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ABSTRACT
“Radiomics,” a field of study in which high-throughput data is extracted and large amo
unts of advanced quantitative imaging features are analyzed from medical images, and 
“imaging genomics,” the field of study of high-throughput methods of associating imag-
ing features with genomic data, has gathered academic interest. However, a radiomics 
and imaging genomics approach in the oncology world is still in its very early stages 
and many problems remain to be solved. In this review, we will look through the steps of 
radiomics and imaging genomics in oncology, specifically addressing potential applica-
tions in each organ and focusing on technical issues. 
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INTRODUCTION

Medical imaging such as computed tomography (CT), positron emission tomography (PET), or 
magnetic resonance imaging (MRI) is mandatory in the diagnosis, staging, treatment planning, 
postoperative surveillance, and response evaluation in the routine management of cancer. Al-
though these conventional modalities provide important information on cancer phenotypes, 
yet a great deal of genetic and prognostic information remains unrevealed. 

Recently, there is universal understanding that genomic heterogeneity exists among and 
even within tumors and that those differences can play an important role in determining the 
likelihood of a clinical response to treatment with particular agents [1-4]. In other words, the 
success of precision medicine requires a clear understanding of each patient’s tumoral hetero-
geneity and individual situation. 

Here, “radiomics,” a field of study in which high-throughput data is extracted and large amounts 
of advanced quantitative imaging features are analyzed from medical images, and “imaging 
genomics,” the field of study of high-throughput methods of associating imaging features with 
genomic data, has gathered academic interest. In other words, investigators have suggested 
that the hidden information embedded in medical images may become utilized through these 

Received: February 3, 2017 
Revised: February 18, 2017
Accepted: February 24, 2017
 
Corresponding author:  
Ho Yun Lee
Department of Radiology and 
Center for Imaging Science, 
Samsung Medical Center, 
Sungkyunkwan University 
School of Medicine, 81 Irwon-ro, 
Gangnam-gu, Seoul 06351, Korea
Tel: +82-2-3410-2502
E-mail: hoyunlee96@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.23838/pfm.2017.00101&domain=pdf&date_stamp=2017-03-31


11https://doi.org/10.23838/pfm.2017.00101

Geewon Lee, et al.

robust approaches. Indeed, several recent studies employing 
radiomics and imaging genomics have been found to be use-
ful in quantifying overall tumor spatial complexity and iden-
tifying the tumor subregions that drive disease transforma-
tion, progression, and drug resistance [5-9]. In this review, we 
will look through all steps of radiomics and imaging genom-
ics in oncology, specifically addressing potential applications 
in each organ and focusing on technical issues.

Thorax
Lung
Two recent investigations support the importance of intratu-
mor subregional partitioning using multiparametric images 
[7,10]. In one study, researchers successfully divided a tumor 
into necrotic regions and viable regions by incorporating 
18F-fluorodeoxyglucose (18F-FDG) PET and diffusion-weight
ed MRI, which showed good agreement with histology [7]. In 
the other study, researchers identified clinically relevant, high-
risk subregions in lung cancer using intratumor partitioning 
of 18F FDG-PET and CT images [10].

Overall, many studies have shown that textural features are 
associated with tumor stage, metastasis, response, survival, 
and metagenes in lung cancer [11-16]; thereby, providing ev-
idence that textural features show substantial promise as prog-
nostic indicators in thoracic oncology. Tables 1, 2 demonstrate 
the current literature about radiomics and imaging genomics 
in the field of clinical oncology [16-111].

In parallel with the 2011 The International Association for 
the Study of Lung Cancer (IASLC)/The American Thoracic So-
ciety (ATS)/The European Respiratory Society (ERS) classifi-
cation for lung adenocarcinomas, an extensive volume of lit-
erature has covered the subset of subsolid nodules, which 
correlates with the spectrum of lung adenocarcinoma. Of 
particular importance is the significance of the presence and 
degree of a pathologically invasive portion, namely the thick-
ening of alveolar septa and increased cellularity [112,113]. 
Although approximately half of pure ground-glass opacity 
(GGO) nodules have been reported to have a pathologically 
invasive component, discrimination between the invasive 
and non-invasive proportions remains challenging in pure 
GGO lesions because of limited visual perception and subjec-
tive analysis of conventional CT scans [114,115]. Several in-
vestigators have demonstrated that quantification and fea-
ture extraction of GGO lesions (using numerical values) can 
find small pathologically invasive components, which are re-
flected at the medical imaging voxel level and otherwise not 
visually detectable [116-118]. Entropy or a high attenuation 

value, such as the 75th percentile CT attenuation value from 
histograms, has been reported as a significant differentiation 
factor for invasive adenocarcinomas [118]. Furthermore, the 
97.5th percentile CT attenuation value and the slope of CT 
attenuation values have been suggested as predictors for fu-
ture CT attenuation changes and the growth rate of pure GGO 
lesions [119]. Overall, lung cancer-specific (GGO-related) ra-
diomic features could provide additional information about 
tumor invasiveness and progression from other indolent or 
non-invasive lesions and even predict tumor growth (Fig. 1). 

Breast
This part of the review will be focused on radiomics and im-
aging genomic researches in breast imaging using MRI tex-
ture analysis. Radiomic research has been applied to detect 
microcalcifications [120], differentiate benign from malig-
nant lesions [121-123], and distinguish between breast can-
cer subtypes [124,125]. James et al. [120] hypothesized the 
magnetic susceptibility of microcalcifications leads to direc-
tional blurring effects which can be detected by statistical 
image processing. In their results, their method could detect 
localized blurring with high diagnostic performance. Regard-
ing the differentiation between benign and malignancy, sev-
eral studies have found that texture features may differ be-
tween them. In the breast two-dimensional co-occurrence 
matrix features of dynamic contrast-enhanced (DCE) MRI im-
ages and signal enhancement ratio maps, three-dimensional 
and four-dimensional features may be feasible in distinguish-
ing between benign and malignant breast lesions [121-123]. 
Holli et al. [124] have investigated to differentiate invasive 
lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) 
by using different texture methods. In this study, co-occur-
rence matrix features were significantly different between 
ILC and IDC, allowing differentiation between these two his-
tological subtypes. Further, these features were superior to 
the other texture methods applied including histogram anal-
ysis, run-length matrix, autoregressive model, and wavelet 
transform [124].

Regarding texture analysis of breast MR images, this tech-
nique has been applied to predict treatment response [126]. 
Parikh et al. [126] evaluated whether changes in MRI texture 
features can predict pathologic complete response (pCR) to 
neoadjuvant chemotherapy. In their study conducted in 36 
consecutive primary breast cancer patients, an increase in 
T2-weighted MRI uniformity and a decrease in T2-weighted 
MRI entropy after neoadjuvant chemotherapy may be help-
ful in earlier predicting pCR than tumor size change. 
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Table 1. Radiomics studies of clinical oncology published in literature

Study
No. of  

patients
Cancer type Modality Country

Paul et al. (2016) [24] 65 Esophageal cancer PET France

Huynh et al. (2017) [25] 112 Lung cancer CT USA

Lu et al. (2016) [26] 32 Lung cancer CT USA

Lopez et al. (2017) [27] 17 Brain cancer MRI USA

Yu et al. (2016) [28] 110 Brain cancer MRI China

Ginsburg et al. (2016) [29] 80 Prostate cancer MRI USA

Yu et al. (2017) [30] 92 Brain cancer MRI China

Song et al. (2016) [31] 339 Lung cancer CT Korea

Coroller et al. (2017) [32] 85 Lung cancer CT USA

Bogowicz et al. (2016) [33] 11
11

Oropharyngeal cancer
Lung cancer

CT Switzerland

Bae et al. (2017) [34] 80 Lung cancer CT Korea

Prasanna et al. (2016) [35] 42
65

120

Brain cancer
Breast cancer
Lung cancer

MRI
MRI
CT

USA

Lohmann et al. (2016) [36] 47 Brain cancer MRI
PET

Germany

Li et al. (2016) [37] 91 Breast cancer MRI USA

Shiradkar et al. (2016) [38] 23 Prostate cancer MRI USA

Kickingereder et al. (2016) [39] 172 Brain cancer MRI Germany

Grootjans et al. (2016) [40] 60 Lung cancer PET The Netherlands

Nie et al. (2016) [41] 48 Rectal Cancer MRI USA

Prasanna et al. (2016) [42] 65 Brain cancer MRI USA

McGarry et al. (2016) [43] 81 Brain cancer MRI USA

Desseroit et al. (2016) [44] 74 Lung cancer PET
CT

France

Li et al. (2016) [21] 84 Breast cancer MRI USA

Yip et al. (2016) [45] 348 Lung cancer PET USA

Hu et al. (2016) [46] 40 Rectal Cancer CT China

Giesel et al. (2017) [47] 148 Lung cancer
Malignant melanoma 
Gastroenteropancreatic neuroendocrine tumours 
Prostate cancer

PET/CT Germany

Aerts et al. (2016) [48] 47 Lung cancer CT USA

Huynh et al. (2016) [49] 219 Breast cancer Mammography USA

Choi et al. (2016) [50] 89 Lung cancer CT Korea

Permuth et al. (2016) [51] 38 Pancreatic cancer CT USA

Hanania et al. (2016) [52] 53 Pancreatic cancer CT USA

Flechsig et al. (2016) [53] 122 Lung cancer PET/CT Germany

Oliver et al. (2016) [54] 31 Lung cancer PET/CT USA

(Continued to the next page)
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Study
No. of  

patients
Cancer type Modality Country

Grossmann et al. (2016) [55] 141 Brain cancer MRI USA

Hawkins et al. (2016) [56] 196 Lung cancer CT USA

Obeid et al. (2017) [57] 63 Breast cancer MRI USA

Huang et al. (2016) [58] 282 Lung cancer CT China

Gnep et al. (2017) [59] 74 Prostate cancer MRI France

Huynh et al. (2016) [60] 113 Lung cancer CT USA

Huang et al. (2016) [61] 326 Colorectal cancer CT China

Liang et al. (2016) [62] 494 Colorectal cancer CT China

Coroller et al. (2016) [63] 127 Lung cancer CT USA

Antunes et al. (2016) [23] 2 Renal cancer PET/MRI USA

Wu et al. (2016) [64] 350 Lung cancer CT USA

van Velden et al. (2016) [65] 11 Lung cancer PET/CT The Netherlands

Mattonen et al. (2016) [66] 45 Lung cancer CT Canada

Ghosh et al. (2015) [67] 78 Renal cancer CT USA

Mattonen et al. (2015) [68] 22 Lung cancer CT Canada

Lee et al. (2015) [69] 65 Brain cancer MRI USA

Parmar et al. (2015) [70] 101 Head and neck cancer CT The Netherlands

Oliver et al. (2015) [71] 23 Lung cancer PET/CT USA

Fave et al. (2015) [72] 10 Lung cancer CT USA

Wang et al. (2015) [73] 84 Breast cancer MRI Japan

Echegaray et al. (2015) [74] 29 Liver cancer CT USA

Yoon et al. (2015) [19] 539 Lung cancer CT Korea

Cameron et al. (2016) [75] 13 Prostate cancer MRI USA

Ypsilantis et al. (2015) [76] 107 Esophageal cancer PET UK

Parmar et al. (2015) [18] 464 Lung cancer CT India

Parmar et al. (2015) [77] 878 Lung cancer
Head and neck cancer

CT India

Khalvati et al. (2015) [78] 40,975 Prostate cancer MRI Canada

Leijenaar et al. (2015) [79] 35 Lung cancer PET The Netherlands

Vallieres et al. (2015) [80] 51 Lung cancer PET
MRI

Canada

Mackin et al. (2015) [81] 20 Lung cancer CT USA

Coroller et al. (2015) [82] 98 Lung cancer CT The Netherlands

Cunliffe et al. (2015) [83] 106 Esophageal cancer CT USA

Parmar et al. (2014) [84] 20 Lung cancer CT India

Aerts et al. (2014) [17] 1,019 Lung cancer
Head and neck cancer

CT USA

Velazquez et al. (2013) [85] 20 Lung cancer CT The Netherlands

Leijenaar et al. (2013) [22] 11 Lung cancer PET/CT The Netherlands

PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging.

Table 1. Continued
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Regarding relationship between patients’ outcome in pa-
tients treated with neoadjuvant chemotherapy and texture 
features, Pickles et al. [127] showed that higher entropy in 
DCE-MR images were associated with poorer outcomes. In 
preoperative setting, Kim et al. [128] evaluated the relation-
ship between MRI texture features and survival outcomes in 
203 patients with primary breast cancer. They only used his-
togram-based uniformity and entropy in T2-weighted imag-

es and contrast-enhanced T1 subtraction images. In multi-
variate analysis, lower T1 entropy and higher T2 entropy were 
significantly associated with worse outcomes. They conclud-
ed patients with breast cancers that appeared more hetero-
geneous on T2-weighted images (higher entropy) and those 
that appeared less heterogeneous on contrast-enhanced T1- 
weighted subtraction images (lower entropy) showed worse 
outcome.

Table 2. Imaging genomics studies of clinical oncology published in literature

Study No. of patients Cancer type Modality Country

Halpenny et al. (2017) [86] 188 Lung cancer CT USA

Demerath et al. (2017) [87] 26 Brain cancer MRI Germany

Wiestler et al. (2016) [88] 37 Brain cancer MRI Germany

Kickingereder et al. (2016) [89] 152 Brain cancer MRI Germany

Heiland et al. (2016) [90] 21 Brain cancer MRI Germany

Hu et al. (2017) [91] 48 Brain cancer MRI USA

Saha et al. (2016) [92] 50 Breast cancer MRI USA

Mehta et al. (2016) [93] 35 Breast cancer MRI USA

Stoyanova et al. (2016) [94] 17 Prostate cancer MRI UK

Zhao et al. (2016) [95] 32 Lung cancer CT USA

McCann et al. (2016) [96] 30 Prostate cancer MRI USA

Guo et al. (2015) [97] 91 Breast cancer MRI USA

Zhu et al. (2015) [98] 91 Breast cancer MRI China

Kickingereder et al. (2015) [99] 288 Brain cancer MRI USA

Rao et al. (2016) [100] 92 Brain cancer MRI Germany

Gutman et al. (2015) [101] 76 Brain cancer MRI USA

Renard-Penna et al. (2015) [102] 106 Prostate cancer MRI USA

Grimm et al. (2015) [20] 275 Breast cancer MRI France

Shinagare et al. (2015) [103] 81
19
3

Renal cancer CT
MRI
CT/MRI

USA

Wang et al. (2015) [104] 146 Brain cancer MRI China

Halpenny et al. (2014) [105] 127 Lung cancer CT USA

Aerts et al. (2014) [17] 1,019 Lung cancer
Head and neck cancer

CT USA

Gevaert et al. (2014) [106] 55 Brain cancer MRI USA

Nair et al. (2014) [107] 355 Lung cancer PET USA

Jamshidi et al. (2014) [108] 23 Brain cancer MRI USA

Karlo et al. (2014) [109] 233 Renal cancer CT USA

De Ruysscher et al. (2013) [110] 95 Lung cancer CT Belgium

Gevaert et al. (2012) [16] 26 Lung cancer CT
PET/CT

USA

Zinn et al. (2011) [111] 78 Brain cancer MRI USA

CT, computed tomography; MRI, magnetic resonance imaging; PET, positron emission tomography.
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Abdomen
In the abdominal cancers as well, radiomic approaches are 
very promising to find imaging biomarker for predicting mo-
lecular subtyping related to patients’ prognosis, to optimize 
the treatment including selection of chemotherapeutic agent, 
and to predict the treatment response. Radiology is compre-
hensive for the treatment of tumor and provides anatomic 
and morphologic details which are available from CT and 
MRI. Previously, these details, so called imaging traits, were 
considered as a single entity, and part of them were general-
ly poorly understood and often ignored. Recently, the recog-
nition of the imaging traits is being highlighted because it 
may provide consequent information enabling prediction of 
tumor response to management and prognosis [129]. Espe-
cially, given the objective methods to evaluate various imag-
ing methods such as texture analysis which measures objec-
tively the heterogeneity of the lesions by quantifying the pat-
terns of pixel intensities were improved [130], clinical useful-
ness of radiomics is being expected more and more. Texture 

analysis, a novel technique, measures objectively the hetero-
geneity of tumors by quantification of the spatial pattern of 
pixel intensities on cross-sectional imaging. 

Also in the abdomen, some of researchers started to utilize 
variable imaging modalities as well as conventional CT or 
MRI for radiogenomic researches although most of them are 
pilot studies. Metabolic imaging by PET-CT and hyperpolar-
ized 13C labeling MRI can be also applied to predict high-grade 
malignancy and to give an early indication of tumor response 
[131,132]. Recent MRI techniques including diffusion-weight-
ed imaging and hepatobiliary phase imaging after gadoxetic 
acid administration has been studied the relationship with 
histologic and clinical phenotypes including microvascular 
invasion in hepatocellular carcinoma (HCC) and patients’ prog-
nosis in intrahepatic cholangiocarcinoma (ICC) [133,134].

Nevertheless, we should overcome some important hur-
dles against radiomics in the abdominal field: first, it is not 
easy to obtain volumetric data for abdominal tumors because 
the tumor boundary is indistinct from the normal tissue or 

Fig. 1. Various radiomic features, such as mesh-based shape, histogram, gray-level co-occurrence matrix (GLCM), intensity size zone matrix 
(ISZM), two-dimensional (2D) joint histogram, surface rendering for sigmoid feature, quantification of spiculation and lobulation, fractal analy
sis, and subregional partitioning, can be extracted from the computed tomography (CT) and positron emission tomography (PET) images of 
the tumor. The radiomics features are then compared with pathological and clinical data.

CT image

PET image
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adjacent organs compared with the tumor in the lung. For 
generalized data, acquisition of volumetric data with auto-
matic or semiautomatic manner is necessary [135]. Second, 
in the case of tumor arising from the hollow viscus, the boun
dary is more complicated. The shape of tumor on the imag-
ing study might be different from that on the pathologic spec-
imen. Because an intestinal tumor is growing with bowel wall, 
the lumen of involved bowel may be at the center of the tu-
mor. Therefore, segmentation of adenocarcinoma in the sto
mach or colon is not easy.

In this part, feasible imaging biomarkers for the abdominal 
cancers will be addressed and the application of radiomics in 
the abdominal diseases will be introduced.

Hepatocellular carcinoma
HCC is the most common primary cancer of the liver and the 
second most common cause of cancer-related death. HCC is 
known as a silent killer which displays minimal symptoms in 
the early stage of disease and often rarely induce remission 
despite of the treatment at detection because of the current 
lack of specific biomarkers. Current staging systems, such as 
Barcelona Clinic Liver Cancer (BCLC) staging system, do not 
consider the molecular characteristics of the tumor, even the 
various etiology of the tumor. Reflecting the varied etiology, 
HCCs show extreme genetic heterogeneity. And the variabili-
ty in the prognosis of individuals with HCC suggests that HCC 
may consist of several distinct biologic phenotypes, which 
result from activation of different oncogenic pathways during 
carcinogenesis or from a different cell of origin. In principle, 
any of the components of a signaling pathway may undergo 
mutation, although in practice more frequently susceptible 
genes emerge from genetic screens. Tumor protein P53 (TP53) 
and β-catenin are the most frequently mutated genes and 
are associated with a prognosis [136,137]. The other hand, 
the transcriptional characteristics of HCC can provide insight 
into the cellular origin of the tumor, and individuals with HCC 
who shared a gene expression pattern with fetal hepatoblasts 
had a poor prognosis. Activation of activator protein 1 (AP-1) 
transcription factors might have key roles in tumor develop-
ment [138]. 

Intrahepatic cholangiocarcinoma
In the ICC, an aggressive primary liver cancer, epidermal 
growth factor receptor (EGFR), vascular endothelial growth 
factor (VEGF), and other angiogenic promotors are frequent-
ly over-expressed [139,140]. According to a study about mo-
lecular profiling of cholangiocarcinoma, V-Ki-ras2 Kirsten rat 

sarcoma viral oncogene homolog (KRAS), phosphatidylinosi-
tol 3-kinase catalytic 110-KD alpha (PIK3CA), mesenchymal- 
epithelial transition factor (MET), EGFR, proto-oncogene B-Raf 
(BRAF), and neuroblastoma rat sarcoma viral oncogene ho-
molog (NRAS) oncogenic mutation were frequently identi-
fied in a quarter of ICC patients [141]. These molecular vari-
abilities of ICC cause the expression of microvascular pheno-
types related to aggressiveness and tumor size. 

Colorectal cancer and hepatic metastasis
Compared with the liver, texture analyses in the tumor aris-
ing from the gastrointestinal tract including colorectal tumors 
are relatively fewer because the complexity of image data 
processing including objective (automatic or semi-automat-
ic) tumor segmentation. Some studies endorsed the analysis 
of the largest cross section of the tumor rather than the whole 
tumor, but whole tumor analysis is more representative of 
tumor heterogeneity in colorectal cancer [142]. According to 
a study about assessment of primary colorectal cancer using 
whole-tumor texture analysis, entropy, kurtosis, standard 
deviation, homogeneity, and skewness might be related to 
5-year overall survival of the patients [143]. Unlike from oth-
er organs, greater homogeneity at a fine-texture level were 
associated with a poorer prognosis, leading us to hypothe-
size that these might be tumors with greater cell packing and 
more uniform distribution of vascularization and contrast 
enhancement. In terms of hepatic metastasis, there are sev-
eral studies focused on hepatic texture in patients with col-
orectal cancer. In the several studies, increased entropy might 
be related to the presence of metastasis [144] or poor prog-
nosis after chemotherapy [145,146], but tumor size or vol-
ume seemed to be not a predictor of good responders. There
fore, texture analysis could be a good alternative for existing 
scales for evaluation of tumor response after treatment such 
as World Health Organization criteria and Response Evalua-
tion Criteria In Solid Tumors (RECIST) criteria.

STEPS OF RADIOMICS

Image acquisition
The first step in the radiomics algorithm begins with image 
acquisition (Fig. 2). However, image acquisition parameters 
including radiation dose, scanning protocol, reconstruction 
algorithm, and slice thickness vary widely in routine clinical 
practice. Therefore, comparison of features extracted from 
different methods of image acquisition becomes more chal-
lenging. Furthermore, several radiomics features were report-
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ed to be sensitive according to variations in section thickness, 
pixel size, and reconstruction parameters [147,148]. On the 
other hand, Yan et al. [149] successfully identified several fea-
tures which remained stable despite different PET image re-
construction settings. Variability issue concerning methods 
of image acquisition needs to be further investigated. 

Segmentation
Accurate identification of the tumor volume is mandatory for 
radiomics feature extraction. In most cases, segmentation of 
the tumor is feasible; however, in certain cases it may be 
challenging due to indistinct tumor margins [150,151]. For 
example, in the spectrum of lung adenocarcinoma, GGO is 
always an issue as it may represent the tumor itself or sur-
rounding hemorrhage and inflammation. Among the vari-
able methods of tumor segmentation, automated or semi-au-
tomated methods have been reported to be superior to man-
ual methods for segmenting the tumor [150,152]. 

Feature extraction 
From the identified tumor region, multiple quantitative im-
age features as well as traditional qualitative (semantic) fea-
tures can be extracted; thus, is the main body of radiomics in 
oncology. Both quantitative and qualitative (semantic) fea-
tures have shown some potential for precision medicine in 
oncology, and these features are continuously being refined 
and developed with evolving research [17,117,153]. 

Currently available quantitative radiomic features can be 
divided into four major classes: (1) morphological, (2) statis-
tical, (3) regional, and (4) model-based. Morphological fea-
tures are the most basic and provide information about the 
shape and physical characteristics of a tumor. Statistical fea-
tures, which are calculated using statistical methods, can be 
further classified into 1st-order statistical (histogram) features 
and higher-order statistical (texture) features. These features 
describe the distribution or spatial arrangement of voxel val-
ues within the tumor. Regional features can quantify beyond 
the immediate neighborhood and represent intratumor clon-
al heterogeneity. Model-based features are extracted using 
mathematical approaches, such as the fractal model. Over-
all, each category yields various quantitative parameters that 
reflect specific aspects of a tumor. 

Feature selection
With the emergence of precision medicine, developing radio-
mics features as a biomarker of oncological outcome has be-
come an issue. In this context, a major advantage of radiom-
ics studies is that numerous features which may carry poten-
tial as future biomarkers can be extracted from a single tu-
mor region. However, for clinical application, these numer-
ous radiomics features need to be reduced to a number of 
practical usage, in other words, a selection process for choos-
ing the most prognostic and useful radiomics features is need-
ed. In a large study involving a total of 440 radiomics features, 

Fig. 2. Radiomics is defined as the processing of radiological imaging data including sequential steps of image acquisition, region of interest 
(ROI) segmentation, and multiple feature extraction.
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according to the different feature selection method and clas-
sification method, considerable variability in predictive per-
formance was reported [18]. 

IMAGING GENOMICS

Radiomics integrating genomic profiles is called imaging ge-
nomics. Imaging genomics researches have become an in-
creasingly important research direction due to its potential 
to improve disease diagnosis, prognosis, and treatment choice 
[10,11]. As genomic profiling of tumor is generally obtained 
through invasive procedures such as surgery or biopsy, ge-
nomics obtained from noninvasive imaging studies routinely 
performed in daily practice has the merit. Imaging genomics 
refers to the relationship between the imaging characteris-
tics of a disease (i.e., the imaging phenotype or radiopheno-
type), and its gene expression patterns, gene mutations, and 
other genome-related characteristics [12,13]. The primary 
goals of imaging genomics research are to improve our knowl-
edge of tumor biology and to develop imaging surrogates for 
genetic testing [13-15]. 

Lung
For lung cancers, significant genomic heterogeneity compo-
nents that affect the likelihood of metastasis and predict re-
sponse to therapy have been established [154,155]. Further-
more, genomic analysis is now essential for appropriate 
therapeutic planning in this era of precision medicine for ad-
vanced lung cancers with distinct tumor subregions. Accord-
ingly, there have been several attempts to explore tumor ge-
nomics by applying a radiomic approach. Nevertheless, im-
aging genomics, the link between genomics and radiomic 
phenotyping in lung cancer, is still poorly understood.

Preliminary data have associated radiomic features from CT 
and PET scans in non-small cell lung cancer with each other 
to predict metagenes with an acceptable accuracy of 65% to 
86%, among which tumor size, edge shape, and sharpness 
ranked highest for prognostic significance [16]. In one study, 
the authors performed a detailed analysis of features from 
18F-FDG PET in patients with early-stage lung cancer [156]. 
Multiple features of PET tracer uptake correlated with signa-
tures associated with major oncogenomic alterations in lung 
cancer [156,157]. According to another recent study, the com-
bination of radiomic features and clinical information suc-
cessfully predicted oncogenic fusion genes in lung cancer 
[19]. In general, researchers have shown promising results in 
using radiomics to identify radiographic tumor phenotypes 

that favored specific genetic expressions [16,17,19,156,158].

Breast
The published work to date has usually focused on determi-
nation of breast cancer molecular subtypes, or correlation 
with recurrence scores. These early efforts appeared to have 
great potential and have established a strong basework for 
future larger-scale research endeavors which will hopefully 
validate the implementation of breast MRI imaging genomics 
into clinical practice. 

The most popular topic for breast MRI imaging genomics is 
breast cancer molecular subtypes [20]. Gene expression pro-
filing has made stratification of breast cancers possible into 
four major molecular subtypes (luminal A, luminal B, human 
epidermal growth factor receptor-2 [HER2], and basal like) 
[159,160]. These different molecular subtypes have been re-
garded as important because each subtype are supposed to 
show different patterns of disease expression, response to 
therapy, and prognosis [161-163]. The most common molec-
ular subtype, luminal A typically concurs with the best prog-
nosis [159], while luminal B subtype shows good response to 
radiation therapy and has intermediate survival [164], in con-
trast to HER2 and basal subtypes, which display good response 
to chemotherapy but have the worst overall survival [161]. 
Based on prior results, oncologists take advantage of these 
molecular subtypes when making decisions about systemic 
treatment in daily practice [165].

Usual way to determine molecular subtype is based on im-
munohistochemistry (IHC) patterns of estrogen receptor (ER), 
progesterone receptor (PR), HER2, and Ki-67 expression [165]. 
These IHC findings are replaced expensive genetic tests and 
used as surrogate marker [165-167]. Agreement between IHC 
surrogate markers and genetic testing ranges from 41% to 
100% and IHC surrogate markers have been shown to be less 
robust about predicting outcomes [168]. Therefore, more ac-
curate means of classifying molecular subtypes are needed 
and imaging genomics is regarded as strong candidate.

There are two published articles that have attempted to 
build models based on imaging features to predict molecular 
subtype [20,125]. Waugh et al. [125] in a study of 148 cancers 
and 73 test sets, used texture analysis derived from 220 im-
aging features to evaluate surrogate molecular subtypes. Un-
fortunately, the authors were only able to display a classifi-
cation accuracy of 57.2% with an area under the receiver op-
erating characteristic (AUC) curve of 0.754. Nevertheless, the 
authors identified that entropy features, which refer to inter-
nal pixel distribution patterns that are representative of growth 
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patterns, were the best features to discriminate among breast 
cancer subtypes. They conclude that their study may have 
been underpowered to assess the performance of a model 
due to the small number of features. Grimm et al. [20] used 56 
imaging features, including morphologic, texture, and dyna
mic features, to evaluate surrogate molecular subtypes in 275 
breast cancers. At multivariate analysis, their results showed a 
strong association between the collective imaging features 
and both luminal A (P=0.0007) and luminal B (P=0.0063) bre
ast cancers. 

The first commercially available genomic biomarker was 
21-gene recurrence score (Oncotype DX, Genomic Health, Red-
wood City, CA, USA) which guided treatment decisions [169, 
170]. Oncotype DX was developed to quantify the likelihood 
of disease recurrence in patients with early stage invasive 
breast cancer who were ER-positive and lymph node- nega-
tive. Results consists of three categories: low-, intermediate-, 
or high-risk. Patients at low-risk are thought to derive mini-
mal benefit from the addition of chemotherapy to standard 
hormonal therapy. The 21-gene recurrence score is included 

within the treatment guidelines from the National Cancer 
Care Network and the American Society of Clinical Oncology 
[171,172]. Several additional commercially available genom-
ic biomarkers have also been designed to predict recurrence 
of therapeutic response, such as MammaPrint (Agendia, Am-
sterdam, the Netherlands), Mammostrat (Clarient Diagnostic 
Services, Aliso Viejo, CA, USA), PAM50 (Prosigna, Seattle, WA, 
USA), but these tests are newer and not yet widely used clini-
cally. Recently, investigators have explored associations be-
tween 21-gene recurrence scores and breast MRI, but still there 
are no published studies about the newer genomic biomark-
ers which may provide an opportunity for future investiga-
tions [173-175]. In a study of 98 patients who underwent pre-
operative breast MRI and Oncotype DX recurrence score test-
ing, Sutton et al. [175] reported similar results while investi-
gating 44 morphologic and texture imaging features. At mul-
tivariate analysis, kurtosis on the first (P=0.0056) and third 
(P=0.0005) postcontrast sequences was significantly correlat-
ed with recurrence scores. Recently, Li et al. [21] investigated 
relationship between computer-extracted MRI phenotypes 

Fig. 3. Imaging traits of hepatocellular carcinoma (HCC) and gene expression. (A) Three imaging traits in HCC: internal arteries, hypodense 
halo, and texture heterogeneity. (B) Strategy to make an association map between imaging traits and gene expression. Reprinted from Segal 
et al. [176], with permission from Nature Publishing Group.

A B
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with multigene assays of MammaPrint, Oncotype DX, and 
PAM50 to evaluate the role of radiomics in assessing the risk 
of breast cancer recurrence on 84 patients. On multivariate 
analysis, significant associations between radiomics signa-
tures and multigene assay recurrence scores were reported. 
Use of radiomics for distinguishing poor and good prognosis 
demonstrated AUC values of 0.88, 0.76, and 0.68 for Mamma
Print, Oncotype Dx, and PAM50 risk of relapse based on sub-
type, respectively. 

Abdomen
Imaging genomics about HCC is a very early stage, but initial 

result by Segal and his colleagues [176] was promising. On 
the basis of several different imaging traits, tumors with in-
ternal arteries and an absence of hypodense halos were re-
lated to increased specific gene expression resulting in incre
ased risk for microvascular invasion (Fig. 3). The presence of 
internal arteries was also an independent factor for a poor 
prognosis [176]. Researchers of the previous paper maintained 
the imaging genomic study about prediction of microvascu-
lar invasion of HCC, and they introduced radiogenomic ve-
nous invasion (RVI) which is a contrast-enhanced CT biomark-
er of microvascular invasion derived from a 91-gene HCC gene 
expression. They revealed that the diagnostic accuracy of RVI 

Fig. 4. Representative texture features of intrahepatic cholangiocarcinoma. (A) Quantitative image phenotypes derived from texture analysis. 
These features are automatically computed based on the region of interest extracted from computed tomography (CT). (B) Schematic process 
for making the prediction model of intrahepatic cholangiocarcinoma. Reprinted from Sadot et al. [180]. VEGF, vascular endothelial growth 
factor; EGFR, epidermal growth factor receptor; CA-IX, carbonic anhydrase IX; HIF-1α, hypoxia-inducible factor 1α; P53, protein p53; MDM2, 
mouse double minute 2 homolog; CD24, cluster of differentiation 24; MRP-1, multidrug resistance-associated protein 1; GLUT1, glucose 
transporter 1.

A

B

High Low
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was 89%, and positive RVI score was associated with lower 
overall survival than negative RVI score in the study cohorts 
[177]. Kitao and his colleague [178] concentrated to HCC with 
β-catenin mutation. The β-catenin mutation is known that it 
is associated with the promotion of carcinogenesis and ac-
celeration of bile production with a relatively favorable prog-
nosis. They evaluated gadoxetic acid-enhanced MRI, and ex-
plored some parametric variables including contrast-to-noise 
ratio, apparent diffusion coefficient (ADC) of diffusion-weight-
ed imaging, and enhancement ratio of postcontrast imaging. 
They concluded HCC with β-catenin mutation predicted by 
characteristic imaging parameters including high enhance-
ment ratio at gadoxetic acid-enhanced MRI and high ADC at 
diffusion-weighted imaging had significant positive correla-
tions among phenotypes such as expression of β-catenin, 
glutamine synthetase, and organic anion transporting polu-
peptide 1B3 (OATP1B3) [178]. In terms of prognostic conse-
quences, imaging genomics may be useful to decide thera-
peutic options. The gene expression related to doxorubicin 
resistance in HCC cells was investigated and some associated 
imaging traits were examined. Doxorubicin is a chemothera-
peutic drug usually used with transcatheter arterial chemo-
embolization. Among these imaging traits, a poorly defined 
tumor margin was considered a significantly related factor of 

the doxorubicin resistance [179]. 
Although the imaging genomic study about ICC is not com-

mon, an interesting study using a texture analysis of CT data 
in patients with ICC was recently published (Fig. 4) [180]. They 
focused on the relationship between the heterogeneity in tu-
mor enhancement pattern of ICC and a molecular profile based 
on hypoxia markers, such as VEGF, EGFR, cluster of differenti-
ation 24 (CD24), multidrug resistance-associated protein 1 
(MRP-1), hypoxia-inducible factor 1α (HIF-1α), glucose trans-
porter 1 (GLUT1), carbonic anhydrase IX (CA-IX), mouse dou-
ble minute 2 homolog (MDM2), and P53. On the result, the 
combination of entropy, correlation, and homogeneity was 
significantly related to EGFR and CD24 expression, and it might 
be meaningful imaging textures quantifying visible variations 
in enhancement. The hypoxic microenvironment and abnor-
mal vasculature derived by these molecules leads to tumor-re-
lated angiogenesis which affects local tumor growth and me-
tastasis, which supports that several anti-angiogenic agents 
such as bevacizumab (anti-VEGF antibody) and cetuximab 
(anti-EGFR antibody) are used for the patients with advanced 
ICC [181,182]. Furthermore, CD24 is a cell adhesion molecule 
associated with chemoresistance capability and poor surviv-
al in ICC. Recently, CD24 is considered an emerging target for 
directed molecular therapy, as decreased invasiveness was 

Fig. 5. Intraclass correlation coefficient values are depicted for each radiomics feature belonging to seven categories. Darker colors have 
greater reproducibility. Note the overall high correlation of radiomics features. IQR, interquartile range; RMS, root mean square; MPP, mean 
value of positive pixels; UPP, uniformity of distribution of positive pixels; Max3D, maximum three-dimensional diameter; SVR, surface to 
volume ratio; GLCM, gray-level co-occurrence matrix; GLCM-S, gray level co-occurrence matrix subsampled; IMC, informational measure of 
correlation; IMC-S, informational measure of correlation subsampled; ISZM, intensity size zone matrix. 
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observed with CD24 inhibition [183].

PARTICULAR CONSIDERATIONS  
REGARDING RADIOMIC APPROACH

Reproducibility of features and study results
Although a large number of radiomics features have shown 
potential in tumor response and prognosis, reproducibility 
of radiomics features and study results remain challenging. 
Unfortunately, several early investigators have reported that 
many features were often unstable [184-186]. In a study of 
219 radiomics features, only 66 features reported intraclass 
correlation coefficient value of more than 0.90 [184,185]. Fig. 5 
depicts the ICC distributions among radiomics features ac-
cording to color. Hence, validation across different institutions 
may serve as the solution for reproducibility of features and 
study results.

Issues of imaging modality
Special consideration is required to apply radiomics due to 
MR specific characteristics, intensity inhomogeneity which 
can significantly affect radiomic feature extraction [23,187]. 
Thus, before registration of MR images, the necessity of bias 
field correction by convolving the images with a Gaussian 
low-pass filter, resulting in uniform intensities across the vol-
ume should be inquired [188]. Furthermore, the stability of 
MRI-based radiomics features has not been investigated, and 
thus would be a valuable future study.

CONCLUSION

A radiomics and imaging genomics approach in the oncology 
world is still in its very early stages and many problems re-
main to be solved. However, in the close future, we believe 
that radiomics and imaging genomics will play a significant 
role of performing image genotyping and phenotyping to en-
hance the role of medical imaging in precision medicine. 
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