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In the present paper the effect of micropolar squeeze film lubrication between a cylinder and a poroelastic flat 
plate is presented. The synovial fluid is modeled as the micropolar fluid and the articular cartilage is 
considered to be a poroelastic in nature. The modified averaged Reynolds equation accounting for the 
randomized surface roughness structure as well as elastic nature of articular cartilage with micropolar fluid as 
lubricant is derived. The Christensen stochastic theory for rough surfaces is used to study the effect of two 
types of one dimensional surface roughness on the squeeze film characteristics of a cylinder and a rough 
poroelastic flat plate with micropolar fluid. Results are presented for the performance of the synovial joint 
with the experimentally validated values of the cartilage elasticity and permeability. It is observed that, the 
transverse roughness pattern improves the squeeze film characteristics whereas the squeeze film bearing 
performance is affected due to the presence of one-dimensional longitudinal surface roughness. These effects 
are more pronounced for the micropolar fluids. 
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1. Introduction 

Human synovial joints have to withstand complex, 
varied and often harsh loading regimes, been subjected to 
both dynamic and static load under conditions of sliding 
and rolling [1]. The human joint is a self acting and 
dynamically load-bearing structure that uses a porous 
and elastic biomaterial as well as highly non-Newtonian 
lubricant for its functioning. Relative motion between 
two surfaces in contact is characterized by frictional 
forces and wear of one surface or both [2]. The friction 
coefficient is affected by the mechanical properties of the 
materials in contact; the operating conditions and the 
type of lubricant in the contact interface [3]. 

Normal synovial fluid is generally clear or yellowish 
and viscous. It can be briefly described as a dialysate of 
plasma. It contains about one third of the protein 
concentration of the plasma. Synovial fluid contains a 
very important polymer known as hyaluronic acid 
(mucopolysaccharide), which gives the synovial fluid its 
slippery and stingy behavior. It also gives it a 
characteristic non-Newtonian behavior. In recent years, 
considerable attention has been paid by researchers to the 
study of the mechanism of human locomotion, such as 
knee joints and hip joints [4]. 

Cartilage is basically a two-phase deformable porous 

material which can be absorbed or give out fluid owing to 
the established pressure gradient by either squeeze film 
action of the synovial fluid or consolidation of the solid 
matrix by tissue deformation. The schematic diagram of 
synovial knee joint is shown in Fig. 1. The studies of 
Clarke [5], Mow and Lai [6] have pointed out that 
cartilage is a three layered porous medium consisting of a 
superficial tangential zone, a middle zone and a deep 
zone. Nigam et al. [7] investigated the effect of the 
variation of porosity in the upper most layer of the 
cartilage which according to them plays a predominant 
role in the self adjusting nature of the human joint, taking 
a three layered porous medium. Tandon and Rakesh [8] 

 

Fig. 1 A schematic diagram of a synovial knee joint 
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studied the lubrication mechanism occurring in knee 
joint replacement under restricted motion. 

The squeeze film phenomena arise from the behavior 
of two lubricated surfaces approaching each other with a 
normal velocity. Since the viscous lubricant present in 
the film has a resistance it cannot be squeezed out 
instaneously. The problem of normal approach up to 
spherical bodies has been studied by Christensen [9] and 
reported that the effect of elastic deformation profoundly 
influences all aspects of motion when the separation of 
two surfaces becomes narrow enough. Gould [10] 
studied the same problem by considering the lubricant to 
be a function of pressure and temperature and the effect 
of temperature on the characteristics of high pressure 
squeeze films has been determined. The squeeze film 
characteristic between a sphere and a flat plate is studied 
by Conway and Lee [11]. The squeeze film lubrication of 
micropolar fluids has been studied by many investigators 
(Balaram [12], Prawal Sinha [13], Zaheeruddin and Isa 
[14]) and observed an increased load carrying capacity 
and delayed time of approach. 

The theoretical study of bearings has become more 
and more realistic due to the consideration of many 
physical effects such as the non-Newtonian character of 
the lubricants and the surface roughness effects. When 
the size of the surface asperity height is of the same order 
as that of the lubricant film thickness, one cannot neglect 
the surface thickness effects in the study of bearings has 
been sought. Consequently, an attempt has been made 
over the past three decades to study the effect of surface 
roughness on the bearing performance by using both 
deterministic and stochastic methods. The stochastic 
methods determine the gross features of a surface 
roughness profile. For most of the practical lubrication 
applications, the global mean pressure distribution is 
more important. The stochastic methods are best suited 
to characterize the surface roughness asperities effects in 
tribological applications. For the randomly distributed 
asperities Christensen [15] developed the stochastic 
models for hydrodynamic lubrication of rough surfaces. 
Prakash and Tiwari [16] developed stochastic model to 
study the effect of surface roughness on porous bearings 
on the basis of Christensen’s stochastic theory. Bujurke et 
al. [17] studied the effect of surface roughness 
on squeeze film poroelastic bearings with special 
reference to synovial joints. Recently, Naduvinamani and 
Savitramma [18] studied the micropolar fluid squeeze 
film lubrication between rough anisotropic poroelastic 
rectangular plates with a special reference to synovial 
joint lubrication. 

Many investigators recognized the random 
characteristic of the surface roughness and used the 
stochastic theory to model the surface roughness of the 
bearings. 

The experimental results of Sayles et al. [19] revealed 
that cartilage surfaces are rough, and roughness height 
distribution is Gaussian in nature. Hence in this paper, 
the Christensen’s stochastic theory for rough surfaces is 

used to analyze the effect of surface roughness on the 
squeeze film characteristics of cylinder and poro-elastic 
flat plate with micropolar fluids. Two types of 
one-dimensional surface roughness (longitudinal and 
transverse) patterns are considered. The modified 
stochastic Reynolds type equation governing the mean 
film pressure in the presence of micropolar fluids are 
derived for the two types of roughness patterns. The 
closed form expressions for the mean film pressure, the 
mean load carrying capacity and squeeze film time are 
obtained. 

2. Mathematical formulation of the problem 

The geometry and co-ordinates of the problem are as 
shown in the Fig. 2. The lower surface is fixed rough 
poroelastic matrix. The upper surface is a rigid, long 
cylinder that is approaching towards the lower surface 

with a squeezing velocity 
0

h
V

t

   
. This bearing 

configuration is more or less similar to squeezing action 
of knee joint. The lubricant in the joint cavity is taken to 
be Eringen’s [20] micropolar fluid. The stochastic film 
thickness H is represented by 

( ) ( , , )sH h x h x z       (1) 

where 
2

0( )
2

x
h x h

R

 
  
 

denotes the nominal smooth 

part of the film geometry, while hs is the part due to the 
surface asperities measured from the nominal level and 
is a randomly varying quantity of zero mean, ξ is an 
index parameter determining a definite roughness 
arrangement, hence for a given value of ξ, the surface 
component hs of the film thickness becomes a 
deterministic function of the space variables. 

2.1. Region-I (fluid film region) 
The basic equations for the flow of micropolar fluid 

in the film region in vectorial form are  

  0V
t

 
  


    (2) 

 

Fig. 2 Geometry of simplified model for the knee joint
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   (4) 

For the three dimensional steady motion of an 
incompressible micropolar fluid under the usual 
assumption of  hydrodynamic lubrication with negligible 
body forces and body couples, the field equations (2) to 
(4) reduces to  
Conservation of mass 

0
u v w

x y z

  
  

  
    (5) 

Conservation of linear momentum 
2

2
22

vu p

y xy

 
        

,    (6) 

0
p

y


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
,     (7) 
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22

vw p

y zy

 
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,    (8) 

Conservation of angular momentum 
2

1
12

2 0
v w

v
yy

  
 

  


,    (9) 

2
2

22
2 0

v u
v

yy
  
 

  


,   (10) 

where u, v and w are velocity components along x, y and 
z axes respectively and ν1, ν2 are the micropolar velocity 
components in the x and z directions respectively and p 
is the pressure in the film region. 

2.2. Region-II (poro-elastic region)   
Following Torzilli and Mow [21] and Collins [22] the 

coupled equations of motion for deformable cartilage 
matrix and the mobile portion of the fluid contained in it 
can be written in the form. 

Matrix:  

2

*

2 1
divm m

U U
V

t k t
 

  
      

  
        (11a) 

Fluid: 

*

1
divf f

DV U
V

Dt k t
 

 
     

  
        (11b) 

where ρm and ρf denote the densities of solid matrix and 

fluid respectively, U


 is the corresponding displacement 

vector, V


 is the fluid velocity vector, k* is the 
permeability of the cartilage, and D/Dt denotes the 
material derivative. Equations (11a) and (11b) represent 
the force balance for the linear elastic solid and viscous 
fluid components, of the cartilage, respectively. In these 
equations, left hand terms denote the local forces (mass 

X acceleration) which are counter balanced by right 
porous media driving force respectively. 

In fact these two equations may be viewed simply as 
a generalized form of Darcy’s law for unsteady flow in a 
deformable porous medium in terms of the relative 

velocity U
V

t

 
   

 
 between the moving cartilage and 

the fluid contained in its pores. 
The classical stress tensor   for a continuous 

homogeneous medium may be expressed for the matrix 
and fluid, respectively as 

1
1m p I N e AeI             (12a) 

1f p I EeI              (12b) 

where N1, A and E are the elastic parameters of the 
cartilage. After neglecting the inertia terms, addition of 
equations (11a) and (11b) eliminate the pressure and 
fluid velocity and thereafter, taking the divergence of 
the results, yields the following Laplace equation. 

2 0e      (13) 

where  dive U


 is known as the cartilage dilatation. 

Following Hori and Mockers [23] we characterize the 
cartilage dilatation by a sample similar linear equation 
in terms of corresponding average bulk modulus K, in 
the following form  

1
0

p
e e

K
      (14) 

The equation describing pressure in the porous region 
is obtained by using equations (13) and (14)  

2
1 0p      (15) 

The relevant boundary conditions for the velocity fields 
are 

1 20, , 0 at 0nu w v v v v y       ,  (16a) 

0 1 20, , 0 at
H

u w v V v v y H
t

           
 (16b) 

3. Solution of the problem 

Solving the equations (6)-(10) for the velocity 
components u, v and w microrotation velocity 

components 1v  and 2v  with the respective boundary 

conditions given in equations (16a) and (16b) we get 

 

2
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where for i =1, 2  
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and 

1 1

2 2

, ,
2 4

N
m N l

l

 
  

   
          

Integrate the continuity equation (5) with respect to y 
over the film thickness H and using the expression (17) 
and (18) yields the generalized Reynolds equation is 
obtained in the form 

  0

( , , ) ( , , )

12 12
yn

p p
f N l H f N l H

x x z z

H
v

t
 



               


  


 (21) 

Integrating equation (15) with respect to y in the interval 
(−δ, 0) and also using the Morgan-Cameron 
approximation with the condition of solid backing 

1 0
p

y

 
  

 at y = −δ we get
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  (22) 

By neglecting inertia terms, equation (11b) may be 
arranged in terms of relative velocity in the form 

 *1
1

d

d

U
V k p E e

t

 
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and elimination of e through equation (15) and (23) 
gives 

*1
1

d
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d
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t K
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  (24) 

The normal component of the relative fluid velocity at 

the cartilage surface is   

* 1

0

1n

y

pE
v k

K y 

       
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By using the equation (22) in equation (25) we get  
2

*
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2 2
1n

E
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K x z

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

 
  (26) 

Integrating equation (5) across the fluid film and using 
the boundary conditions for v in equations (16a) and 
(16b) and also using the expression (17), (18) and (26) 
the modified Reynolds equation is obtained in the form 

 
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( )
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, , 12 1

( )
12

E E p
f N l H k

x K x

E E p
f N l H k

z K z

E H

t

 

 



              
               


 


 (27) 

Taking the expectation on both sides of above equation 
we get, the averaged modified Reynolds equation in the 
form 
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 (28) 

And ( ) ( ) ( )ds sE g g f h h




     (29) 

where f(hs) is the probability density function of the 
stochastic film thickness hs. 

In accordance with Christensen [15], we assume that 

2 2 3
7

35
( ) ,

( ) 32
0 , elsewhere

s s
s

c h c h c
f h c

     


 (30) 

In accordance with the Christensen [15] stochastic 
theory, the analysis is done for the two types of 
one-dimensional surface roughness patterns, viz., 
one-dimensional longitudinal roughness pattern and 
one-dimensional transverse roughness pattern. 

For one-dimensional longitudinal roughness pattern, 
the roughness striations are in the form of ridges and 
valleys in the x-direction in this case the non-dimensional 
film thickness assumes the form 

( ) ( , )sH h x h z       (31) 
and the stochastic modified Reynolds (28) takes the 
form 
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For one-dimensional transverse roughness pattern, 
the roughness striations are in the form of ridges and 
valleys in the z-direction in this case the non-dimensional 
film thickness assumes the form 

( ) ( , )sH h x h x      (33) 
The modified Reynolds type equation (28) takes the 
form 
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For an axisymmetric case these equations reduce to 
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Where 
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The relevant boundary conditions are 

0 atp x L            (36a) 

d ( )
0 at 0

d

E p
x

x
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Integrating the stochastic Reynolds type equation with 
respect to x and using the boundary condition (36a) and 
(36b) we get 
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Introducing the following non-dimensional variables 
and parameter 
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In to the above equation, we get the non-dimensional 
modified Reynolds type equation in the form 
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 (38) 

The mean load carrying capacity E(W) is given by 

   ( ) d
L

L

E W E p x x
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The non-dimensional load carrying capacity is obtained 
as 
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For any given constant load, the time-height relation in 
dimensionless form is obtained as 
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12
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4. Results and discussion 

The effect of surface roughness pattern on the 
squeeze film characteristics of a cylinder and a 
poro-elastic flat plate lubricated with micropolar fluids 
are obtained for different values of various 
non-dimensional parameters such as coupling number, 

1/2
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the parameter, 
0

l
l

h

 
 
 

 characterizes 

the interaction of the bearing geometry with the lubricant 

properties. In the limiting case as l → 0 the effect of 
microstructures becomes negligible. The effect of 
permeability is observed through the non-dimensional 

permeability parameter, 
*

3
0

k

h


 
 
 

 and it is to be noted 

that as Ψ → 0 the problem reduces to the corresponding 
solid case. 
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The effect of surface roughness is characterized by 

the roughness parameter 
0

c
c

h

 
 
 

 and it is to be noted 

that as c → 0 the problem reduces to the corresponding 

smooth case and as l , N → 0 it reduces to the 
corresponding Newtonian case. 

4.1. Squeeze film pressure 
The variation of non-dimensional squeeze film 

pressure P  with X  for different values of N as a 
function is shown in Fig. 3 with the parameter values of 

l = 0.2, E/K = 0.3, c = 0.3, k = 7.65 × 10-5 and  = 
300 for both types of roughness pattern. It is observed 
that, the effect of N is to increase P  in either case as 
compared to the Newtonian case. Further the increase in 
P  is more pronounced for the transverse roughness 
pattern as compared to the longitudinal roughness pattern. 
Fig. 4 shows the variation P  with X  for different 

values of l  with N = 0.2, E/K = 0.3, c = 0.3, k = 7.65 
× 10-5 and  = 300 for both types of roughness patterns. 

It is observed that, the effect of l  is to increase P  in 
either cases as compared to the Newtonian case. Further 
the increase in P  is more pronounced for the transverse 
roughness pattern as compared to the longitudinal 
roughness pattern. 

Fig. 5 shows the variation of P  with X  for 

different values of E/K with N = 0.2, l = 0.2, c = 0.3, 

k = 7.65 × 10-5 and  = 300 for both types of roughness 

patterns. It is observed that, P  increases with X  and 
decreases for increasing values of E/K for both the types 
of roughness pattern. Further the increase in P  is more 
pronounced for the transverse roughness pattern as 
compared to the longitudinal roughness pattern. The 
variation of non-dimensional film pressure P  with X  
for different values of roughness parameter c  as a 

 

 

Fig. 4 Variation of non-dimensional squeeze film 

pressure P  with X  for different values of l  

with N = 0.2, E/K = 0.3, c = 0.2, k = 7.65 × 
10-5 and  = 300 
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Fig. 3 Variation of non-dimensional squeeze film 
pressure P  with X  for different values of N 
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Fig. 5 Variation of non-dimensional squeeze film 
pressure P  with X  for different values of 

E/K with N =0.2, l = 0.2, c = 0.2, k = 7.65 × 
10-5 and  = 300 
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Fig. 6 Variation of non-dimensional squeeze film 
pressure P  with X  for different values of c  

with N = 0.2, E/K = 0.3, l = 0.2, k = 7.65 × 
10-5 and  = 300 
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function is shown in the Fig. 6 with the parameter values 
of   for both types of roughness patterns. It is observed 
that, P  increases (decreases) as c  increases for 
transverse (longitudinal) roughness pattern. 

4.2. Load carrying capacity 
The variation of non-dimensional load W  with N 

for different values of l  as a function with the 

parameter values of E/K = 0.3, c = 0.3, k = 7.65 × 10-5 
and  = 300 is shown in the Fig. 7 it is observed that, 

W  increases for the increasing values of N and this 

increase is more accentuated for larger of l  both types 
of roughness pattern. Further the increase in W  is more 
pronounced for the transverse roughness pattern as 
compared to the longitudinal roughness pattern. Fig. 8 
shows the variation of non-dimensional load W  with N 

for different values of E/K with l = 0.2, c = 0.3, k = 
7.65 × 10-5 and  = 300 for both types of roughness patterns. It is observed that, W  increases with N and 

decreases for increasing values of E/K for both the types 
of roughness pattern. Further the increase in P  is more 
pronounced for the transverse roughness pattern as 
compared to the longitudinal roughness pattern. The 
variation of non-dimensional load W  with N for 
different values of roughness parameter c  as a function 
is shown in the Fig. 9 with the parameter values of E/K = 

0.3, l = 0.2, k = 7.65 × 10-5 and  = 300 for both 

types of roughness patterns. It is observed that, P  
increases (or decreases) as c  increases for transverse 
(or longitudinal) roughness pattern. 

4.3. Squeeze film time 
The variation of non-dimensional squeeze film time 

T  with 0h  for different values of N as a function is 

shown in Fig. 10 with the parameter values of l = 0.2, 

E/K = 0.3, c = 0.3, k = 7.65 × 10-5 and  = 300 for both 

types of roughness pattern. It is observed that, T  
increases for the decreasing values of N for both the types 
roughness pattern. Further the increase in T  is more 
pronounced for the transverse roughness pattern as 
compared to the longitudinal roughness pattern. The 
variation of non-dimensional squeeze film time T  with 

0h  for different values of l  as a function is shown in 

Fig. 11 with the parameter values of N = 0.2, E/K = 0.3, 

c = 0.3, k = 7.65 × 10-5 and  = 300 for both types of 

roughness pattern. It is observed that, T  increases for 

the decreasing values of l  for both the types roughness 

pattern. Further the increase in T  is more pronounced 
for the transverse roughness pattern as compared to the 
longitudinal roughness pattern. Fig. 12 shows the 
variation of non-dimensional squeeze film time T  with 

0h  for different values of E/K with N = 0.2, l = 0.2, c = 

 

Fig. 9 Variation of non-dimensional load carrying 
capacity W  with N for different values of c  
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Fig. 7 Variation of non-dimensional load carrying 
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Fig. 8 Variation of non-dimensional load carrying 
capacity W  with N for different values of E/K 

with l = 0.2, c = 0.3, k = 7.65 × 10-5 and 
= 300 
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0.3, k = 7.65 × 10-5 and  = 300 for both types of 

roughness patterns. It is observed that, T  increases with 

0h  and increases for increasing values of E/K for both 

the types of roughness pattern. Further the increase in T  
is more pronounced for the transverse roughness pattern 
as compared to the longitudinal roughness pattern. The 
variation of non-dimensional squeeze film time T  with 

0h  for different values of roughness parameter c  as a 

function is shown in the Fig. 13 with the parameter 

values of N = 0.2, E/K = 0.3, l = 0.2, k = 7.65 × 10-5 
and  = 300 for both types of roughness patterns. It is 
interesting to note that the effect of c  is to increases (or 
decreases) the response time of the squeeze film for the 
transverse (or longitudinal) roughness pattern, as 
compared to the corresponding smooth case. 

5. Conclusions 

On the basis of Eringen’s micropolar fluid theory and 
Christensen’s stochastic theory for rough surfaces, this 
paper predicts the effect of micropolar on the squeeze 
film characteristics of cylinder and a poro-elastic flat 
plate. The following conclusions can be drawn on the 
basis of the results and discussion 

1. The presence of the microstructure additives in 
the lubricants enhances the load carrying 
capacity and squeeze film time as compared to 
the corresponding Newtonian case. 

2. The presence of one-dimensional Transverse 
(longitudinal) roughness pattern on the 
poro-elastic flat plate increases (decreases) the 
load carrying capacity and the squeeze film time 
as compared to the corresponding smooth case. 

3. The poro-elastic nature of cartilage reduces to 
the load carrying capacity and increases the 
squeeze film time for increasing values of the 

 

Fig. 10 Variation of non-dimensional squeeze film time 
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Fig. 11 Variation of non-dimensional squeeze film time 

T  with 0h  for different values of l  with 

E/K = 0.3, N = 0.2, c = 0.3, k = 7.65 × 10-5 
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Fig. 12 Variation of non-dimensional squeeze film time 

T  with 0h  for different values of E/K with N 
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Fig. 13 Variation of non-dimensional squeeze film time 
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permeability and reverse trend is observed for 
the increasing values of the elastic parameter. 

Acknowledgment 

One of the authors Savitramma G K sincerely 
acknowledges the financial assistance of University 
Grants Commission (UGC), New Delhi under BSR 
Research Fellowship in Science for Meritorious 
Students (RFSMS).  

Nomenclature 

e cartilage dilatation 
E Expectancy operator 
E/K Elastic parameter 
c Roughness parameter 
c  Non-dimensional roughness parameter  
h Film thickness measured between the nominal 

mean levels of the bearing surfaces. 
2

0 2

x
h

R

 
  
 

 

0h  Initial minimum film thickness  

h  Non-dimensional nominal film thickness

0

h

h

 
 
 

 

K cartilage bulk modulus 
k* Cartilage permeability 

k  Non-dimensional permeability (=k*/h0
2)  

L characteristic length 
l Characteristic length of the polar suspension
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4




        
 

l  Non-dimensional form of 
0

l
l

h

 
 
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N Coupling number 
 

1/2

2


 

          
 

p Fluid film pressure  
P  Non-dimensional fluid film pressure 
p1 Pressure in the porous region  
R Radius of the cylinder  
t Squeeze film time 
T  Non-dimensional squeeze film time

  2
0

2

E W h t

L

 
  
 

 

U  Displacement vector 

V  Fluid velocity vector in the porous region 
u ,v, w Velocity components in the film region 
V0 Approach velocity (=dH/dt) 
νn Normal component of relative velocity 

ν1, ν2 Microrotation velocity components  
W Load carrying capacity 
W  Non-dimensional load carrying capacity

 2
0

2( / )

h E W

h t L

 
    

 

x, y, z Cartesian co-ordinates  
γ Viscosity coefficient for micropolar fluids 
µ Classical viscosity coefficients 
ρ Density 
δ Cartilage thickness 
  Non-dimensional cartilage thickness (= δ/h0)  
χ Spin viscosity coefficient 
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