fitness
function. This approach has not been previously
presented in the literature.

1.3 Structure of the paper

In Section 2 the proposed OP1 algorithm is de-
scribed, Section 3 presents the simulation results
and in Section 4 the conclusions are drawn.

2 Description of the OP1 algorithm

Comments on the OP1 algorithm proposed in
this paper can be summarized as follows:

– In the OP1, each individual of population Xch
(ch = 1,2, . . . ,Nind) has been extended with the
use of additional parameter Xop

ch =
{

Xop
ch,1

}
(see

Figure 1). It encodes the search operator. This
solution makes the OP1 less computationally
complex than the OP11 and OPn algorithms,
which simultaneously used a larger number of
operators.

– In the OP1, a set of used operators (derived
from different PBAs) was placed in a com-
mon pool (see Figure 1) without distinguish-
ing between exploration, exploitation and uni-
versal operators. They are indexed as follows
op1,op2, . . . ,opNop. This facilitates the imple-
mentation of the operator pool compared to the
solution used in the OP11 [29].

– The OP1 algorithm is based on the way the PSO
algorithm works [24] (see Algorithm 1). Thus,

in each individual an additional set of parame-
ters (besides Xop

ch and problem parameters Xpar
ch)

representing the best-found-so-far solution en-
coded in Xbst

ch and individual’s velocity Xvel
ch is

added (interpreted as in the PSO [24]). In the
next steps of the algorithm, the velocity of each
Xch can be gradually decreased depending on the
operators used.

2.1 Individual’s structure

In the OP1 a single individual’s structure Xch
from population P is defined as follows

Xch =
{

Xpar
ch ,X

vel
ch ,X

bst
ch ,X

op
ch

}

=
{

Xch,1, ...,Xch,Nc

}
,

(1)

where Nc stands for the total number of the pa-
rameters in individual Xch, Xpar

ch encodes problem
parameters, Xvel

ch encodes velocity parameters Xch,
Xbst

ch encodes the best solution found by individual

Xch, Xop
ch =

{
Xop

ch,1

}
encodes indexes of search op-

erators (see Fig 1 and Table 2).

Further on in the paper, it was assumed that no-
tation ’Xch : Xbst

ch ’ refers to component Xbst
ch encoded

in individual Xch (ch = 1,2, . . . ,Nind).

Figure 1. The structure of population individuals
adopted in the OP1 algorithm.

EVOLUTIONARY ALGORITHM WITH . . .

Table 2. A set of the OP1 operators selected for the simulation purposes. Additional functions and
notations used by these operators are shown in Table 3. Additional parameters of the operators are shown

in Table 4.
.

i Base operator (type) opi(X
par
ch,g)

1 PSO-global [23] (global) c1 ·U(0,1) ·
(

Xglb
g −Xpar

ch,g

)

2 GA-crossover [11] (global)

{
U(0,1) ·

(
Xpar

ch1,g −Xpar
ch,g

)
for Uind(0,1)< pc

0 otherwise

3 DE-crossover [41] (global)

{
F ·

(
Xpar

ch1,g −Xpar
ch2,g

)
for (Uind(0,1)<CR) or (ch = Rind)

0 otherwise

4 FFA-movement [49] (global)

{
β0 ·

(
Xpar

ch1,g −Xpar
ch,g

)
· e−γ·(Xch1,Xch)

2
for ff(Xch1)< ff(Xch)

0 otherwise
5 CS-lévy flights [50] (global) α ·L(s,λ)

6 ABC-candidate [22] (global)

{
U(−1,1) ·

(
Xpar

ch1,g −Xpar
ch,g

)
for ch = RInd

0 otherwise
7 BAT-walk [51] (global+local) U(−1,1) ·∑Nind

i=1
At

Nind

8 FWA-explosion [43] (global+local)

{
U(−1,1)·Â·(ff(Xch)−ffmin)

∑Nind
i=1 (ff(Xi)−ffmin)

for ch ∈ Rset

0 otherwise

9 FWA-mutation [43] (global+local)
{

Xpar
ch,g ·Ug(1,1)−Xpar

ch,g for ch ∈ Rset
0 otherwise

10 GWO-move [31] (global+local) 1
3 ·

 Xα

ch,g +Xβ
ch,g +X γ

ch,g −A1 ·
∣∣∣C1 ·Xα

ch,g −Xpar
ch,g

∣∣∣+
−A2 ·

∣∣∣C2 ·Xβ
ch,g −Xpar

ch,g

∣∣∣−A3 ·
∣∣∣C3 ·X γ

ch,g −Xpar
ch,g

∣∣∣

11 PSO-best [23] (local) c2 ·U(0,1) ·
(

Xbst
ch,g −Xpar

ch,g

)

12 GA-mutation [11] (local)
{

U(−1,1) ·mr for U(0,1)< pm

0 otherwise

13 BAT-movement [51] (local) U(fmin, fmin + fmax) ·
(

Xglb
g −Xpar

ch,g

)

14 FFA-walk [49] (local) α ·U(−0.5,0.5)

15 CS-random walk [50] (local) α · s ·H(pa −U(0,1)) ·
(

X par
ch1,g −X par

ch2,g

)

16 BTO-history [8] (local) FBTO ·U(0,1) ·
(

X par
ch,g −hi

)

156 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Table 3. Functions and notations used by the operators of the OP1 algorithm considered in the simulations.
The set of these operators is shown in Table 2. The Table assumes that function rnd returns a random value

from the range ⟨0,1⟩ and D is the dimension of the simulation problem.

Symbol Definition or notation Description
U(a,b) a+ rnd · (b−a) real random number from the range ⟨a,b⟩

Uind(a,b) a+ rnd · (b−a) U(a,b) generated once during a single modi-
fication of an individual

ch1,ch2 ⟨1,Nind⟩ indexes of individuals selected using the
roulette wheel selection method [38]

Rind round(rnd ·D) random index of the parameter encoding the
solution

dist(Xa,Xb)
1
D ·∑D

h=1

∣∣∣X par
a,h −X par

b,h

∣∣∣ distance between individuals Xa and Xb

L(s,λ) L(s,λ) = λ·Γ(λ)·sin(0.5·π·λ)
π·s1+λ Lévy distribution (λ was set to 1)

Γ(x) Γ(x+1) = x ·Γ(x), Γ(1) = 1 Euler’s gamma

At
{

1 for i = 1
α ·At for i > 1

bat loudness

Rset the selection method described in [43] a set of indexes of individuals being fire-
works [43]

ff(Xch) the definition depends on the problem the value of the evaluation function of an in-
dividual

ffmin min{ff(X1) , ..., ff(XNind)} the smallest value of the evaluation function
of the individual from the entire population

Ug(1,1) 1√
2·π · e

− 1
2 ·(U(−2,4)−1)2

Gaussian distribution with mean 1 and stan-
dard deviation 1 for FWA

Xα,Xβ,Xγ the best individuals of the population values of parameters of the best individuals of
the population (wolves from the herd)

[C1,C2,C3] Ci = 2 ·U(0,1) coefficient vector 1 for GWO
[A1,A2,A3] Ai = 2 ·a ·U(0,1)−a coefficient vector 2 for GWO

a − 2
Nsteps · step+2 component linearly decreasing from 2 to 0

over iterations (step = 1,2, ...,Nsteps)
H(x) d

dx max{x,0} Heaviside function
hi permuting(hi) historical population [8]

157Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Table 3. Functions and notations used by the operators of the OP1 algorithm considered in the simulations.
The set of these operators is shown in Table 2. The Table assumes that function rnd returns a random value

from the range ⟨0,1⟩ and D is the dimension of the simulation problem.

Symbol Definition or notation Description
U(a,b) a+ rnd · (b−a) real random number from the range ⟨a,b⟩

Uind(a,b) a+ rnd · (b−a) U(a,b) generated once during a single modi-
fication of an individual

ch1,ch2 ⟨1,Nind⟩ indexes of individuals selected using the
roulette wheel selection method [38]

Rind round(rnd ·D) random index of the parameter encoding the
solution

dist(Xa,Xb)
1
D ·∑D

h=1

∣∣∣X par
a,h −X par

b,h

∣∣∣ distance between individuals Xa and Xb

L(s,λ) L(s,λ) = λ·Γ(λ)·sin(0.5·π·λ)
π·s1+λ Lévy distribution (λ was set to 1)

Γ(x) Γ(x+1) = x ·Γ(x), Γ(1) = 1 Euler’s gamma

At
{

1 for i = 1
α ·At for i > 1

bat loudness

Rset the selection method described in [43] a set of indexes of individuals being fire-
works [43]

ff(Xch) the definition depends on the problem the value of the evaluation function of an in-
dividual

ffmin min{ff(X1) , ..., ff(XNind)} the smallest value of the evaluation function
of the individual from the entire population

Ug(1,1) 1√
2·π · e

− 1
2 ·(U(−2,4)−1)2

Gaussian distribution with mean 1 and stan-
dard deviation 1 for FWA

Xα,Xβ,Xγ the best individuals of the population values of parameters of the best individuals of
the population (wolves from the herd)

[C1,C2,C3] Ci = 2 ·U(0,1) coefficient vector 1 for GWO
[A1,A2,A3] Ai = 2 ·a ·U(0,1)−a coefficient vector 2 for GWO

a − 2
Nsteps · step+2 component linearly decreasing from 2 to 0

over iterations (step = 1,2, ...,Nsteps)
H(x) d

dx max{x,0} Heaviside function
hi permuting(hi) historical population [8]

EVOLUTIONARY ALGORITHM WITH . . .

Table 4. Parameters of the OP1 algorithm operators used in the simulations. The set of the selected
operators is shown in Table 2. The range of values was determined on the basis of the guidelines given in

the literature.

Parameter Range Value Description
w ⟨0.80,1.00⟩ 0.80 the constriction factor (PSO [23])
c1 ⟨1.50,2.50⟩ 2.00 social parameter (PSO [23])
F ⟨0.00,1.00⟩ 0.50 mutation factor (DE [41])

CR ⟨0.00,1.00⟩ 0.50 crossover constant (DE [41])
β0 ⟨0.90,1.10⟩ 1.00 attractiveness at step 0 (FFA [49])
γ ⟨0.50,2.00⟩ 1.25 attractiveness constant (FFA [49])
s ⟨0.00,0.30⟩ 0.15 step size (CS [50])
α ⟨0.10,0.30⟩ 0.20 scaling factor (CS [50])
λ ⟨0.00,1.00⟩ 0.50 switching parameter (CS [50])
α ⟨0.90,1.00⟩ 0.95 loudness constant (BAT [51])
Â ⟨0.10,2.00⟩ 1.05 amplitude constant (FWA [43])
c2 ⟨1.50,2.50⟩ 2.00 cognitive parameter (PSO [23])
pm ⟨0.05,0.50⟩ 0.25 mutation probability (GA [11])
pc ⟨0.50,0.90⟩ 0.70 crossover probability (GA [11])
mr ⟨0.01,0.20⟩ 0.10 mutation range (GA [11])
fmin ⟨0.00,0.50⟩ 0.25 minimum wavelength (BAT [51])
fmax ⟨0.00,1.00⟩ 0.50 maximum wavelength (BAT [51])
α ⟨0.01,0.20⟩ 0.10 walk constant (FFA [49])
pa ⟨0.00,1.00⟩ 0.50 switching parameter (CS [50])

FBTO ⟨3.00,4.00⟩ 3.50 step size amplification (BTO [8])

2.2 Modification of individuals

Modification of parameters in the OP1 is dif-
ferent for components {Xpar

ch , Xvel
ch } storing real pa-

rameters and Xop
ch storing integral parameter. The

method of determining parameters Xbst
ch was shown

in Algorithm 1 (lines 13-15).

Modification of parameters Xpar
ch and Xvel

ch of in-
dividual Xch is as follows

{
Xvel

ch,g := w ·Xvel
ch,g +opXop

ch,1

(
Xpar

ch,g

)

Xpar
ch,g := Xpar

ch,g +Xvel
ch,g

, (2)

where w stands for the inertia weight (usually from
range w ∈ ⟨0.8,1.0⟩ [23]), g (g = 1,2, . . . ,D) stands
for the index of the component in individual Xch, D
stands for the search space dimension (related to the
simulation problem), opi (·) stands for search oper-
ator i (see Table 2).

Modification of parameter Xop
ch consists in the

crossover and mutation of its value. The crossover
of parameter Xop

ch is performed when condition
Uind(0,1) < pc for individual ch is met. Because
the crossover does not create new individuals in the
population, but only applies to the modification of

the operator selection parameter, the likelihood of
such a change has been set to a small value. Func-
tion Uind(min,max) returns the real random num-
ber from the range ⟨min,max⟩, pc ∈ (0,1) means
the probability of the crossover of an individual
Xch. If individual ch meets the given condition
(ie. Uind(0,1) < pc), then the second individual
for crossover is selected in the algorithm by the se-
lection method. The considered selection methods
are described in Section 2.4. Crossover involves as-
signing parameter Xop

ch,1 from a selected parent indi-
vidual. Approaches to Xop

ch mutation are described
in Section 2.5.

2.3 Evolution process

The OP1 algorithm works according to the
scheme shown in Algorithm 1. The algorithm be-
gins its operation with a random initialization of
population P (line 1). This procedure takes into ac-
count the ranges of the parameters encoded in in-
dividuals Xch (ch = 1,2, . . . ,Nind) of population P.
Next, population P is evaluated using a problem-
dependent fitness function (line 2). From initial-
ized and evaluated population P an individual Xglb

158 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

with the best value of fitness function ff(·) is se-
lected (line 3). Moreover, for each Xch (ch =
1,2, . . . ,Nind) the copy of their parameters Xbst

ch is
stored, which will be updated in the next steps of
the algorithm (lines 4-6). Then, the algorithm goes
to the iterative part (lines 7-20), which starts with
checking the stop condition. The stop condition
may include, for example, taking a specified num-
ber of steps (Nsteps), executing an allowable num-
ber of fitness function calls ff(·) or reaching by
ff
(
Xglb

)
a specified threshold. In this part of the

algorithm, a modification of population P is per-
formed according to Section 2.2 (lines 9-10). Af-
ter P has been modified, it is sometimes neces-
sary to check and correct the values of individ-
ual parameters P taking into account the permissi-
ble ranges of changes (line 11). Then, takes place
the evaluation of P (line 12), a component Xbst

ch
(ch = 1,2, . . . ,Nind) is updated (lines 13-15) and
actualization of Xglb (lines 16-18) is done. After
that, the algorithm returns to checking the stop con-
dition (line 7). If it is met, the algorithm presents the
solution encoded in Xglb (line 21) and terminates its
operation.

2.4 Selection of individuals

In step 10 of Algorithm 1 components Xpar
ch and

Xvel
ch of individual Xch are modified, which involves

an appropriate use of the operator indicated by com-
ponent Xop

ch . Some operators (given in Table 2 and
others) are based on several individuals of the popu-
lation. Sometimes they are specific individuals (e.g.
in the GWO method), but usually they should be
selected accordingly. In the simulations we used
typical methods for selecting individuals, i.e. the
roulette wheel (RW), the tournament strategy (TS),
and the rank strategy (RS) [38].

2.5 Mutation of component Xop
ch,1

In the simulation, three approaches to the mu-
tation of Xop

ch,1 are used. In the first one, we as-
sumed that in each step of the algorithm (step =
1,2, . . .Nsteps), the probability of drawing any op-
erator from the operator pool is the same

Xop
ch,1 = UI(1,Nop) for U(0,1)< pm, (3)

where function UI(min,max) returns an inte-
gral random value from the range ⟨min,max⟩,
U(min,max) stands for a real random number from
the range ⟨min,max⟩, pm ∈ (0,1) stands for the mu-
tation probability for individual Xch. This (static)
type of mutation was noted as ’ST’.

In the second approach, an assumption was
made that probability of mutation of Xop

ch,1 depends
on its fitness function value. Thus, a modified ver-
sion of equation (3) takes the following form

Xop
ch,1 = UI(1,Nop) for

U(0,1)< Fpm

ff
(
Xch

)
,

pmBest, pmWorst,
min

ch1=1,2,...,Nind

(
ff
(
Xch1

))
,

max
ch1=1,2,...,Nind

(
ff
(
Xch1

))

,

(4)

where {pmBest, pmWorst} are the values for pa-
rameter pm for the best and worst individuals (they
are algorithm parameters) and Fpm(·) is a linear
function, which further ensures normalization of the
value of the population fitness function to the range
⟨0,1⟩. It is defined as follows

Modification of parameter Xop
ch consists in the

crossover and mutation of its value. The crossover
of parameter Xop

ch is performed when condition
Uind(0,1) < pc for individual ch is met. Because
the crossover does not create new individuals in
the population, but only applies to the modifica-
tion of the operator selection parameter, the like-
lihood of such a change has been set to a small
value. Function Uind(min,max) returns the real ran-
dom number from the range 〈min,max〉, pc ∈ (0,1)
means the probability of the crossover of an individ-
ual Xch. If individual ch meets the given condition
(ie. Uind(0,1)< pc), then the second individual for
crossover is selected in the algorithm by the selec-
tion method. The considered selection methods are
described in Section 2.4. Crossover involves assign-
ing parameter Xop

ch,1 from a selected parent individ-
ual. Approaches to Xop

ch mutation are described in
Section 2.5.

2.3 Evolution process

The OP1 algorithm works according to the scheme
shown in Algorithm 1. The algorithm begins its op-
eration with a random initialization of population
P (line 1). This procedure takes into account the
ranges of the parameters encoded in individuals Xch
(ch = 1,2, . . . ,Nind) of population P. Next, popu-
lation P is evaluated using a problem dependent fit-
ness function (line 2). From initialized and evaluated
population P an individual Xglb with the best value
of fitness function ff(·) is selected (line 3). More-
over, for each Xch (ch = 1,2, . . . ,Nind) the copy of
their parameters Xbst

ch is stored, which will be up-
dated in the next steps of the algorithm (lines 4-6).
Then, the algorithm goes to the iterative part (lines
7-20), which starts with checking the stop condition.
The stop condition may include, for example, tak-
ing a specified number of steps (Nsteps), executing
an allowable number of fitness function calls ff(·) or

Algorithm 1 Algorithm OP1 in the case of the prob-
lem of minimizing the value of fitness function ff(·).

1: initialization of Nind individuals of P
2: evaluation of population P with the use of fitness

function ff(·)
3: selection of best individual Xglb from P
4: for ch := 1 to Nind do
5: Xch : Xbst

ch := Xch � actualization of Xbst
ch

6: end for
7: while stop condition is not met do
8: for ch := 1 to Nind do
9: modification of Xop

ch of individual Xch
10: modification of Xpar

ch and Xvel
ch of Xch

11: repair of Xch
12: evaluation of Xch (ff

(
Xch

)
calculation)

13: if ff
(
Xch

)
< ff

(
Xch : Xbst

ch

)
then

14: Xch : Xbst
ch := Xch

15: end if
16: if ff

(
Xch

)
< ff

(
Xglb

)
then

17: Xglb := Xch
18: end if
19: end for
20: end while
21: presentation of the solution coded in component

Xpar of individual Xglb

reaching by ff
(
Xglb

)
a specified threshold. In this

part of the algorithm a modification of population P
is performed according to Section 2.2 (lines 9-10).
After P has been modified, it is sometimes necessary
to check and correct the values of individual param-
eters P taking into account the permissible ranges of
changes (line 11). Then, takes place the evaluation of
P (line 12), a component Xbst

ch (ch = 1,2, . . . ,Nind) is
updated (lines 13-15) and actualization of Xglb (lines
16-18) is done. After that, the algorithm returns to
checking the stop condition (line 7). If it is met, the
algorithm presents the solution encoded in Xglb (line
21) and terminates its operation.

8

159Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

with the best value of fitness function ff(·) is se-
lected (line 3). Moreover, for each Xch (ch =
1,2, . . . ,Nind) the copy of their parameters Xbst

ch is
stored, which will be updated in the next steps of
the algorithm (lines 4-6). Then, the algorithm goes
to the iterative part (lines 7-20), which starts with
checking the stop condition. The stop condition
may include, for example, taking a specified num-
ber of steps (Nsteps), executing an allowable num-
ber of fitness function calls ff(·) or reaching by
ff
(
Xglb

)
a specified threshold. In this part of the

algorithm, a modification of population P is per-
formed according to Section 2.2 (lines 9-10). Af-
ter P has been modified, it is sometimes neces-
sary to check and correct the values of individ-
ual parameters P taking into account the permissi-
ble ranges of changes (line 11). Then, takes place
the evaluation of P (line 12), a component Xbst

ch
(ch = 1,2, . . . ,Nind) is updated (lines 13-15) and
actualization of Xglb (lines 16-18) is done. After
that, the algorithm returns to checking the stop con-
dition (line 7). If it is met, the algorithm presents the
solution encoded in Xglb (line 21) and terminates its
operation.

2.4 Selection of individuals

In step 10 of Algorithm 1 components Xpar
ch and

Xvel
ch of individual Xch are modified, which involves

an appropriate use of the operator indicated by com-
ponent Xop

ch . Some operators (given in Table 2 and
others) are based on several individuals of the popu-
lation. Sometimes they are specific individuals (e.g.
in the GWO method), but usually they should be
selected accordingly. In the simulations we used
typical methods for selecting individuals, i.e. the
roulette wheel (RW), the tournament strategy (TS),
and the rank strategy (RS) [38].

2.5 Mutation of component Xop
ch,1

In the simulation, three approaches to the mu-
tation of Xop

ch,1 are used. In the first one, we as-
sumed that in each step of the algorithm (step =
1,2, . . .Nsteps), the probability of drawing any op-
erator from the operator pool is the same

Xop
ch,1 = UI(1,Nop) for U(0,1)< pm, (3)

where function UI(min,max) returns an inte-
gral random value from the range ⟨min,max⟩,
U(min,max) stands for a real random number from
the range ⟨min,max⟩, pm ∈ (0,1) stands for the mu-
tation probability for individual Xch. This (static)
type of mutation was noted as ’ST’.

In the second approach, an assumption was
made that probability of mutation of Xop

ch,1 depends
on its fitness function value. Thus, a modified ver-
sion of equation (3) takes the following form

Xop
ch,1 = UI(1,Nop) for

U(0,1)< Fpm

ff
(
Xch

)
,

pmBest, pmWorst,
min

ch1=1,2,...,Nind

(
ff
(
Xch1

))
,

max
ch1=1,2,...,Nind

(
ff
(
Xch1

))

,

(4)

where {pmBest, pmWorst} are the values for pa-
rameter pm for the best and worst individuals (they
are algorithm parameters) and Fpm(·) is a linear
function, which further ensures normalization of the
value of the population fitness function to the range
⟨0,1⟩. It is defined as follows

EVOLUTIONARY ALGORITHM WITH . . .

Fpm
(

f f , pmBest, pmWorst,
f f Min, f f Max

)
=

pmBest +

 (f f − f f Min) ·

·(pmWorst − pmBest)

f f Max− f f Min ,

(5)

where f f stands for the current value of the fitness
function of the processed individual. This mutation
variation, which is based on the relationship (4) and
(linear) (5) was noted as ’LI’.

In the third approach, the entire population of
individuals is divided into three groups: (a) indi-
viduals with the best value of the fitness function
(with a count of Nbest), (b) individuals with the
worst value of the fitness function (with a count of
Nworst) and (c) other individuals (equal to N pop−
(Nbest +Nworst)). All 3 groups of individuals use
formula (3), but with a different value pm: the first
group with pm = 0, the second group with pm = 1,
and the third group with pm specified by the algo-
rithm parameter.

The purpose of this approach is to protect
component Xop

ch,1 of those individuals that encode
the best solutions. At the same time, the other
components of individuals Xch in form (1) are
modified accordingly to formula (2). This type
of mutation was noted as ’PR’. The use of this
mutation also requires normalization of the vec-
tor components of the fitness function: ff(Xch)
(ch = 1,2, . . .Nind): (ff(Xch)− f f Min)/(f f Max−
f f Min) to range ⟨0,1⟩.

2.6 OP1L modification

The OP1L modification is based on the OP1.
However, in the OP1L an assumption that the prob-
ability of drawing an operator from the operator
pool depends on its mode of operation (exploration
or exploitation). In this approach: (a) at the begin-
ning of the evolution process, the chance of select-
ing exploration operators increases and (b) at the
end of the evolution process, the chance of select-
ing exploitation operators increases. The purpose
of this is to try to organize how the operators are
randomly selected.

Practical implementation of the OP1L mutation
formula replaces formula (3) with the following for-
mula

Xop
ch,1 =

UI(1,Nr+Nu) for

U1 (0,1)< pm and

U2 (0,1)< Fpm

step, pmBest,
pmWorst,
1,Nsteps

UI(Nr+1,Nr+Nu+N p) for

U1 (0,1)< pm and

U2 (0,1)≥ Fpm

step, pmBest,
pmWorst,
1,Nsteps

 ,

(6)

where step is a current step of the evolution (step =
1,2, . . .Nsteps, where Nsteps stands for the total
number of steps), Nr stands for the number of ex-
ploration operators (global), N p stands for the num-
ber of exploitation operators (local), and Nu stands
for the number of universal operators (that can work
as exploration and exploitation-see Table 2). Func-
tion Fpm(·) used in equation (6) promotes explo-
ration in the early stages of the algorithm and ex-
ploitation in the final stages of the evolution. It is a
linear function of the following form

Fpm
(

step, pmstart , pmstop,
Nstepsstart ,Nstepsstop

)
=

step ·
(

pmstart+
−pmstop

)
+

+

(
pmstop ·Nstepsstart+
−pmstart ·Nstepsstop

)

Nstepsstart−Nstepsstop
.

(7)

As was mentioned in Section 1.2, the algorithm
that uses dependencies (6) and (7) is called the
OP1L.

3 Simulations

The main purpose of the simulation was to
compare the OP1 algorithm with the methods: the
OPn [27], the OP11 [29] and other popular PBAs
whose operators were used in the OP1 operator pool
(Table 2).

In the simulations popular test functions from
CEC2013 [47] were used. There are 28 functions,
and the purpose of each PBA was to search for such
arguments for which functions took a minimum. In

160 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

all functions, the number of variables (dimension)
was set to D = 50.

The assumptions adopted in the simulations are
described in Section 3.1, the conclusions from the
simulation are summarized in Section 3.2, and a
comparison of the results obtained using different
PBAs is presented in Section 3.3.

3.1 Simulations assumptions

Assumptions adopted in the simulations can be
summarized as follows:

– The stop criterion for the tested PBAs was to
perform 1000 steps. Each simulation was re-
peated 200 times and the results obtained were
averaged.

– In the OP1 a pool of 16 operators was used.
They are presented in Table 2, wherein Nr = 6,
Nu = 4, and N p = 6 (see Section 1.3). In the
notation of these operators, functions and sym-
bols were used and they are defined in Table 3.
Moreover, for each of these operators, typical
(suggested in the literature) values of parameters
were adopted. They are listed in Table 4.

– Three methods of selecting individuals were
tested: RW, TS, and RS (see Section 2.4). The
basic method was RW.

– Three approaches to mutations were tested: ST,
LI, PR (see Section 2.5). The following param-
eters were adopted in them: pc = 0.2, pm = 0.1,
pmBest = 0.0, pmWorst = 0.2, and Nbest =
Nworst = 25%.

3.2 Simulations conclusions

The conclusions from the simulations can be
summarized as follows:

– A summary of standard and average values of
fitness function ff(·) for simulation problems C-
01 - C-28 is shown in Tables 5-7. The best re-
sults were obtained for the case of OPn-RW-ST
(Table 7, columns 4 and 5). The OP11 algorithm
gave good results for the RW and PR cases (Ta-
ble 7, rows RW-PR). The OP1 and OP1L algo-
rithms allowed to obtain satisfactory results, but
slightly worse than the OPn and OP11 (Table 7,

column 5). However, it is difficult to find an al-
gorithm that would generate the best solutions
in terms of the value of the fitness function (Ta-
bles 5 and 6). For example, an average rating for
OPn-RW-ST is 7.6 (Table 7, column 6). An in-
teresting observation also concerns the number
of operators used in the OPn. There were on av-
erage no more than 2.5 operators used (Table 7,
column 7).

– A summary of the value of the fitness func-
tions grouped by selection strategies and muta-
tion strategies of Xop

ch,1 is shown in Table 8. The
RW selection method gave the best results (Ta-
ble 8, column ’Sel’ and ’Avg’). As for the muta-
tion method it was the ST method that gave the
best results (Table 8, column ’Mut’ and ’Avg’).
The mutation of the operators with protective
thresholds gave the best results for the OP11 al-
gorithm (Table 8, row ’OP11-PR’). For the other
algorithms, the results obtained using PR are ac-
ceptable.

– A comparison of the average operator utiliza-
tion by the best PBAs variants (see Table 10),
for example, function C-10, is shown in Fig-
ure 2. The figure shows that some operators
were not used (e.g. the DE-cross). The analysis
of the use of operators also shows that the use
of some of them increased with algorithm steps
(e.g. the GA-cross), while others decreased (e.g.
the FFA-move). The dynamics of changes in
the use of operators confirm the need to replace
them during the evolution process.

– A comparison of the average operator usage for
C-05 - C-10 test functions and the OPn-RW-
ST algorithm is shown in Figure 3. The figure
shows that the number of operators used varies
in different ways for different functions. There-
fore, it is difficult to indicate a subset of opera-
tors that will be suitable for each test function.
This behavior of the operator selection mecha-
nism also confirms the ability of the OPn algo-
rithm to adapt to the problem under considera-
tion and the situation in the current step of the
evolution process.

– A comparison of the average operator usage for
C-05 - C-10 test functions and the OP1-TS-ST
algorithm is shown in Figure 4. The figure

161Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

all functions, the number of variables (dimension)
was set to D = 50.

The assumptions adopted in the simulations are
described in Section 3.1, the conclusions from the
simulation are summarized in Section 3.2, and a
comparison of the results obtained using different
PBAs is presented in Section 3.3.

3.1 Simulations assumptions

Assumptions adopted in the simulations can be
summarized as follows:

– The stop criterion for the tested PBAs was to
perform 1000 steps. Each simulation was re-
peated 200 times and the results obtained were
averaged.

– In the OP1 a pool of 16 operators was used.
They are presented in Table 2, wherein Nr = 6,
Nu = 4, and N p = 6 (see Section 1.3). In the
notation of these operators, functions and sym-
bols were used and they are defined in Table 3.
Moreover, for each of these operators, typical
(suggested in the literature) values of parameters
were adopted. They are listed in Table 4.

– Three methods of selecting individuals were
tested: RW, TS, and RS (see Section 2.4). The
basic method was RW.

– Three approaches to mutations were tested: ST,
LI, PR (see Section 2.5). The following param-
eters were adopted in them: pc = 0.2, pm = 0.1,
pmBest = 0.0, pmWorst = 0.2, and Nbest =
Nworst = 25%.

3.2 Simulations conclusions

The conclusions from the simulations can be
summarized as follows:

– A summary of standard and average values of
fitness function ff(·) for simulation problems C-
01 - C-28 is shown in Tables 5-7. The best re-
sults were obtained for the case of OPn-RW-ST
(Table 7, columns 4 and 5). The OP11 algorithm
gave good results for the RW and PR cases (Ta-
ble 7, rows RW-PR). The OP1 and OP1L algo-
rithms allowed to obtain satisfactory results, but
slightly worse than the OPn and OP11 (Table 7,

column 5). However, it is difficult to find an al-
gorithm that would generate the best solutions
in terms of the value of the fitness function (Ta-
bles 5 and 6). For example, an average rating for
OPn-RW-ST is 7.6 (Table 7, column 6). An in-
teresting observation also concerns the number
of operators used in the OPn. There were on av-
erage no more than 2.5 operators used (Table 7,
column 7).

– A summary of the value of the fitness func-
tions grouped by selection strategies and muta-
tion strategies of Xop

ch,1 is shown in Table 8. The
RW selection method gave the best results (Ta-
ble 8, column ’Sel’ and ’Avg’). As for the muta-
tion method it was the ST method that gave the
best results (Table 8, column ’Mut’ and ’Avg’).
The mutation of the operators with protective
thresholds gave the best results for the OP11 al-
gorithm (Table 8, row ’OP11-PR’). For the other
algorithms, the results obtained using PR are ac-
ceptable.

– A comparison of the average operator utiliza-
tion by the best PBAs variants (see Table 10),
for example, function C-10, is shown in Fig-
ure 2. The figure shows that some operators
were not used (e.g. the DE-cross). The analysis
of the use of operators also shows that the use
of some of them increased with algorithm steps
(e.g. the GA-cross), while others decreased (e.g.
the FFA-move). The dynamics of changes in
the use of operators confirm the need to replace
them during the evolution process.

– A comparison of the average operator usage for
C-05 - C-10 test functions and the OPn-RW-
ST algorithm is shown in Figure 3. The figure
shows that the number of operators used varies
in different ways for different functions. There-
fore, it is difficult to indicate a subset of opera-
tors that will be suitable for each test function.
This behavior of the operator selection mecha-
nism also confirms the ability of the OPn algo-
rithm to adapt to the problem under considera-
tion and the situation in the current step of the
evolution process.

– A comparison of the average operator usage for
C-05 - C-10 test functions and the OP1-TS-ST
algorithm is shown in Figure 4. The figure

EVOLUTIONARY ALGORITHM WITH . . .

Table 5. Normalized and averaged values of fitness function ff(·) for C-01 - C-14 simulation problems.

Alg. Sel. Mut. C-01 C-02 C-03 C-04 C-05 C-06 C-07 C-08 C-09 C-10 C-11 C-12 C-13 C-14
ST 0.00 0.08 0.14 0.08 0.00 0.15 0.40 0.20 0.00 0.09 0.28 0.48 0.43 0.03

RW LI 0.00 0.23 0.15 0.15 0.00 0.18 0.65 0.00 0.37 0.05 0.36 0.51 0.37 0.05
PR 0.00 0.53 0.34 0.40 0.01 0.22 1.00 0.70 0.60 0.10 0.58 0.64 0.60 0.38
ST 0.00 0.04 0.07 0.04 0.00 0.24 0.33 0.18 0.13 0.16 0.38 0.50 0.43 0.00

OPn TS LI 0.00 0.11 0.10 0.09 0.00 0.34 0.39 0.37 0.37 0.10 0.37 0.60 0.51 0.09
PR 0.01 0.38 0.26 0.37 0.02 0.35 0.68 0.64 0.53 0.18 0.70 0.76 0.69 0.31
ST 0.00 0.00 0.15 0.00 0.17 0.37 0.62 0.11 0.27 0.23 0.56 0.75 0.64 0.05

RS LI 0.00 0.04 0.19 0.05 0.15 0.53 0.69 0.25 0.55 0.23 0.63 0.75 0.61 0.17
PR 0.03 0.35 0.41 0.27 1.00 0.56 0.95 0.57 0.78 0.38 0.98 0.93 0.86 0.39
ST 0.00 0.35 0.30 0.73 0.00 0.07 0.54 0.86 0.56 0.00 0.00 0.00 0.00 0.76

RW LI 0.00 0.32 0.15 0.48 0.00 0.14 0.59 0.49 0.53 0.02 0.26 0.33 0.35 0.55
PR 0.00 0.39 0.35 0.66 0.00 0.00 0.40 0.70 0.54 0.00 0.06 0.01 0.10 0.68
ST 0.00 0.23 0.14 0.74 0.00 0.20 0.00 0.68 0.66 0.05 0.10 0.20 0.14 0.76

OP11 TS LI 0.00 0.16 0.00 0.43 0.00 0.26 0.36 0.75 0.63 0.05 0.35 0.31 0.33 0.52
PR 0.00 0.23 0.14 0.73 0.00 0.09 0.06 0.75 0.65 0.06 0.11 0.16 0.18 0.76
ST 0.04 0.48 0.24 0.67 0.10 0.52 0.18 0.72 0.70 0.19 0.49 0.37 0.48 0.89

RS LI 0.00 0.17 0.11 0.34 0.04 0.39 0.41 0.81 0.71 0.17 0.74 0.68 0.59 0.62
PR 0.01 0.43 0.28 0.64 0.11 0.37 0.24 0.78 0.63 0.21 0.54 0.48 0.40 0.76
ST 0.01 0.48 0.37 0.56 0.14 0.64 0.85 0.84 0.68 0.25 0.62 0.72 0.63 0.57

RW LI 0.05 0.68 0.99 0.86 0.37 0.70 0.63 0.89 0.79 0.64 0.39 0.44 0.43 0.79
PR 0.15 0.80 0.93 0.95 0.46 0.81 0.70 0.85 0.79 0.88 0.33 0.44 0.43 0.84
ST 0.00 0.42 0.15 0.52 0.06 0.64 0.38 0.69 0.75 0.27 0.67 0.81 0.68 0.55

OP1 TS LI 0.07 0.60 0.72 0.95 0.37 0.74 0.14 0.87 0.83 0.66 0.52 0.55 0.50 0.82
PR 0.23 0.60 0.62 1.00 0.38 0.78 0.18 0.69 0.77 0.79 0.46 0.46 0.48 0.83
ST 0.03 0.41 0.28 0.45 0.25 0.68 0.51 0.81 0.89 0.43 1.00 0.94 0.81 0.65

RS LI 0.86 0.91 0.97 0.94 0.73 0.97 0.33 0.94 0.98 1.00 0.86 0.77 0.74 0.87
PR 0.96 1.00 1.00 0.94 0.84 1.00 0.40 0.54 1.00 0.94 0.86 0.71 0.72 1.00
ST 0.08 0.66 0.86 0.93 0.37 0.68 0.63 1.00 0.84 0.59 0.41 0.47 0.52 0.86

RW LI 0.17 0.75 0.86 0.96 0.49 0.86 0.87 0.88 0.80 0.71 0.38 0.42 0.45 0.89
PR 0.01 0.60 0.42 0.62 0.28 0.65 0.91 0.80 0.79 0.28 0.71 0.82 0.72 0.47
ST 0.04 0.50 0.69 0.95 0.26 0.84 0.33 0.80 0.80 0.60 0.43 0.49 0.54 0.90

OP1L TS LI 0.24 0.58 0.82 0.97 0.42 0.86 0.27 1.00 0.92 0.63 0.47 0.46 0.51 1.00
PR 0.01 0.47 0.19 0.52 0.13 0.61 0.40 0.51 0.79 0.27 0.69 0.84 0.79 0.61
ST 0.45 0.87 0.79 0.91 0.69 0.80 0.48 0.65 0.93 0.98 0.94 0.76 0.76 0.96

RS LI 1.00 0.93 0.97 0.97 0.64 0.95 0.54 0.71 0.84 0.93 0.84 0.73 0.73 0.97
PR 0.08 0.51 0.21 0.46 0.45 0.76 0.54 0.64 0.81 0.45 0.99 1.00 1.00 0.54

162 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Table 6. Normalized and averaged values of fitness function ff(·) for C-15 - C-28 simulation problems.

Alg. Sel. Mut. C-15 C-16 C-17 C-18 C-19 C-20 C-21 C-22 C-23 C-24 C-25 C-26 C-27 C-28
ST 0.00 0.98 0.48 0.00 0.06 0.17 0.00 0.04 0.00 0.18 0.22 0.30 0.21 0.39

RW LI 0.22 0.96 0.48 0.01 0.06 0.03 0.01 0.09 0.18 0.29 0.24 0.42 0.29 0.52
PR 0.24 0.96 0.60 0.22 0.10 0.23 0.08 0.33 0.31 0.52 0.56 0.70 0.46 0.73
ST 0.12 0.91 0.52 0.10 0.11 0.17 0.06 0.02 0.04 0.25 0.26 0.40 0.29 0.37

OPn TS LI 0.15 0.95 0.51 0.00 0.14 0.00 0.09 0.11 0.19 0.36 0.42 0.56 0.35 0.48
PR 0.16 0.99 0.72 0.32 0.18 0.32 0.10 0.28 0.32 0.65 0.56 0.77 0.61 0.80
ST 0.21 0.96 0.65 0.10 0.20 0.17 0.07 0.00 0.25 0.44 0.52 0.67 0.56 0.55

RS LI 0.23 0.97 0.70 0.17 0.24 0.07 0.12 0.10 0.32 0.54 0.71 0.82 0.66 0.83
PR 0.43 1.00 0.99 0.44 0.32 0.24 0.10 0.25 0.51 0.83 0.93 1.00 0.84 1.00
ST 0.48 0.41 0.00 0.37 0.00 0.70 0.02 0.67 0.39 0.16 0.00 0.01 0.00 0.00

RW LI 0.28 0.66 0.31 0.55 0.06 0.37 0.09 0.49 0.28 0.51 0.23 0.25 0.24 0.32
PR 0.43 0.36 0.04 0.39 0.00 0.67 0.04 0.72 0.35 0.13 0.02 0.00 0.02 0.13
ST 0.46 0.29 0.17 0.38 0.07 0.74 0.03 0.70 0.44 0.08 0.03 0.12 0.12 0.19

OP11 TS LI 0.42 0.73 0.30 0.41 0.10 0.49 0.07 0.57 0.31 0.50 0.33 0.35 0.34 0.34
PR 0.47 0.30 0.12 0.34 0.06 0.66 0.10 0.69 0.43 0.14 0.04 0.17 0.17 0.20
ST 0.60 0.43 0.46 0.47 0.28 0.73 0.12 0.77 0.64 0.22 0.46 0.49 0.48 0.34

RS LI 0.46 0.75 0.72 0.52 0.27 0.35 0.15 0.61 0.49 0.51 0.62 0.68 0.63 0.68
PR 0.51 0.28 0.49 0.39 0.32 0.67 0.15 0.65 0.62 0.38 0.48 0.49 0.55 0.36
ST 0.46 0.33 0.62 0.19 0.35 0.44 0.14 0.48 0.51 0.60 0.68 0.47 0.50 0.45

RW LI 0.73 0.06 0.27 0.81 0.47 0.91 0.25 0.85 0.71 0.25 0.40 0.36 0.42 0.34
PR 0.76 0.10 0.28 0.64 0.54 0.96 0.15 0.83 0.78 0.02 0.38 0.31 0.44 0.28
ST 0.53 0.34 0.68 0.28 0.34 0.40 0.10 0.56 0.53 0.63 0.64 0.45 0.56 0.63

OP1 TS LI 0.73 0.16 0.48 0.82 0.57 0.95 0.16 0.76 0.82 0.10 0.46 0.35 0.52 0.37
PR 0.84 0.24 0.39 0.78 0.59 0.98 0.23 0.92 0.82 0.00 0.41 0.45 0.50 0.41
ST 0.68 0.36 0.98 0.49 0.46 0.41 0.13 0.57 0.68 0.70 0.93 0.91 0.96 0.90

RS LI 0.91 0.25 0.87 0.70 0.83 0.91 1.00 0.95 0.96 0.30 0.74 0.91 0.96 0.66
PR 1.00 0.10 0.86 1.00 0.89 0.90 0.22 0.92 1.00 0.13 0.78 0.92 0.90 0.64
ST 0.83 0.05 0.31 0.80 0.48 0.94 0.17 0.87 0.75 0.15 0.37 0.29 0.43 0.29

RW LI 0.72 0.00 0.33 0.77 0.54 0.93 0.17 0.91 0.73 0.16 0.40 0.31 0.46 0.36
PR 0.40 0.30 0.66 0.01 0.37 0.43 0.06 0.54 0.54 0.94 0.71 0.45 0.55 0.77
ST 0.82 0.04 0.45 0.71 0.59 1.00 0.17 1.00 0.77 0.18 0.41 0.37 0.51 0.42

OP1L TS LI 0.87 0.05 0.42 0.75 0.64 1.00 0.13 0.95 0.78 0.09 0.40 0.41 0.52 0.30
PR 0.57 0.41 0.76 0.05 0.39 0.35 0.19 0.59 0.54 1.00 0.67 0.57 0.64 0.79
ST 0.85 0.09 0.81 0.69 0.91 0.94 0.26 0.98 0.99 0.14 0.78 0.97 0.90 0.62

RS LI 0.88 0.07 0.87 0.86 1.00 0.90 0.23 1.00 0.96 0.33 0.79 0.88 0.86 0.56
PR 0.53 0.38 1.00 0.33 0.44 0.41 0.13 0.56 0.62 0.90 1.00 0.91 1.00 0.87

163Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Table 6. Normalized and averaged values of fitness function ff(·) for C-15 - C-28 simulation problems.

Alg. Sel. Mut. C-15 C-16 C-17 C-18 C-19 C-20 C-21 C-22 C-23 C-24 C-25 C-26 C-27 C-28
ST 0.00 0.98 0.48 0.00 0.06 0.17 0.00 0.04 0.00 0.18 0.22 0.30 0.21 0.39

RW LI 0.22 0.96 0.48 0.01 0.06 0.03 0.01 0.09 0.18 0.29 0.24 0.42 0.29 0.52
PR 0.24 0.96 0.60 0.22 0.10 0.23 0.08 0.33 0.31 0.52 0.56 0.70 0.46 0.73
ST 0.12 0.91 0.52 0.10 0.11 0.17 0.06 0.02 0.04 0.25 0.26 0.40 0.29 0.37

OPn TS LI 0.15 0.95 0.51 0.00 0.14 0.00 0.09 0.11 0.19 0.36 0.42 0.56 0.35 0.48
PR 0.16 0.99 0.72 0.32 0.18 0.32 0.10 0.28 0.32 0.65 0.56 0.77 0.61 0.80
ST 0.21 0.96 0.65 0.10 0.20 0.17 0.07 0.00 0.25 0.44 0.52 0.67 0.56 0.55

RS LI 0.23 0.97 0.70 0.17 0.24 0.07 0.12 0.10 0.32 0.54 0.71 0.82 0.66 0.83
PR 0.43 1.00 0.99 0.44 0.32 0.24 0.10 0.25 0.51 0.83 0.93 1.00 0.84 1.00
ST 0.48 0.41 0.00 0.37 0.00 0.70 0.02 0.67 0.39 0.16 0.00 0.01 0.00 0.00

RW LI 0.28 0.66 0.31 0.55 0.06 0.37 0.09 0.49 0.28 0.51 0.23 0.25 0.24 0.32
PR 0.43 0.36 0.04 0.39 0.00 0.67 0.04 0.72 0.35 0.13 0.02 0.00 0.02 0.13
ST 0.46 0.29 0.17 0.38 0.07 0.74 0.03 0.70 0.44 0.08 0.03 0.12 0.12 0.19

OP11 TS LI 0.42 0.73 0.30 0.41 0.10 0.49 0.07 0.57 0.31 0.50 0.33 0.35 0.34 0.34
PR 0.47 0.30 0.12 0.34 0.06 0.66 0.10 0.69 0.43 0.14 0.04 0.17 0.17 0.20
ST 0.60 0.43 0.46 0.47 0.28 0.73 0.12 0.77 0.64 0.22 0.46 0.49 0.48 0.34

RS LI 0.46 0.75 0.72 0.52 0.27 0.35 0.15 0.61 0.49 0.51 0.62 0.68 0.63 0.68
PR 0.51 0.28 0.49 0.39 0.32 0.67 0.15 0.65 0.62 0.38 0.48 0.49 0.55 0.36
ST 0.46 0.33 0.62 0.19 0.35 0.44 0.14 0.48 0.51 0.60 0.68 0.47 0.50 0.45

RW LI 0.73 0.06 0.27 0.81 0.47 0.91 0.25 0.85 0.71 0.25 0.40 0.36 0.42 0.34
PR 0.76 0.10 0.28 0.64 0.54 0.96 0.15 0.83 0.78 0.02 0.38 0.31 0.44 0.28
ST 0.53 0.34 0.68 0.28 0.34 0.40 0.10 0.56 0.53 0.63 0.64 0.45 0.56 0.63

OP1 TS LI 0.73 0.16 0.48 0.82 0.57 0.95 0.16 0.76 0.82 0.10 0.46 0.35 0.52 0.37
PR 0.84 0.24 0.39 0.78 0.59 0.98 0.23 0.92 0.82 0.00 0.41 0.45 0.50 0.41
ST 0.68 0.36 0.98 0.49 0.46 0.41 0.13 0.57 0.68 0.70 0.93 0.91 0.96 0.90

RS LI 0.91 0.25 0.87 0.70 0.83 0.91 1.00 0.95 0.96 0.30 0.74 0.91 0.96 0.66
PR 1.00 0.10 0.86 1.00 0.89 0.90 0.22 0.92 1.00 0.13 0.78 0.92 0.90 0.64
ST 0.83 0.05 0.31 0.80 0.48 0.94 0.17 0.87 0.75 0.15 0.37 0.29 0.43 0.29

RW LI 0.72 0.00 0.33 0.77 0.54 0.93 0.17 0.91 0.73 0.16 0.40 0.31 0.46 0.36
PR 0.40 0.30 0.66 0.01 0.37 0.43 0.06 0.54 0.54 0.94 0.71 0.45 0.55 0.77
ST 0.82 0.04 0.45 0.71 0.59 1.00 0.17 1.00 0.77 0.18 0.41 0.37 0.51 0.42

OP1L TS LI 0.87 0.05 0.42 0.75 0.64 1.00 0.13 0.95 0.78 0.09 0.40 0.41 0.52 0.30
PR 0.57 0.41 0.76 0.05 0.39 0.35 0.19 0.59 0.54 1.00 0.67 0.57 0.64 0.79
ST 0.85 0.09 0.81 0.69 0.91 0.94 0.26 0.98 0.99 0.14 0.78 0.97 0.90 0.62

RS LI 0.88 0.07 0.87 0.86 1.00 0.90 0.23 1.00 0.96 0.33 0.79 0.88 0.86 0.56
PR 0.53 0.38 1.00 0.33 0.44 0.41 0.13 0.56 0.62 0.90 1.00 0.91 1.00 0.87

EVOLUTIONARY ALGORITHM WITH . . .

Table 7. Normalized values of fitness function ff(·) averaged for all simulation problems.

Alg. Sel. Mut.
Averaged

normalized
minimum

Place by
averaged
minimum

Times
best

Averaged
place for

each function

Average
number of
operators

ST 0.192 1 4 7.607 2.364
RW LI 0.246 3 1 9.429 2.367

PR 0.434 13 0 16.464 2.353
ST 0.219 2 1 8.643 2.336

OPn TS LI 0.276 6 2 10.714 2.330
PR 0.452 16 0 17.750 2.286
ST 0.331 10 3 14.143 2.350

RS LI 0.404 12 0 17.036 2.334
PR 0.619 31 0 23.393 2.280
ST 0.264 5 7 10.429 2.000

RW LI 0.316 9 0 9.857 2.000
PR 0.257 4 5 8.929 2.000
ST 0.276 7 1 9.214 2.000

OP11 TS LI 0.335 11 1 10.679 2.000
PR 0.280 8 1 9.643 2.000
ST 0.448 15 0 17.964 2.000

RS LI 0.472 17 0 18.929 2.000
PR 0.436 14 0 17.536 2.000
ST 0.485 19 0 19.857 1.000

RW LI 0.553 22 0 21.643 1.000
PR 0.565 26 0 21.393 1.000
ST 0.474 18 0 18.821 1.000

OP1 TS LI 0.557 23 0 22.500 1.000
PR 0.567 27 1 22.393 1.000
ST 0.617 30 0 25.036 1.000

RS LI 0.815 36 0 30.214 1.000
PR 0.792 35 0 29.214 1.000
ST 0.558 25 0 21.857 1.000

RW LI 0.582 28 1 22.857 1.000
PR 0.528 21 0 21.179 1.000
ST 0.558 24 0 22.714 1.000

OP1L TS LI 0.587 29 0 23.179 1.000
PR 0.512 20 0 21.357 1.000
ST 0.747 33 0 28.821 1.000

RS LI 0.784 34 0 29.893 1.000
PR 0.626 32 0 24.714 1.000

164 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

shows that the use of operators changes differ-
ently for different test functions, similar to OPn-
RW-ST (Figure 3). At the same time, it can
be seen that the requirement for each of the in-
dividuals of the population to use one operator
in the OP1 caused a clear limitation on the use
of some operators from the pool, although they
were used in the OPn.

Table 8. Normalized values of fitness function
ff(·) averaged for all simulation problems and
grouped by selection strategies and mutation

strategies of Xop
ch,1.

Alg. Sel. Avg. Mut. Avg.
RW 0.291 ST 0.248

OPn TS 0.316 LI 0.309
RS 0.451 PR 0.502
RW 0.279 ST 0.329

OP11 TS 0.297 LI 0.375
RS 0.452 PR 0.324
RW 0.534 ST 0.525

OP1 TS 0.533 LI 0.642
RS 0.742 PR 0.641
RW 0.556 ST 0.621

OP1L TS 0.552 LI 0.651
RS 0.719 PR 0.556
RW 0.415 ST 0.431

AVG TS 0.425 LI 0.494
RS 0.591 PR 0.506

Table 9. Comparison of the accuracy of different
PBAs based on normalized values of evaluation

function ff(·) averaged for all simulation problems.

Alg.
Averaged

normalized
minimum

Place by
averaged
minimum

OPn-RW-ST 0.000 1
OP11-RW-PR 0.009 2
OP1-TS-ST 0.042 3

OP1L-TS-PR 0.047 4
DE 0.426 5
GA 0.767 11

GWO 0.693 9
FWA 1.000 12
PSO 0.757 10
BAT 0.685 8
CS 0.522 7

FFA 0.481 6

Table 10. A comparison of the accuracy of the best
variants of the OPn, OP11, OP1, OP1L algorithms
based on normalized values of fitness function ff(·)
averaged for all simulation problems. The values

in column 4 were obtained by multiplying the
values from columns 2 and 3.

Alg.
Averaged

normalized
minimum

Averaged
number of
operators

Complexity
versus

minimum
OPn-RW-ST 0.192 2.364 0.455

OP11-RW-PR 0.257 2.000 0.513
OP1-TS-ST 0.474 1.000 0.474

OP1L-TS-PR 0.512 1.000 0.512

Table 11. A comparison of the accuracy of the
average results from the OPn, OP11, OP1, OP1L
algorithms based on normalized values of fitness

function ff(·) averaged for all simulation problems.
The values in column 4 were obtained by

multiplying the values from columns 2 and 3.

Alg.
Averaged

normalized
minimum

Averaged
number of
operators

Complexity
versus

minimum
OPn 0.353 2.333 0.823
OP11 0.343 2.000 0.685
OP1 0.603 1.000 0.603

OP1L 0.609 1.000 0.609

3.3 Comparison of OP1 with other PBAs

A comparison of the main features of the se-
lected PBAs is provided in Table 1. It shows that
the family of the OPn, OP11 and OP1 algorithms
gives a new look at the algorithm design process
and has several important advantages in the PBAs
group. A direct comparison of the accuracy of
PBAs is difficult because the authors use differ-
ent algorithms and parameters of the evolution pro-
cess. Therefore, to compare the OP1 algorithm
with other PBAs, we implemented selected meth-
ods and tested them in accordance with the infor-
mation provided in Section 3.1. These methods
include: Operator-based Population n (OPn) [27],
Operator-based Population 1+1 (OP11) [29], Dif-
ferential Evolution (DE) [41], Genetic Algorithm
(GA) [11], Grey Wolf Optimizer (GWO) [31], Fire-
work Algorithm (FWA) [43], Particle Swarm Op-
timization (PSO) [23], Bat Algorithm (BAT) [51],
Cuckoo Search (CS) [50], and Firefly Algorithm
(FFA) [49].

165Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

shows that the use of operators changes differ-
ently for different test functions, similar to OPn-
RW-ST (Figure 3). At the same time, it can
be seen that the requirement for each of the in-
dividuals of the population to use one operator
in the OP1 caused a clear limitation on the use
of some operators from the pool, although they
were used in the OPn.

Table 8. Normalized values of fitness function
ff(·) averaged for all simulation problems and
grouped by selection strategies and mutation

strategies of Xop
ch,1.

Alg. Sel. Avg. Mut. Avg.
RW 0.291 ST 0.248

OPn TS 0.316 LI 0.309
RS 0.451 PR 0.502
RW 0.279 ST 0.329

OP11 TS 0.297 LI 0.375
RS 0.452 PR 0.324
RW 0.534 ST 0.525

OP1 TS 0.533 LI 0.642
RS 0.742 PR 0.641
RW 0.556 ST 0.621

OP1L TS 0.552 LI 0.651
RS 0.719 PR 0.556
RW 0.415 ST 0.431

AVG TS 0.425 LI 0.494
RS 0.591 PR 0.506

Table 9. Comparison of the accuracy of different
PBAs based on normalized values of evaluation

function ff(·) averaged for all simulation problems.

Alg.
Averaged

normalized
minimum

Place by
averaged
minimum

OPn-RW-ST 0.000 1
OP11-RW-PR 0.009 2
OP1-TS-ST 0.042 3

OP1L-TS-PR 0.047 4
DE 0.426 5
GA 0.767 11

GWO 0.693 9
FWA 1.000 12
PSO 0.757 10
BAT 0.685 8
CS 0.522 7

FFA 0.481 6

Table 10. A comparison of the accuracy of the best
variants of the OPn, OP11, OP1, OP1L algorithms
based on normalized values of fitness function ff(·)
averaged for all simulation problems. The values

in column 4 were obtained by multiplying the
values from columns 2 and 3.

Alg.
Averaged

normalized
minimum

Averaged
number of
operators

Complexity
versus

minimum
OPn-RW-ST 0.192 2.364 0.455

OP11-RW-PR 0.257 2.000 0.513
OP1-TS-ST 0.474 1.000 0.474

OP1L-TS-PR 0.512 1.000 0.512

Table 11. A comparison of the accuracy of the
average results from the OPn, OP11, OP1, OP1L
algorithms based on normalized values of fitness

function ff(·) averaged for all simulation problems.
The values in column 4 were obtained by

multiplying the values from columns 2 and 3.

Alg.
Averaged

normalized
minimum

Averaged
number of
operators

Complexity
versus

minimum
OPn 0.353 2.333 0.823
OP11 0.343 2.000 0.685
OP1 0.603 1.000 0.603

OP1L 0.609 1.000 0.609

3.3 Comparison of OP1 with other PBAs

A comparison of the main features of the se-
lected PBAs is provided in Table 1. It shows that
the family of the OPn, OP11 and OP1 algorithms
gives a new look at the algorithm design process
and has several important advantages in the PBAs
group. A direct comparison of the accuracy of
PBAs is difficult because the authors use differ-
ent algorithms and parameters of the evolution pro-
cess. Therefore, to compare the OP1 algorithm
with other PBAs, we implemented selected meth-
ods and tested them in accordance with the infor-
mation provided in Section 3.1. These methods
include: Operator-based Population n (OPn) [27],
Operator-based Population 1+1 (OP11) [29], Dif-
ferential Evolution (DE) [41], Genetic Algorithm
(GA) [11], Grey Wolf Optimizer (GWO) [31], Fire-
work Algorithm (FWA) [43], Particle Swarm Op-
timization (PSO) [23], Bat Algorithm (BAT) [51],
Cuckoo Search (CS) [50], and Firefly Algorithm
(FFA) [49].

EVOLUTIONARY ALGORITHM WITH . . .

Figure 2. Comparison of the average operator use by the best PBAs variants (see Table 10) for test
function C-10.

PSO-best

PSO-global

GA-cross

GA-mutate

DE-cross

BAT-move

BAT-walk

FWA-explode

FWA-gauss

GWO-wolfs

FFA-move

FFA-random

ABC-candidate

BTO-history

CS-walk

CS-levy

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

OPn-RW-ST OP11-RW-PR OP1-TS-ST OP1L-TS-PR

166 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Figure 3. Comparison of the average operator usage for test functions C-05 - C-10 and the OPn-RW-ST
algorithm.

C-05 C-06 C-07 C-08

PSO-best

PSO-global

GA-cross

GA-mutate

DE-cross

BAT-move

BAT-walk

FWA-explode

FWA-gauss

GWO-wolfs

FFA-move

FFA-random

ABC-candidate

BTO-history

CS-walk

CS-levy

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

C-09 C-10

167Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

Figure 3. Comparison of the average operator usage for test functions C-05 - C-10 and the OPn-RW-ST
algorithm.

EVOLUTIONARY ALGORITHM WITH . . .

Figure 4. Comparison of the average operator usage for test functions C-05 - C-10 and the OP1-TS-ST
algorithm.

C-05 C-06 C-07 C-08 C-09 C-10

PSO-best

PSO-global

GA-cross

GA-mutate

DE-cross

BAT-move

BAT-walk

FWA-explode

FWA-gauss

GWO-wolfs

FFA-move

FFA-random

ABC-candidate

BTO-history

CS-walk

CS-levy

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step
%

1
0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

step

%
1

0

0 1000

168 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

The conclusions from the comparison can be
summarized as follows:

– Comparison of the accuracy of different PBAs
based on normalized values of fitness function
ff(·) averaged for all simulation problems is
shown in Table 9. The results obtained for the
OPn, OP11, OP1, and OP1L algorithms are an
order of magnitude better than those obtained for
other PBAs (Table 9). Therefore, the approach
to change the search operators during the evolu-
tion process seems very effective.

– Comparison of the accuracy of the best variants
of the OPn, OP11, OP1, OP1L algorithms based
on normalized values of the fitness function is
shown in Table 10. The best results and the best
ratio of complexity to accuracy were obtained
by the OPn-RW-ST (Table 10, columns 2 and
4). The OP1 and OP1L methods obtained ac-
ceptable results, but slightly worse than those
obtained by the OPn and OP11.

– Comparison of the accuracy of average algo-
rithms OPn, OP11, OP1, OP1L based on nor-
malized values of the evaluation function is
shown in Table 11. The best results were ob-
tained for the OP11 algorithm (Table 11, col-
umn 2). However, the best ratio of complexity
to accuracy was obtained for the OP1 algorithm
(Table 11, column 4). Therefore, when the key
criterion is the complexity of the algorithm, then
the OP1 method which generates acceptable so-
lutions with minimal use of the operator pool
can be used. If this is accuracy that is expected
the key criterion, then the OP11 method can be
used.

4 Conclusions

In this paper, a new population-based algorithm
(PBA) is proposed: an evolutionary algorithm with
an automatic selection of the search mechanism
(OP1). Its most important feature is that for each
individual of the population, the evolutionary oper-
ator is individually selected. The exchange of oper-
ators in a population is thus a dynamic process.

The OP1 algorithm was tested using 28 consid-
ered known simulation problems C-01 - C-28. For
the OP1 slightly worse results than in the case of

the OPn and OP11 were obtained, but these are sat-
isfactory and obtained with minimal use of the oper-
ator pool. At the same time, these results are signif-
icantly better than those obtained for popular PBAs
that did not use the operator exchange mechanism.

The mutation of operators with protective
thresholds found in the OP1L variant did not give
as good results as expected, but they are acceptable
and thus worth further investigation.

Our plans include developing a multi-
population and multi-criteria version of the pro-
posed algorithm.

Acknowledgment

The authors would like to thank the associate
editor and reviewers for their helpful comments.

This paper was financed under the program of
the Minister of Science and Higher Education under
the name ’Regional Initiative of Excellence’ in the
years 2019-2022, project number 020/RID/2018/19
with the amount of financing PLN 12 000 000.

References
[1] S.P. Adam, S.A.N. Alexandropoulos, P.M. Pardalos,

M.N. Vrahatis, No free lunch theorem: a review,
Approximation and Optimization, Springer, 57-82,
2019.

[2] E.S. Ali, S.M. Abd-Elazim, Bacteria foraging opti-
mization algorithm based load frequency controller
for interconnected power system, Int. J. of Electrical
Power & Energy Systems, 33(3), 633-638, 2011.

[3] T. de Fátima Araújo, W. Uturbey, Performance as-
sessment of PSO, DE and hybrid PSO–DE algo-
rithms when applied to the dispatch of generation
and demand, Int. J. of Electrical Power & Energy
Systems, 47, 205-217, 2013.

[4] E. Atashpaz-Gargari, C. Lucas, Imperialist com-
petitive algorithm: An algorithm for optimization
inspired by imperialistic competition, 2007 IEEE
Congress on Evolutionary Comp., 2007.

[5] Ł. Bartczuk, A. Przybył, K. Cpałka, A new approach
to nonlinear modelling of dynamic systems based
on fuzzy rules, Int. J. of Applied Mathematics and
Computer Science, 26(3), 603-621, 2016.

[6] Z.S. Chen, B. Zhu, Y.L. He, L.A. Yu, A PSO based
virtual sample generation method for small sample

169Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

The conclusions from the comparison can be
summarized as follows:

– Comparison of the accuracy of different PBAs
based on normalized values of fitness function
ff(·) averaged for all simulation problems is
shown in Table 9. The results obtained for the
OPn, OP11, OP1, and OP1L algorithms are an
order of magnitude better than those obtained for
other PBAs (Table 9). Therefore, the approach
to change the search operators during the evolu-
tion process seems very effective.

– Comparison of the accuracy of the best variants
of the OPn, OP11, OP1, OP1L algorithms based
on normalized values of the fitness function is
shown in Table 10. The best results and the best
ratio of complexity to accuracy were obtained
by the OPn-RW-ST (Table 10, columns 2 and
4). The OP1 and OP1L methods obtained ac-
ceptable results, but slightly worse than those
obtained by the OPn and OP11.

– Comparison of the accuracy of average algo-
rithms OPn, OP11, OP1, OP1L based on nor-
malized values of the evaluation function is
shown in Table 11. The best results were ob-
tained for the OP11 algorithm (Table 11, col-
umn 2). However, the best ratio of complexity
to accuracy was obtained for the OP1 algorithm
(Table 11, column 4). Therefore, when the key
criterion is the complexity of the algorithm, then
the OP1 method which generates acceptable so-
lutions with minimal use of the operator pool
can be used. If this is accuracy that is expected
the key criterion, then the OP11 method can be
used.

4 Conclusions

In this paper, a new population-based algorithm
(PBA) is proposed: an evolutionary algorithm with
an automatic selection of the search mechanism
(OP1). Its most important feature is that for each
individual of the population, the evolutionary oper-
ator is individually selected. The exchange of oper-
ators in a population is thus a dynamic process.

The OP1 algorithm was tested using 28 consid-
ered known simulation problems C-01 - C-28. For
the OP1 slightly worse results than in the case of

the OPn and OP11 were obtained, but these are sat-
isfactory and obtained with minimal use of the oper-
ator pool. At the same time, these results are signif-
icantly better than those obtained for popular PBAs
that did not use the operator exchange mechanism.

The mutation of operators with protective
thresholds found in the OP1L variant did not give
as good results as expected, but they are acceptable
and thus worth further investigation.

Our plans include developing a multi-
population and multi-criteria version of the pro-
posed algorithm.

Acknowledgment

The authors would like to thank the associate
editor and reviewers for their helpful comments.

This paper was financed under the program of
the Minister of Science and Higher Education under
the name ’Regional Initiative of Excellence’ in the
years 2019-2022, project number 020/RID/2018/19
with the amount of financing PLN 12 000 000.

References
[1] S.P. Adam, S.A.N. Alexandropoulos, P.M. Pardalos,

M.N. Vrahatis, No free lunch theorem: a review,
Approximation and Optimization, Springer, 57-82,
2019.

[2] E.S. Ali, S.M. Abd-Elazim, Bacteria foraging opti-
mization algorithm based load frequency controller
for interconnected power system, Int. J. of Electrical
Power & Energy Systems, 33(3), 633-638, 2011.

[3] T. de Fátima Araújo, W. Uturbey, Performance as-
sessment of PSO, DE and hybrid PSO–DE algo-
rithms when applied to the dispatch of generation
and demand, Int. J. of Electrical Power & Energy
Systems, 47, 205-217, 2013.

[4] E. Atashpaz-Gargari, C. Lucas, Imperialist com-
petitive algorithm: An algorithm for optimization
inspired by imperialistic competition, 2007 IEEE
Congress on Evolutionary Comp., 2007.

[5] Ł. Bartczuk, A. Przybył, K. Cpałka, A new approach
to nonlinear modelling of dynamic systems based
on fuzzy rules, Int. J. of Applied Mathematics and
Computer Science, 26(3), 603-621, 2016.

[6] Z.S. Chen, B. Zhu, Y.L. He, L.A. Yu, A PSO based
virtual sample generation method for small sample

EVOLUTIONARY ALGORITHM WITH . . .

sets: Applications to regression datasets, Engineer-
ing Applications of Artificial Intelligence, 59, 236-
243, 2017.

[7] S. Chu, P. Tsai, J. Pan, Cat Swarm Optimization,
LNCS, 4099, 854-858, 2006.

[8] P. Civicioglu, Backtracking search optimization
algorithm for numerical optimization problems,
Applied Mathematics and Computation, 219(15),
8121–8144, 2013.

[9] K. Cpałka, Design of interpretable fuzzy systems,
Springer, 2017.

[10] M. Črepinšek, S. H. Liu, M. Mernik, Exploration
and exploitation in evolutionary algorithms: A sur-
vey, ACM computing surveys (CSUR), 45(3), 1-33,
2013.

[11] L. Davis, Handbook of genetic algorithms, 1991.

[12] D. Dawar & S.A. Ludwig, Effect of Strategy Adap-
tation on Differential Evolution in Presence and Ab-
sence of Parameter Adaptation: An Investigation,
J. of Artificial Intelligence and Soft Computing Re-
search, 8(3), 211-235, 2018.

[13] J. Del Ser, E. Osaba, D. Molina, X.S. Yang, S.
Salcedo-Sanz, D. Camacho, S. Das, P.N. Suganthan,
C.A.C. Coello, F. Herrera, Bio-inspired computa-
tion: Where we stand and what’s next, Swarm and
Evolutionary Computation, 48, 220-250, 2019.

[14] H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili,
Grey wolf optimizer: a review of recent variants and
applications, Neural Computing and Applications,
30(2), 2018, 413-435.

[15] A.H. Gandomi, X.S. Yang, S. Talatahari, S. Deb,
Coupled eagle strategy and differential evolution
for unconstrained and constrained global optimiza-
tion, Computers & Mathematics with Applications,
63(1), 191-200, 2012.

[16] H. Garg, A hybrid PSO-GA algorithm for con-
strained optimization problems, Applied Mathemat-
ics and Computation, 274, 292-305, 2016.

[17] Z.W. Geem, J.H. Kim, G. Loganathan, A
New Heuristic Optimization Algorithm: Harmony
Search, Simulation, 76(2), 60-68, 2001.

[18] E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley
Longman Publishing Co., 1989.

[19] D. Grochol, L. Sekanina, M. Zadnik, J. Korenek,
V. Kosar, Evolutionary circuit design for fast FPGA-
based classification of network application proto-
cols, Applied Soft Computing, 38, 933-941, 2016.

[20] K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi,
Metaheuristic research: a comprehensive survey,
Artificial Intelligence Review, 52(4), 2191-2233,
2019.

[21] T. Jayabarathi, T. Raghunathan, B.R. Adarsh, P.N.
Suganthan, Economic dispatch using hybrid grey
wolf optimizer, Energy, 111, 630-641, 2016.

[22] D. Karaboga, B. Basturk, 2007, Artificial bee
colony (ABC) optimization algorithm for solving
constrained optimization problems, LNAI, 4529,
Berlin:Springer-Verlag, 789–98, 2007.

[23] J. Kennedy, Particle swarm optimization, Encyclo-
pedia of Machine Learning, 760-766, 2010.

[24] J. Kennedy, R. Eberhart, Particle swarm optimiza-
tion, Proc. IEEE Int. Conf. on Neural Networks, 4,
1942-1948, 1995.

[25] E. Krell, A. Sheta, A.P.R. Balasubramanian, S.A.
King, Collision-Free Autonomous Robot Naviga-
tion in Unknown Environments Utilizing PSO for
Path Planning. J. of Artificial Intelligence and Soft
Computing Research, 9(4), 267-282, 2019.

[26] K. Łapa, Meta-optimization of multi-objective
population-based algorithms using multi-objective
performance metrics, Information Sciences, 489,
193-204, 2019.

[27] K. Łapa, K. Cpałka, Flexible fuzzy PID controller
(FFPIDC) and a nature-inspired method for its con-
struction, IEEE Trans. on Industrial Informatics,
14(3), 1078-1088, 2018.

[28] K. Łapa, K. Cpałka, L. Wang, New method for de-
sign of fuzzy systems for nonlinear modelling using
different criteria of interpretability, Artificial Intelli-
gence and Soft Computing, LNCS, 8467, Springer,
217-232, 2014.

[29] K. Łapa, K. Cpałka, M. Zalasiński, Algorithm
Based on Population with a Flexible Search Mecha-
nism, IEEE Access, 7, 132253-132270, 2019.

[30] J. Luo, J. Liu, Y. Hu, An MILP model and a hybrid
evolutionary algorithm for integrated operation op-
timisation of multi-head surface mounting machines
in PCB assembly, Int. J. of Production Research,
55(1), 145-160, 2017.

[31] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf
optimizer, Advances in Engineering Software, 69,
46-61, 2014.

[32] S. Mirjalili, A. Lewis, The whale optimization al-
gorithm, Advances in Engineering Software, 95, 51-
67, 2016.

[33] M. Mizera, P. Nowotarski, A. Byrski, M. Kisiel-
Dorohinicki, Fine Tuning of Agent-Based Evolu-
tionary Computing, J. of Artificial Intelligence and
Soft Computing Research, 9(2), 81-97, 2019.

170 Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

[34] K. Ono, Y. Hanada, M. Kumano, M. Kimura,
Enhancing Island Model Genetic Programming by
Controlling Frequent Trees, J. of Artificial Intelli-
gence and Soft Computing Research, 9(1), 51-65,
2019.

[35] E. Osaba, F. Diaz, E. Onieva, Golden ball: a novel
meta-heuristic to solve combinatorial optimization
problems based on soccer concepts, Applied Intelli-
gence, 41(1), 145-166, 2014.

[36] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi,
GSA: A Gravitational Search Algorithm, Informa-
tion Sciences, 179(13), 2232-2248, 2009.

[37] L. Rutkowski, Identification of MISO nonlinear re-
gressions in the presence of a wide class of distur-
bances. IEEE Trans. on Information Theory, 37(1),
214-216, 1991.

[38] L. Rutkowski, Computational intelligence: meth-
ods and techniques, Springer Science & Business
Media, 2008.

[39] S. Sadiqbatcha, S. Jafarzadeh, Y. Ampatzidis, Par-
ticle Swarm Optimization for Solving a Class of
Type-1 And Type-2 Fuzzy Nonlinear Equations, J.
of Artificial Intelligence and Soft Computing Re-
search, 8(2), 103-110, 2018.

[40] K. Sörensen, Metaheuristics—the metaphor ex-
posed, Int. Trans. in Operational Research, 22(1),
3-18, 2015.

[41] R. Storn, K. Price, Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces, J. of Global Optimization, 11(4),
341-359, 1997.

[42] J. Szczypta, A. Przybył, K. Cpałka, Some as-
pects of evolutionary designing optimal controllers,
Artificial Intelligence and Soft Computing, LNCS,
7895, Springer, 91-100, 2013.

[43] Y. Tan, Y. Zhu, Fireworks Algorithm for Optimiza-
tion, LNCS, 6145, 355-364, 2010.

[44] G. Tambouratzis, Using particle swarm optimiza-
tion to accurately identify syntactic phrases in free
text. J. of Artificial Intelligence and Soft Computing
Research, 8(1), 63-77, 2018.

[45] D. Teodorovic, P. Lucic, G. Markovic, M. D. Orco,
Bee Colony Optimization: Principles and Applica-
tions, 2006 8th Seminar on Neural Network Appli-
cations in Electrical Engineering, 2006.

[46] B. Wang, X. Jin, B. Cheng, Lion pride optimizer:
An optimization algorithm inspired by lion pride be-
havior, Science China Information Sciences, 55(10),
2369-2389, 2012.

[47] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G.
Hernandez-Diaz, Problem Definitions and Eval-
uation Criteria for the CEC 2013 Special Ses-
sion on Real-Parameter Optimization, https://al-
roomi.org/multimedia/ CEC_Database/ CEC2013/
RealParameterOptimization/ _TechnicalReport.pdf,
2013.

[48] Y. Xu, O. Ding, R. Qu, K. Li, Hybrid multi-
objective evolutionary algorithms based on decom-
position for wireless sensor network coverage op-
timization, Applied Soft Computing, 68, 268-282,
2018.

[49] X. Yang, Firefly Algorithms for Multimodal Opti-
mization, Stochastic Algorithms: Foundations and
Applications, 169-178, 2009.

[50] X. Yang, S. Deb, Cuckoo Search via Levy flights,
2009 World Congress on Nature & Biologically In-
spired Computing, 2009.

[51] X. Yang, A new metaheuristic bat-inspired algo-
rithm, Nature inspired cooperative strategies for op-
timization, 65-74, 2010.

[52] M. Zalasiński, K. Cpałka, New algorithm for on-
line signature verification using characteristic hy-
brid partitions, Information Systems Architecture
and Technology: Proc. of 36th Int. Conf. on In-
formation Systems Architecture and Technology –
ISAT 2015 – Part IV, Advances in Intelligent Sys-
tems and Computing, 432, Springer, 147-157, 2016.

[53] M. Zalasiński, K. Cpałka, Novel algorithm for
the on-line signature verification using selected dis-
cretization points groups, Artificial Intelligence and
Soft Computing, LNCS, 7894, Springer, 493-502,
2013.

[54] M. Zalasiński, K. Cpałka, Y. Hayashi, New fast al-
gorithm for the dynamic signature verification us-
ing global features values, Artificial Intelligence and
Soft Computing, LNCS, 9120, Springer, 175-188,
2015.

[55] M. Zalasiński, K. Cpałka, E. Rakus-Andersson, An
idea of the dynamic signature verification based on
a hybrid approach, Artificial Intelligence and Soft
Computing, LNCS, 9693, Springer, 232-246, 2016.

[56] M. Zalasiński, K. Łapa, K. Cpałka, Prediction of
values of the dynamic signature features, Expert
Systems with Applications, 104, 86-96, 2018.

171Krystian Łapa, Krzysztof Cpałka, Łukasz Laskowski, Andrzej Cader, Zhigang Zeng

[34] K. Ono, Y. Hanada, M. Kumano, M. Kimura,
Enhancing Island Model Genetic Programming by
Controlling Frequent Trees, J. of Artificial Intelli-
gence and Soft Computing Research, 9(1), 51-65,
2019.

[35] E. Osaba, F. Diaz, E. Onieva, Golden ball: a novel
meta-heuristic to solve combinatorial optimization
problems based on soccer concepts, Applied Intelli-
gence, 41(1), 145-166, 2014.

[36] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi,
GSA: A Gravitational Search Algorithm, Informa-
tion Sciences, 179(13), 2232-2248, 2009.

[37] L. Rutkowski, Identification of MISO nonlinear re-
gressions in the presence of a wide class of distur-
bances. IEEE Trans. on Information Theory, 37(1),
214-216, 1991.

[38] L. Rutkowski, Computational intelligence: meth-
ods and techniques, Springer Science & Business
Media, 2008.

[39] S. Sadiqbatcha, S. Jafarzadeh, Y. Ampatzidis, Par-
ticle Swarm Optimization for Solving a Class of
Type-1 And Type-2 Fuzzy Nonlinear Equations, J.
of Artificial Intelligence and Soft Computing Re-
search, 8(2), 103-110, 2018.

[40] K. Sörensen, Metaheuristics—the metaphor ex-
posed, Int. Trans. in Operational Research, 22(1),
3-18, 2015.

[41] R. Storn, K. Price, Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces, J. of Global Optimization, 11(4),
341-359, 1997.

[42] J. Szczypta, A. Przybył, K. Cpałka, Some as-
pects of evolutionary designing optimal controllers,
Artificial Intelligence and Soft Computing, LNCS,
7895, Springer, 91-100, 2013.

[43] Y. Tan, Y. Zhu, Fireworks Algorithm for Optimiza-
tion, LNCS, 6145, 355-364, 2010.

[44] G. Tambouratzis, Using particle swarm optimiza-
tion to accurately identify syntactic phrases in free
text. J. of Artificial Intelligence and Soft Computing
Research, 8(1), 63-77, 2018.

[45] D. Teodorovic, P. Lucic, G. Markovic, M. D. Orco,
Bee Colony Optimization: Principles and Applica-
tions, 2006 8th Seminar on Neural Network Appli-
cations in Electrical Engineering, 2006.

[46] B. Wang, X. Jin, B. Cheng, Lion pride optimizer:
An optimization algorithm inspired by lion pride be-
havior, Science China Information Sciences, 55(10),
2369-2389, 2012.

[47] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G.
Hernandez-Diaz, Problem Definitions and Eval-
uation Criteria for the CEC 2013 Special Ses-
sion on Real-Parameter Optimization, https://al-
roomi.org/multimedia/ CEC_Database/ CEC2013/
RealParameterOptimization/ _TechnicalReport.pdf,
2013.

[48] Y. Xu, O. Ding, R. Qu, K. Li, Hybrid multi-
objective evolutionary algorithms based on decom-
position for wireless sensor network coverage op-
timization, Applied Soft Computing, 68, 268-282,
2018.

[49] X. Yang, Firefly Algorithms for Multimodal Opti-
mization, Stochastic Algorithms: Foundations and
Applications, 169-178, 2009.

[50] X. Yang, S. Deb, Cuckoo Search via Levy flights,
2009 World Congress on Nature & Biologically In-
spired Computing, 2009.

[51] X. Yang, A new metaheuristic bat-inspired algo-
rithm, Nature inspired cooperative strategies for op-
timization, 65-74, 2010.

[52] M. Zalasiński, K. Cpałka, New algorithm for on-
line signature verification using characteristic hy-
brid partitions, Information Systems Architecture
and Technology: Proc. of 36th Int. Conf. on In-
formation Systems Architecture and Technology –
ISAT 2015 – Part IV, Advances in Intelligent Sys-
tems and Computing, 432, Springer, 147-157, 2016.

[53] M. Zalasiński, K. Cpałka, Novel algorithm for
the on-line signature verification using selected dis-
cretization points groups, Artificial Intelligence and
Soft Computing, LNCS, 7894, Springer, 493-502,
2013.

[54] M. Zalasiński, K. Cpałka, Y. Hayashi, New fast al-
gorithm for the dynamic signature verification us-
ing global features values, Artificial Intelligence and
Soft Computing, LNCS, 9120, Springer, 175-188,
2015.

[55] M. Zalasiński, K. Cpałka, E. Rakus-Andersson, An
idea of the dynamic signature verification based on
a hybrid approach, Artificial Intelligence and Soft
Computing, LNCS, 9693, Springer, 232-246, 2016.

[56] M. Zalasiński, K. Łapa, K. Cpałka, Prediction of
values of the dynamic signature features, Expert
Systems with Applications, 104, 86-96, 2018.

EVOLUTIONARY ALGORITHM WITH . . .

sets: Applications to regression datasets, Engineer-
ing Applications of Artificial Intelligence, 59, 236-
243, 2017.

[7] S. Chu, P. Tsai, J. Pan, Cat Swarm Optimization,
LNCS, 4099, 854-858, 2006.

[8] P. Civicioglu, Backtracking search optimization
algorithm for numerical optimization problems,
Applied Mathematics and Computation, 219(15),
8121–8144, 2013.

[9] K. Cpałka, Design of interpretable fuzzy systems,
Springer, 2017.

[10] M. Črepinšek, S. H. Liu, M. Mernik, Exploration
and exploitation in evolutionary algorithms: A sur-
vey, ACM computing surveys (CSUR), 45(3), 1-33,
2013.

[11] L. Davis, Handbook of genetic algorithms, 1991.

[12] D. Dawar & S.A. Ludwig, Effect of Strategy Adap-
tation on Differential Evolution in Presence and Ab-
sence of Parameter Adaptation: An Investigation,
J. of Artificial Intelligence and Soft Computing Re-
search, 8(3), 211-235, 2018.

[13] J. Del Ser, E. Osaba, D. Molina, X.S. Yang, S.
Salcedo-Sanz, D. Camacho, S. Das, P.N. Suganthan,
C.A.C. Coello, F. Herrera, Bio-inspired computa-
tion: Where we stand and what’s next, Swarm and
Evolutionary Computation, 48, 220-250, 2019.

[14] H. Faris, I. Aljarah, M.A. Al-Betar, S. Mirjalili,
Grey wolf optimizer: a review of recent variants and
applications, Neural Computing and Applications,
30(2), 2018, 413-435.

[15] A.H. Gandomi, X.S. Yang, S. Talatahari, S. Deb,
Coupled eagle strategy and differential evolution
for unconstrained and constrained global optimiza-
tion, Computers & Mathematics with Applications,
63(1), 191-200, 2012.

[16] H. Garg, A hybrid PSO-GA algorithm for con-
strained optimization problems, Applied Mathemat-
ics and Computation, 274, 292-305, 2016.

[17] Z.W. Geem, J.H. Kim, G. Loganathan, A
New Heuristic Optimization Algorithm: Harmony
Search, Simulation, 76(2), 60-68, 2001.

[18] E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley
Longman Publishing Co., 1989.

[19] D. Grochol, L. Sekanina, M. Zadnik, J. Korenek,
V. Kosar, Evolutionary circuit design for fast FPGA-
based classification of network application proto-
cols, Applied Soft Computing, 38, 933-941, 2016.

[20] K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi,
Metaheuristic research: a comprehensive survey,
Artificial Intelligence Review, 52(4), 2191-2233,
2019.

[21] T. Jayabarathi, T. Raghunathan, B.R. Adarsh, P.N.
Suganthan, Economic dispatch using hybrid grey
wolf optimizer, Energy, 111, 630-641, 2016.

[22] D. Karaboga, B. Basturk, 2007, Artificial bee
colony (ABC) optimization algorithm for solving
constrained optimization problems, LNAI, 4529,
Berlin:Springer-Verlag, 789–98, 2007.

[23] J. Kennedy, Particle swarm optimization, Encyclo-
pedia of Machine Learning, 760-766, 2010.

[24] J. Kennedy, R. Eberhart, Particle swarm optimiza-
tion, Proc. IEEE Int. Conf. on Neural Networks, 4,
1942-1948, 1995.

[25] E. Krell, A. Sheta, A.P.R. Balasubramanian, S.A.
King, Collision-Free Autonomous Robot Naviga-
tion in Unknown Environments Utilizing PSO for
Path Planning. J. of Artificial Intelligence and Soft
Computing Research, 9(4), 267-282, 2019.

[26] K. Łapa, Meta-optimization of multi-objective
population-based algorithms using multi-objective
performance metrics, Information Sciences, 489,
193-204, 2019.

[27] K. Łapa, K. Cpałka, Flexible fuzzy PID controller
(FFPIDC) and a nature-inspired method for its con-
struction, IEEE Trans. on Industrial Informatics,
14(3), 1078-1088, 2018.

[28] K. Łapa, K. Cpałka, L. Wang, New method for de-
sign of fuzzy systems for nonlinear modelling using
different criteria of interpretability, Artificial Intelli-
gence and Soft Computing, LNCS, 8467, Springer,
217-232, 2014.

[29] K. Łapa, K. Cpałka, M. Zalasiński, Algorithm
Based on Population with a Flexible Search Mecha-
nism, IEEE Access, 7, 132253-132270, 2019.

[30] J. Luo, J. Liu, Y. Hu, An MILP model and a hybrid
evolutionary algorithm for integrated operation op-
timisation of multi-head surface mounting machines
in PCB assembly, Int. J. of Production Research,
55(1), 145-160, 2017.

[31] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf
optimizer, Advances in Engineering Software, 69,
46-61, 2014.

[32] S. Mirjalili, A. Lewis, The whale optimization al-
gorithm, Advances in Engineering Software, 95, 51-
67, 2016.

[33] M. Mizera, P. Nowotarski, A. Byrski, M. Kisiel-
Dorohinicki, Fine Tuning of Agent-Based Evolu-
tionary Computing, J. of Artificial Intelligence and
Soft Computing Research, 9(2), 81-97, 2019.

Krystian Łapa received the
M.Sc. and Ph.D. degrees from the
Częstochowa University of Technol-
ogy, Częstochowa, Poland, in 2010 and
2015, respectively. He is currently an
Associate Professor with the Depart-
ment of Computer Engineering. Dr.
Łapa has authored over 40 publica-
tions. His current research interests

include computational intelligence, nature-inspired methods,
and expert systems.

Krzysztof Cpałka was born in
Częstochowa, Poland, in 1972. re-
ceived the M.Sc. and Ph.D. degrees
from the Częstochowa University of
Technology, Częstochowa, Poland, in
1997 and 2002, respectively, and the
D.Sc. degree in Computer Science
from the Systems Research Institute
of the Polish Academy of Sciences in

Warsaw, Warsaw, Poland, in 2010. Since 2010, he has been
a professor with the Department of Computer Engineering,
Częstochowa University of Technology. He is the author or
co-author of two books and more than 100 papers, includ-
ing several papers in various series of IEEE Transactions. He
was a recipient of the IEEE Transactions on Neural Networks
Outstanding Paper Award in 2005. His research interests in-
clude soft computing, computational intelligence, machine
learning, and bio-inspired global optimization algorithms
and their applications.

Łukasz Laskowski received
Ms.C. and Ph.D. degrees from the
Częstochowa University of Technolo-
gy, Częstochowa, Poland, in 2004 and
2009, respectively. He is currently an
Associate Professor with the Depart-
ment of Molecular Engineering and
Nanoelectronics at Institut of Nuclear
Physics of the Polish Academy of Sci-

ences. Dr. Laskowski has authored over 30 publications. His
current research interests include artificial neural networks,
nanoelectronics, molecular engineering, and nanotechnology.

Andrzej Cader is a professor at Uni-
versity of Social Science in Łódź, Po-
land. He received the Ph.D. degree in
biocybernetics and biomedical engi-
neering from the Medical University
in Łódź, Poland. His research interests
include intelligent systems science
based on several architectures such as
neural networks and complex systems.

He is also currently engaged in time series analysis and chaos
theory.

Zhigang Zeng received his B.S. de-
gree from Hubei Normal University,
Huangshi, China, and his M.S. de-
gree from Hubei University, Wuhan,
China, in 1993 and 1996, respectively,
and his Ph.D. degree from Huazhong
University of Science and Technol-
ogy, Wuhan, China, in 2003. He is a
professor in School of Automation,

Huazhong University of Science and Technology, Wuhan,
China, and also in the Key Laboratory of Image Process-
ing and Intelligent Control of Education Ministry of China,
Wuhan, China. His current research interests include neural
networks, switched systems, computational intelligence, sta-
bility analysis of dynamic systems, pattern recognition and
associative memories.

