
Fighting Against XSS Attacks:
A Usability Evaluation of OWASP ESAPI Output Encoding

Chamila Wijayarathna
University of New South Wales

Australia
c.diwelwattagamage@student.unsw.edu.au

Nalin A. G. Arachchilage
University of New South Wales

Australia
nalin.asanka@adfa.edu.au

Abstract

Cross Site Scripting (XSS) is one of the most
critical vulnerabilities exist in web applications. XSS
can be prevented by encoding untrusted data that
are loaded into browser content of web applications.
Security Application Programming Interfaces (APIs)
such as OWASP ESAPI provide output encoding
functionalities for programmers to use to protect their
applications from XSS attacks. However, XSS still
being ranked as one of the most critical vulnerabilities
in web applications suggests that programmers are
not effectively using those APIs to encode untrusted
data. Therefore, we conducted an experimental study
with 10 programmers where they attempted to fix
XSS vulnerabilities of a web application using the
output encoding functionality of OWASP ESAPI. Results
revealed 3 types of mistakes that programmers made
which resulted in them failing to fix the application by
removing XSS vulnerabilities. We also identified 16
usability issues of OWASP ESAPI. We identified that
some of these usability issues as the reason for mistakes
that programmers made. Based on these results, we
provided suggestions on how the usability of output
encoding APIs should be improved to give a better
experience to programmers.

1. Introduction

2017 OWASP Top 10 report [1] listed Cross Site
Scripting (XSS) as one of the 10 most critical security
risks for web applications1. XSS has been ranked
among the top 10 most critical security risks for web
applications since the start of OWASP Top 10 project
in 2010. According to OWASP Top 10 2017 report [1],
XSS is the 2nd most prevalent security issue and it exists
in 2/3 of web applications.

XSS is a security vulnerability that allows attackers
to inject client-side malicious scripts into web pages

1OWASP - Open Web Application Security Project (https://
owasp.org/)

of applications. Those scripts will thereafter execute
in victims’ web browsers when they access those web
pages [2]. Successful XSS attacks can result in serious
security violations for both the web site and the user.
An attacker can inject a malicious code into user input
of a web application, and if the input is not validated,
the code can steal cookies and login credentials [3, 4,
5], transfer private information [4, 5], hijack a user’s
account [3, 4, 5], manipulate the web content [4, 5],
cause denial of service [6] and many other malicious
activities [2, 7].

A recent XSS vulnerability identified in eBay
allowed attackers to include malicious JavaScripts
into auction description field of a selling item [3].
When a genuine user visits a listing with a such
malicious auction description, the attached JavaScript
will automatically execute. Some attackers have
reportedly include scripts that transfer login details of
users, so when a user visits the affected listing, the
script will be executed and it will transfer user’s login
details/cookies to the attacker [3].

Programmers can prevent their web applications
from being vulnerable to XSS attacks by separating
untrusted data from active browser content [1]. One of
the techniques for achieving this is encoding untrusted
output data when loading them into browser content
[1, 8]. However, most programmers who are involved
in application development are not security experts and
they are not capable of implementing such security
techniques on their own [9]. Therefore, security experts
have developed these functionalities so that non-expert
programmers can use these functionalities when
developing applications via Application Programming
Interfaces (APIs). There are several APIs that
implement output encoding functionalities that
programmers can use to protect their applications
from being vulnerable to XSS attacks. OWASP
Enterprise Security API (ESAPI)2, OWASP Java

2https://www.owasp.org/index.php/Category:
OWASP_Enterprise_Security_API

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60167
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7302

https://owasp.org/
https://owasp.org/
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

Encorder3 and Microsoft Anti-Cross Site Scripting
Library4 are a few such security APIs.

However, 2/3 of applications still being vulnerable
to XSS attacks [1] implies that programmers have
failed to effectively use functionalities exposed by
these APIs to prevent their applications from being
vulnerable to XSS attacks. One possible reason for
this can be the lack of usability of APIs that provide
output encoding functionalities. When APIs that
provide output encoding are not usable, programmers
will fail to correctly use them in their code and
therefore, will fail to protect applications they develop
from being vulnerable to XSS attacks. Previous
research has shown that less usable APIs, especially
those that provide security functionalities, result in
programmers incorrectly using them and introduces
security vulnerabilities to applications they develop [10,
11, 12].

In this study, we tried to evaluate the usability of
one of the most commonly used APIs that provide
output encoding functionalities, OWASP ESAPI, and
attempted to identify how usability issues of OWASP
ESAPI would fail programmers who want to fix XSS
vulnerabilities in their applications. To achieve this
objective, we conducted a qualitative experimental study
with 10 programmers. In the experiment, programmers
used OWASP ESAPI to fix XSS vulnerabilities in a web
application. The study employed think-aloud method
[13] and cognitive dimensions questionnaire method
[14] to identify usability issues they encounter while
performing this task.

From the data we gathered, we identified 16 usability
issues of OWASP ESAPI. We also found 3 types of
mistakes that programmers made while completing the
task that caused them to fail in successfully fixing the
XSS vulnerability. We identified that some of the
identified usability issues are a main reason for mistakes
that programmers made. Based on this, we provided
suggestions to improve the usability of security APIs
that provide output encoding functionalities.

The paper is organized as follows. Section 2 reviews
previous related research. Section 3 describes the
experiment methodology and section 4 presents the
findings of the study. In section 5, we discuss the
findings and provide suggestions to improve usability of
output encoding APIs. Finally, we conclude the paper
with discussion of limitations and conclusion.

3https://www.owasp.org/index.php/OWASP_Java_
Encoder_Project

4https://www.microsoft.com/en-au/download/
details.aspx?id=43126

2. Related Work

The relationship between the usability of security
APIs (APIs that provide security related functionalities)
and security of end user applications that use those
security APIs has become a topic of high interest among
researchers recently [14, 15, 16, 17, 18, 19]. There
have been several studies that discuss and investigate
this relationship [9, 15, 16, 19, 20].

By pointing that programmers are not security
experts, Wurster and van Oorschot argue that improving
usability of tools and APIs that programers use is
important to minimize mistakes they make while
developing applications [9]. Acar et al. [20] also
highlight the importance of the usability of security
APIs by pointing that programmers who make use of
security APIs are not experts of security. Mindermann
[19] argues that security of an application will be far
better if the libraries and APIs used to develop that
application are more usable. He stresses the importance
of applying usability research for security APIs to
deliver more usable security APIs.

Even though the importance of the usability of
security APIs has been identified and discussed [9, 15,
16, 19], not much work has been done to evaluate the
usability of security APIs. Gorski and Iacono [17]
presented 11 characteristics that need to be considered
when evaluating the usability of security APIs. Green
and Smith [18] introduced 10 rules for developing
usable security APIs. By considering these 2 sets
of guidelines and by referring to previous work done
on usability evaluation of general APIs, Wijayarathna,
Arachchilage and Slay [14] presented a cognitive
dimensions framework, which consists of 15 dimensions
to be used in the usability evaluation of security APIs.

There are few studies that involve empirical
evaluations of security APIs [15, 21]. Acar et
al. [15] evaluated and compared usability of 5
cryptographic APIs for python. They identified that
security of applications that use security APIs is
significantly related to the usability of security APIs
used for developing the application. Wijayarathna
and Arachchilage [21] used think-aloud approach and
cognitive dimensions questionnaire method to identify
usability issues of Bouncycastle API, an API that
provides cryptographic functionalities.

There is a huge body of research done on the field
of XSS attacks [7, ?, ?, ?, ?, 22, ?, ?, ?]. Previous
research has proposed and discussed various methods
for XSS attack implementation [?, ?], XSS attack
detection [?, ?], XSS attack prevention [22, ?] and XSS
vulnerability detection [?, ?]. Various methods have
been proposed to prevent XSS attacks by developing

Page 7303

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://www.microsoft.com/en-au/download/details.aspx?id=43126
https://www.microsoft.com/en-au/download/details.aspx?id=43126

applications that are not vulnerable to XSS attacks
[7, 22, ?]. However, the most commonly practiced
method for XSS prevention is the output encoding of
untrusted data [8]. Even though so many areas related to
XSS have been investigated, as per authors knowledge,
there have been no investigation on the usability of
output encoding APIs and how usability issues of output
encoding APIs result in applications being vulnerable
to XSS attacks. Our work attempts to fill this gap
by studying programmers who use OWASP ESAPI to
secure web applications from XSS vulnerabilities.

3. Methodology

The study was designed to identify usability issues
of OWASP ESAPI that programmers encounter while
they are using it to protect their applications from XSS
vulnerabilities. Furthermore, we intended to observe
how usability issues affect programmers and security of
applications they develop. This study was approved by
the Human Research Ethic Committee of our university.

Conducting a user study is a widely known method
for identifying usability issues of APIs [14, 15, 21].
In a user study based usability evaluation, evaluators
will recruit programmers and ask them to complete
some tasks that will require them to use the API
under evaluation. Then, evaluators will identify
usability issues by observing programmers while they
are completing the task and from the feedback they give
upon the completion of the task.

We employed two techniques to identify usability
issues that programmers encounter while using the API,
which are popular in the API usability community.
Those are:

• Cognitive dimensions questionnaire based
method [14, 21, 23]

• Think-aloud method [13, 21]

Cognitive dimensions questionnaire based method
[14, 23, 21] is the only methodology that has been
proposed to specifically use in evaluating the usability
of security APIs [14]. The cognitive dimensions
framework presents a set of dimensions that describe
aspects of a tool or an API that impact its usability
[14, 24]. We used the version of cognitive dimensions
framework proposed by Wijayarathna, Arachchilage
and Slay [14] in this study, which consists of 15
cognitive dimensions. This framework is embedded to
the usability evaluation process through the cognitive
dimensions questionnaire [14, 24]. In the evaluation
process, once participant programmers complete a
programming task, they have to individually answer the

questionnaire based on their experience [14, 24]. In this
way, evaluators can evaluate each aspect of the API that
is covered by the cognitive dimensions framework and
identify usability issues of the API.

We used think-aloud method [13] to get more
insights into the issues that were identified by the
cognitive dimensions questionnaire method and how
those issues affected programmers. Using two different
techniques helps to improve the reliability of data we
collect [25]. Furthermore, we expected that it would
help us to identify a broad range of usability issues of
the API.

3.1. Task Design

First we had to design a programming task for
participants to follow.

We designed a programming task where
participant programmers have to use output encoding
functionalities provided by OWASP ESAPI to fix XSS
vulnerabilities in a Java servelet web application. We
developed a simple online forum type web application
that allows users (end-users of the application) to create
new forum posts by entering text data as input, stores
that data in a back-end data store and shows the forum
posts in the web interface when requested by end-users.
Web pages that show forum posts loaded data that
were entered by end-users (hence untrusted) into web
page content without performing any encoding, hence
making the application vulnerable to stored XSS attacks
[2]. Appendix A shows the source of a sample page
in the application where untrusted data entered by
users loaded into active HTML, HTML attribute and
JavaScript contents. The provided application contained
two web pages with XSS vulnerabilities in different
type of elements (i.e. HTML, HTML attribute and
JavaScript). We asked participants to locate places in
the code with XSS vulnerabilities and fix them using
output encoding functionalities provided by OWASP
ESAPI.

3.2. Pilot Study

Before conducting the main study, we requested 3
participants, who are known to the first author and
not related to the study, to complete the task by
following the guidelines to verify whether guidelines
are clear and convey the expected meaning. They
also answered the cognitive dimensions questionnaire
proposed by Wijayarathna, Arachchilage and Slay [14]
after completing the task. We did minor modifications to
task guidelines and the questionnaire (change wording
so participants can better understand task guidelines and
questions) based on their results. Modified versions

Page 7304

were used in the main study.

3.3. Participants

We recruited programmers with Java experience
from GitHub to participate in the study. We used Github
to recruit participants rather than recruiting participants
from our university or local software development firms,
to get a more diverse sample of programmers. This is
a widely accepted and used method among researchers
to recruit participants for developer studies [15, 16].
Furthermore, recruiting participants from Github helps
to get participants with more experience in software
development, which improves the ecological validity
of the study [16]. We extracted publicly available
email addresses of Java developers with significant
contributions to Java projects and sent emails inviting
them to participate in our study. We offered them with
a $15 Amazon gift voucher as a token of appreciation
for the participation. In the invitation email, we
included a link to sign up for the study. Furthermore,
we informed them that participation is voluntary and
participants can withdraw from the study at any time.
Sign up form required participants to enter their name
and email address, which were required to send study
material to them. However, such personally identifiable
information of the participants were removed from the
final data set which we used for the analysis.

We conducted 4 usability studies parallelly and
recruited participants to all 4 studies together. We sent
13000 invitations to Java developers and 347 developers
signed up for the study by completing the sign up
form. Some emails we sent were bounced and some
developers requested to be removed from our list, a
request we honored. Furthermore, some people replied
back to us saying that they are unable to participate
in the study. Once people signed up, we filtered
out those who did not have any software development
experience since our target sample for the study was
software developers. Furthermore, we filtered out
participants with no experience in using Java because
if a participant faces issues with programming language
while completing the task, we may not be able to clearly
identify usability issues of the API they had come up
with. Then we divided participants who signed up into
four studies we conducted based on their demographics.
We selected 51 programmers for the ESAPI API study
and sent study material for them. However, some of
them informed that they are not able to complete the
study and some of them dropped out without informing
us. A total of 10 participants completed the study. Table
1 summarizes demographics of the participants that took
part in the study.

Table 1. Participant demographics summary

Demographic Number Percent
Software Development Experience
Less than 1 year 2 20%
1 to 3 years 6 60%
5 to 10 years 1 10%
more than 10 years 1 10%
Java Experience
1 to 2 years 1 10%
2 to 3 years 4 40%
3 to 5 years 2 20%
more than 5 years 3 30%
Number of Hours Spending for Java programming
Currently Not using Java 2 20%
1 to 10 hours per week 3 30%
11 to 20 hours per week 3 30%
21 to 30 hours per week 2 20%
Participant has previously used OWASP ESAPI or not
Yes 2 20%
No 8 80%

3.4. Study Procedure

Participants completed the task remotely on their
own computers and we suggested them to complete
the task in a time comfortable to them. We requested
them to think-aloud [13] and record their screens with
voice (so thinkaloud results will be recorded) while
completing the task. Once participants completed the
task, they were asked to send their source codes with
video recordings to us via email. Participants spent 35
minutes in average to complete the task. Then each
participant had to complete the cognitive dimensions
questionnaire [14, 21, 23], which we shared with them
via Google forms.

3.5. Identification of Usability Issues

Once we finished the data collection, source codes
of solutions that participants developed were evaluated
to see whether they have fixed the XSS vulnerability
correctly. Application had 3 types of contexts (HTML,
HTML Attribute and JavaScript) where participants
had to protect using 3 different methods of the
API (encodeForHTML(), encodeForHTMLAttribute(),
encodeForJavaScript()). We separately evaluated
whether participants had protected these elements of the
web application successfully.

Then analysis of video recordings and questionnaire
responses were done manually by one analyst. We
used manual analysis since our data set was small
[26]. Questionnaire answers were analysed prior to

Page 7305

analysing videos and identified usability issues that
exist in OWASP ESAPI. After analysing questionnaire
answers, recordings were analysed to identify usability
issues that each participant encountered. For identifying
usability issues from the screen recording data, user
experience was evaluated by tracking resources used,
events where the participant showed surprise, events
where participant had to make difficult choices, context
switches, misconceptions, difficulties faced, mistakes
made, requested features and time taken for tasks.
Cognitive Dimensions Framework [14] was used as a
guidance in the analysis of both questionnaire responses
and recordings. Usability issue reporting format
introduced by Lavery et al. [27] was used to report
issues. Finally, video recordings were analysed again
to identify how usability issues that were identified,
affected the participants for securely completing the
task. Special attention was given to decisions made
by participants that caused to reduce the security of
programmes they developed.

4. Study Results

In this section, we are presenting results we obtained
from this study. For the ease of presentation, we labeled
participants with labels P1, P2,.., P10. They will be
referred with this label from here onward. Statements
made by participants that are presented in this section
were not corrected for any grammatical errors and are
presented as those were stated.

4.1. Security of the Developed Programmes

Table 2 shows the security of the programme each
participant developed. Furthermore, it shows which
components of the web application they successfully
secured and which components they failed to secure.

Table 2. Security of Each Participant’s Programme

Participant
ID

Overall
Security

of the
Aplication

Correctly
Encoded
HTML
Content

Correctly
Encoded
HTML

Attribute
Content

Correctly
Encoded

Javascript
Content

P1 3 3 3 3

P2 7 3 7 7

P3 7 Encoded input with encodeForHTML()
P4 3 3 3 3

P5 7 Encoded input with encodeForHTML()
P6 7 3 3 7

P7 7 3 7 3

P8 7 Encoded input with encodeForHTML()
P9 7 Encoded input with encodeForHTML()
P10 7 Encoded input with encodeForHTML()

We observed 3 main types of errors that participants
made that resulted in them failing to secure the
application. Those mistakes are,

1. Participants failed to identify all places in the
source code that contained XSS vulnerability and
hence fixed the code partially (P2, P7).

2. Participants used wrong encoding method
to encode data. For example, used
encodeForHTML() to encode data inside
JavaScript (P2, P6).

3. Encoded input instead of output using one
or two encoding methods. Mostly using
encodeForHTML() (P3, P5, P8, P9, P10).

4.2. Usability Issues of OWASP ESAPI

From the study, we could identify a total of
16 usability issues of OWASP ESAPI. Questionnaire
responses revealed a total of 12 issues while video
recording analysis revealed 12 issues. Each participant
had encountered an average of approximately 7 usability
issues. Here onward, we present each usability issue
with the comments made by participants and what we
observed.

Participants P2, P5, P6, P8 and P9 mentioned that
there is too much information to read and learn in
order to use the API to complete the task and fix
XSS vulnerabilities. They mentioned that this makes
it difficult for them to get the minimum understanding
about the API that was required to use the API to fix
XSS vulnerabilities. Furthermore, they mentioned that it
made it difficult for them to understand which part of the
API to use in order to achieve the goal. P6 mentioned
in his response to the questionnaire that “Even though
the guidelines, the cheatsheet, was actually well written,
the page itself was kinda long-ish.”. One of the
main resource provided from OWASP about using
OWASP ESAPI to fix XSS vulnerabilities is the “XSS
Prevention Cheat sheet [8]” (At the time we conducted
the experiment, this mainly referred to ESAPI. However,
recently they have removed ESAPI specific code from
this and made it a more generic one.5). Even though
it provided all information required to use the API
correctly to fix XSS vulnerabilities, most programmers
did not follow it, saying it was too long. This
made them refer to third party resources that provided
partial solutions, which resulted in participants failing to
successfully complete the task. This was elaborated by
P3 as well where they mentioned that “I did not even use

5https://web.archive.org/web/20170615122701/
https://www.owasp.org/index.php/XSS_(Cross_
Site_Scripting)_Prevention_Cheat_Sheet

Page 7306

https://web.archive.org/web/20170615122701/https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://web.archive.org/web/20170615122701/https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://web.archive.org/web/20170615122701/https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

the API documentation.There was a blog post with the
required information, which was pretty much straight
forward”.

Results from all participants showed that it is
difficult to use the API without previous knowledge on
some computer security related areas. Results revealed
that it was hard to use the API without a previous
knowledge on attacks, XSS attacks, XSS mitigation
techniques and input sanitization. We could identify
that lack of security knowledge specially made it hard
to test whether the security vulnerability has been
fixed properly, which resulted in participants falsely
concluding that they have successfully fixed the XSS
vulnerability. Some participants mentioned that they
are not capable of testing what they developed due to
their lack of security knowledge. P5 mentioned that “It
seems to me that output encoding untrusted data (which
is done in one function call) sufficed, though I lack the
knowledge to know if I’ve prevented all dangerous cases
or not.”. Furthermore, P5 mentioned that API and its
documentation did not provide details about XSS and it
was difficult to find required information.

P1, P2, P3 and P8 mentioned that it was difficult
to figure out how to achieve output encoding using the
API. Some of them noted that programmer needs to
have a previous knowledge on what type of encoding
is required for each type of element. We observed that
these participants spent a notable amount of time for
searching things such as “output encoding using OWASP
ESAPI” in Google and browsing through the results. P2
highlighted this in their response to the questionnaire
saying “It was bit hard to grasp the idea of what output
encoding and how we can achieve this with the API.”.

P3, P5, P6, P7, P8 and P9 faced difficulties while
completing the task due to issues in OWASP ESAPI
documentation. Their results revealed that,

• Documentation is too lengthy.

• Documentation is not attractive for programmers.

• Documentation is difficult to understand.

• Some documentation is outdated.

These issues resulted in programmers referring to
unreliable third party resources such as code samples
in Stack Overflow to learn the API. This was observed
in P7’s recording and think-aloud results also where
they mentioned that “I tried to search for some
documentation, but, I found out answers from stack
overflow. Its really not bad”. Furthermore, above
issues made it difficult for programmers to use the API
and made the learning period lengthier. We observed
that many participants spent a considerable time to

learn the API by going through documentation and
other resources. P7 explained their experience with the
documentation saying “I expected some documentation
online - but after a few minutes I found that there is no
up to date documentation available and I’d have to stick
to JavaDoc and reading the sources”.

Another usability issue that participants encountered
is the lack of examples. P2, P3, P6, P7 and P8
reported in their questionnaire responses as well as in
their think aloud results that API lacks examples and a
proper ‘getting started’ guide. P8 mentioned that “In
the document there are so many information but less
usage examples. so it is hard to understand 1st time.”.
Participants mentioned that lack of examples made it
difficult for them to learn the API and also made it
difficult to know what classes and methods of the API
to use when writing code. Participants suggested that
including examples into documentation will give a better
experience to programmers. P6 suggested that “I would
have liked a big h1 sign saying “Example usage” for the
APIs. Since I wasn’t able to find examples as quick as I
wished.”.

While completing the task, P5 and P10 found
that Integrated Development Environment(IDE)’s
suggestions are not working for the API. After entering
method names, both these participants tried IDE
suggestions to get an understanding about the required
arguments for the method. Instead of providing useful
suggestions, IDE showed parameter names such as
arg0, arg1, etc. Participants mentioned that this made
them spent more time for learning the API and it made
it difficult to use the API.

P4 and P7 mentioned in their responses to the
questionnaire that viscosity of the code that use the
API was poor as it was difficult to make changes to
the code that use the API. They mentioned that API
had to be embedded into many places in the code and
if they later find something that need to be changed,
it need to be applied for many places, which made
changing the code difficult. P7 elaborated saying
“There are too many places where ESAPI call is used
- it’d be really hard if I’d be forced to alter the call
ESAPI.encoder().whatever(value)”.

P1, P2, P3, P4, P5, P6, P9 and P10’s results revealed
that there were different methods that looked similar, but
provided different functionalities and made it difficult
for the participants to select correct methods to use
in their code. These participants found it difficult
to identify the difference between encodeForHtml()
and encodeForHtmlAttribute() methods. This made it
difficult for them to choose correct method to use, which
sometimes resulted in them using a incorrect method
and therefore, failed in fixing the vulnerability. P4

Page 7307

described issues they faced in their response to the
questionnaire when we questioned about the consistency
dimension [14] of the API. They said that “There were
kind of similar things. But if you are really familiar with
html and other related technologies I think you can sort
them after.For an example there are plenty of methods
like encode content, encode attribute etc. Those may
sound similar if you are not really familiar with html or
any other related technologies.”

Results of P3, P4, P5, P8, P9 and P10 revealed that
API did not provide any help to identify incorrect usages
of the API. Results showed that API did not provide
any help to identify that participants were using the API
incorrectly, when they used it to encode input instead
of output. Furthermore, API did not provide any way
to inform participants when they used different methods
in wrong contexts (eg: when using encodeForHtml() to
encode values of Javascript contents). P3 elaborated on
this in their questionnaire response when we asked if
the API gave any help to identify that they used the
API incorrectly. They mentioned “no, I first used it
to encode the input before saving, which was stupid”.
However, P4 did not believe this as an issue of the API
as they mentioned that “Usually API itself doesn’t give
you clues of correct usages other than argument type
mismatches.”.

Results from all participants revealed that end-user
protection of the application would depend on the
programmer who used the API to fix the vulnerability.
Participants had to make choices while using the API
that will affect the security of the code they developed
and this could lead participants to develop less secure
code using the API. P7 elaborated in their questionnaire
response on how the security of the code would depend
on the programmer. They mentioned that “If I’d miss
some place in JSP that prints out the user input, entire
application would become vulnerable to XSS”. P5
suggested how API could minimize the dependency of
security from programmers saying “by providing a good
level of abstraction and explanatory documentation, the
API can help reduce the struggle of the programmer and
minimize errors.”.

Results from P1, P3, P5, P6, P7 and P9 revealed that
API did not provide any help for them to test the security
of the code they developed using the API. This resulted
in participants finding it difficult to verify whether they
developed the code securely using the API or not. We
observed that most of the participants did not properly
tested the security of the code they developed even
though the task was about fixing a security vulnerability.
Most of them tested whether the vulnerability that
could be exposed from HTML content has been fixed.
But none of them tested vulnerabilities that could be

exposed from HTML attribute and JavaScript content.
It seemed that most of them did not have a sufficient
knowledge to test whether the vulnerability has been
fixed. While completing the task, P5 mentioned in their
think-aloud output that “I dont know if I finished the task.
There might still be vulnerabilities in the application.”.
Furthermore, P1 reported that it was difficult to evaluate
the progress of a partially developed code that use the
API, while completing the task. They elaborated saying
“I had to go through every page and find out what are
the untrusted content in each page”.

5. Discussion

From the results of the study, we identified 3 types
of mistakes that participants made that resulted in them
failing to fix the vulnerability. We also identified 16
usability issues that were encountered by participants.
We observed that some of these usability issues were a
main reason for those mistakes that participants made.

To protect the application successfully, API
required participants to identify all the places that the
vulnerability existed and use the API to fix all these
locations. However, P2 and P7 failed to identify all the
places that the vulnerability was present and therefore
resulted in only partially fixing the vulnerability. This
made the API less effective and hence, less usable [?].
Some web frameworks such as Ruby 3.0 and React
JS automatically escape inputs [1] without depending
on the programmer to identify existing vulnerabilities
and vulnerable code snippets. Integrating that sort
of functionality, or a functionality to protect web
applications from a more higher level (protect at web
page level rather than going into element level) would
enhance the usability of the API and hence, would help
programmers to more effectively use the API to develop
applications that are not vulnerable to XSS attacks.

Furthermore, we observed that P2 and P6 used
wrong methods to encode data in some cases, which
failed them in successfully completing the tasks. Some
of the usability issues we identified aided participants
in making this mistake. Lengthy documentation
demotivated participants to properly read and grasp
ideas in most cases. Therefore, most participants
skimmed through documentation. When reading the
“XSS Prevention Cheat Sheet” [8], most participants
did not properly read it and hence, could not get a
proper idea about different encoding methods required
for different element types. However, P1 read “XSS
Prevention Cheat Sheet” [8] completely before they
started to fix the vulnerability. Their think-aloud results
mentioned that they have previously used the API and
hence, want to refresh their memory. It appeared in

Page 7308

their think-aloud results that reading “XSS Prevention
Cheat Sheet” [8] before starting to fix vulnerability was
something they decided based on prior experience with
the API. Other participants failed to identify that they
need to read it and therefore, failed to get a proper
idea about what encoding methods required for what
elements. Furthermore, less attractiveness and lack of
examples in official documentation made programmers
referring to third party sources such as Stack Overflow.
Those 3rd party sources mostly contained examples that
use EncodeForHTML() method and did not highlight
that different methods should be used to encode data,
based on the type of element the data is used in.
Therefore, participants used EncodeForHTML() method
to encode data in HTML attribute and JavaScript
elements that should have been encoded using different
methods. Brief and attractive documentation with more
examples would make it satisfactory and easy to follow
those documentation and would help programmers to
learn the correct way of using the API to protect their
applications. It will also make the API less reliant on
programmers’ previous knowledge on XSS attacks and
XSS mitigation techniques, which would make the API
easily usable for programmers, especially for those who
are not experts of security.

Furthermore, participants blamed API as it did not
provide any indication when they incorrectly used the
API. Participants expected the API to notify them when
they use an incorrect method to save a data element.
They also expected that API would notify them or
prevent them when they used the API to encode input
data instead of output data that it is really supposed
to encode. Previous research has also suggested that
security APIs should be hard to misuse and they should
notify programmers on incorrect use [14, 18]. It would
be ideal for the API to provide better mechanisms to
prevent programmers from incorrectly using it.

One of the main reasons for participants not been
able to successfully fix the XSS vulnerability is that
they did not properly tested whether the vulnerability
has been fixed after they completed the task. It was
apparent when observing think-aloud results and screen
recordings of participants that most participants were
not competent enough to test the security after applying
the API and API did not helped them in this either.
Some participants only tested with the sample malicious
input we gave with task guidelines. Once an application
worked fine with that input, they assumed that they
have successfully fixed the vulnerability. Previous
research has suggested that security APIs should help
programmers to test the security of the applications that
use the API [14, 17]. Therefore, OWASP ESAPI should
either provide test routines and scripts for programmers

to test their applications, or the API documentation
should properly guide programmers on how to validate
that they have properly used the API to remove XSS
vulnerabilities in their applications.

6. Limitations

Since the main objective of our study was to identify
usability issues of OWASP ESAPI, we used a pool of
10 participants. It has been acknowledged that a user
study would identify about 80% of usability issues of an
user interface by employing 4-5 subjects (i.e. participant
users) [28]. Virzi identified that additional subjects
are less likely to reveal new information and the most
severe usability problems are likely to be detected in
first few subjects [28]. Furthermore, more recently,
Hwang and Salvendy [29] introduced “the 10±2 rule”
where they argued that 10±2 users will be sufficient to
conduct a usability evaluation. They also stated that
small participant pools are adequate when using think
aloud approach for usability evaluations. Even though
this results are based on user studies conducted for
user interfaces, our results suggest that this holds for
API usability studies as well. We could identify 16
usability issues of the ESAPI and we could explain the
mistakes that participants made based on these issues.
However, because of the small sample pool we used,
we could not infer any statistically significant results
such as correlation between demographic variables and
outcomes. We are planning to extend this study and
explore these aspects in a future study.

7. Conclusion

In this study, we conducted a remote behavioural
usability study with 10 software developers to
identify usability issues that exist in OWASP
ESAPI. Participants were asked to complete a simple
programming task which required them to fix XSS
vulnerabilities of a Java servelet web application.
They had to think aloud and record their screens while
completing the task and once they finished the task,
they had to answer the cognitive dimensions based
questionnaire [14]. Through the data we collected,
we were able to identify usability issues that exist in
OWASP ESAPI and how they affected the participants’
success in fixing the XSS vulnerability.

From the results we identified 3 types of mistakes
that programmers did, which are,

1. Failing to identify all the places in the source code
that contained XSS vulnerability.

2. Using wrong encoding method to encode data.

Page 7309

3. Using input encoding instead of output encoding.

These mistakes resulted them in failing to fix the
XSS vulnerability properly. Furthermore, we identified
16 usability issues that exist in OWASP ESAPI. We
observed that some of the usability issues we identified
aided programmers into make mistakes that failed them
in their task. Based on the results we proposed some
improvements to OWASP ESAPI, which would enhance
its usability and hence, would help programmers to
more effectively and efficiently use it to fix XSS
vulnerabilities.

References

[1] OWASP, “Owasp top 10 - 2017 ; the ten most critical
web application security risks,” 2017.

[2] OWASP, “Cross site scripting (xss).” https:
//www.owasp.org/index.php/Cross-
site_Scripting_(XSS). Accessed: 2018-06-08.

[3] P. Mutton, “Hackers still exploiting ebays
stored xss vulnerabilities in 2017.” https:
//news.netcraft.com/archives/2017/
02/17/hackers-still-exploiting-
ebays-stored-xss-vulnerabilities-
in-2017.html, 2017. Accessed: 2018-06-14.

[4] E. Kovacs, “Most sharepoint installations vulnerable
to xss attacks.” https://www.securityweek.
com/most-sharepoint-installations-
vulnerable-xss-attacks, 2017. Accessed:
2018-06-14.

[5] Microsoft, “Cve-2017-8514 — microsoft sharepoint
reflective xss vulnerability.” https://portal.
msrc.microsoft.com/en-us/security-
guidance/advisory/CVE-2017-8514, 2017.
Accessed: 2018-06-14.

[6] “Apache denial of service and cross-site scripting.”
https://www.trendmicro.com/vinfo/us/
threat-encyclopedia/vulnerability/
1808/apache-denial-of-service-and-
crosssite-scripting, 2015. Accessed:
2018-06-14.

[7] I. Hydara, A. B. M. Sultan, H. Zulzalil, and
N. Admodisastro, “Current state of research on
cross-site scripting (xss)–a systematic literature
review,” Information and Software Technology, vol. 58,
pp. 170–186, 2015.

[8] OWASP, “Xss (cross site scripting) prevention
cheat sheet.” https://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)
_Prevention_Cheat_Sheet. Accessed:
2018-06-08.

[9] G. Wurster and P. C. van Oorschot, “The developer is
the enemy,” in Proceedings of the 2008 New Security
Paradigms Workshop, pp. 89–97, ACM, 2009.

[10] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh,
and V. Shmatikov, “The most dangerous code in
the world: validating ssl certificates in non-browser
software,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 38–49,
ACM, 2012.

[11] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith,
“Rethinking ssl development in an appified world,” in
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pp. 49–60, ACM,
2013.

[12] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith, “Why eve and mallory
love android: An analysis of android ssl (in) security,” in
Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 50–61, ACM, 2012.

[13] M. Van Someren, Y. Barnard, and J. Sandberg, “The
think aloud method: a practical approach to modelling
cognitive processes,” 1994.

[14] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay,
“A generic cognitive dimensions questionnaire to
evaluate the usability of security apis,” in International
Conference on Human Aspects of Information Security,
Privacy, and Trust, pp. 160–173, Springer, 2017.

[15] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky, “Comparing the usability of
cryptographic apis,” in Security and Privacy (SP), 2017
IEEE Symposium on, pp. 154–171, IEEE, 2017.

[16] Y. Acar, C. Stransky, D. Wermke, M. Mazurek, and
S. Fahl, “Security developer studies with github users:
Exploring a convenience sample,” in Symposium on
Usable Privacy and Security (SOUPS), 2017.

[17] P. L. Gorski and L. L. Iacono, “Towards the usability
evaluation of security apis.,” in HAISA, pp. 252–265,
2016.

[18] M. Green and M. Smith, “Developers are not the enemy!:
The need for usable security apis,” IEEE Security &
Privacy, vol. 14, no. 5, pp. 40–46, 2016.

[19] K. Mindermann, “Are easily usable security libraries
possible and how should experts work together to
create them?,” in Proceedings of the 9th international
workshop on cooperative and human aspects of software
engineering, pp. 62–63, ACM, 2016.

[20] Y. Acar, S. Fahl, and M. L. Mazurek, “You are not your
developer, either: A research agenda for usable security
and privacy research beyond end users,” in Cybersecurity
Development (SecDev), IEEE, pp. 3–8, IEEE, 2016.

[21] C. Wijayarathna and N. A. G. Arachchilage, “Why
johnny can’t store passwords securely? a usability
evaluation of bouncycastle password hashing (to
appear),” in Evaluation and Assessment in Software
Engineering (EASE), 2018.

[22] P. Bathia, B. R. Beerelli, and M.-A. Laverdière,
“Assisting programmers resolving vulnerabilities in
java web applications,” in International Conference
on Computer Science and Information Technology,
pp. 268–279, Springer, 2011.

[23] C. Wijayarathna, N. A. G. Arachchilage, and J. Slay,
“Using cognitive dimensions questionnaire to evaluate
the usability of security apis,” in Proceedings of the
28th Annual Meeting of the Psychology of Programming
Interest Group, 2017.

[24] A. F. Blackwell and T. R. Green, “A cognitive
dimensions questionnaire optimised for users,”
in Proceedings of the 12th Annual Meeting of
the Psychology of Programming Interest Group,
pp. 137–152, 2000.

[25] N. Golafshani, “Understanding reliability and validity in
qualitative research,” The qualitative report, vol. 8, no. 4,
pp. 597–606, 2003.

Page 7310

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
https://news.netcraft.com/archives/2017/02/17/hackers-still-exploiting-ebays-stored-xss-vulnerabilities-in-2017.html
https://www.securityweek.com/most-sharepoint-installations-vulnerable-xss-attacks
https://www.securityweek.com/most-sharepoint-installations-vulnerable-xss-attacks
https://www.securityweek.com/most-sharepoint-installations-vulnerable-xss-attacks
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2017-8514
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2017-8514
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2017-8514
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/1808/apache-denial-of-service-and-crosssite-scripting
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/1808/apache-denial-of-service-and-crosssite-scripting
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/1808/apache-denial-of-service-and-crosssite-scripting
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/1808/apache-denial-of-service-and-crosssite-scripting
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

[26] T. Basit, “Manual or electronic? the role of coding in
qualitative data analysis,” Educational research, vol. 45,
no. 2, pp. 143–154, 2003.

[27] D. Lavery, G. Cockton, and M. P. Atkinson,
“Comparison of evaluation methods using structured
usability problem reports,” Behaviour & Information
Technology, vol. 16, no. 4-5, pp. 246–266, 1997.

[28] R. A. Virzi, “Refining the test phase of usability
evaluation: How many subjects is enough?,” Human
factors, vol. 34, no. 4, pp. 457–468, 1992.

[29] W. Hwang and G. Salvendy, “Number of people
required for usability evaluation: the 10±2 rule,”
Communications of the ACM, vol. 53, no. 5,
pp. 130–133, 2010.

A. Sample page from the application
given to participants

<body style="background-color:azure;">
<h1 align="center">Welcome to Forum!</h1>
<table align="center" width="95%" border="2">

<tr>
<td width="25%"> <h3>Subject</h3></td>
<td width="25%"> <h3>Author</h3></td>
<td width="25%"> <h3>Content</h3></td>
<td width="25%"> <h3>Delete</h3></td>

</tr>

<%for(int i=0;i<posts.length;i++){%>

<tr>

<td title="<%=posts[i].getSubject() +
"_subject"%>"><%=posts[i].getSubject()%>
</td>

<td title="<%=posts[i].getSubject() +
"_author"%>"><%=posts[i].getAuthor()%>
</td>

<td title="<%=posts[i].getSubject() +
"_content"%>"><a href=<%="article.jsp?id="
+ posts[i].getId()%>>View Content </td>

<td title="<%=posts[i].getSubject() + "_author"%>"
align="center"><button type="button"
onclick="deletePost('<%=posts[i].getSubject()%>',
'<%=posts[i].getId()%>')">Delete</button></td>

</tr>

<%}%>

<%if (posts.length <= 0){%>
<tr>

<th colspan="4">No Posts Found</th>
</tr>
<%}%>
</table>

Create New Post

</body>

Page 7311

	Introduction
	Related Work
	Methodology
	Task Design
	Pilot Study
	Participants
	Study Procedure
	Identification of Usability Issues

	Study Results
	Security of the Developed Programmes
	Usability Issues of OWASP ESAPI

	Discussion
	Limitations
	Conclusion

