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Agglomeration and Flotation of Alumina Clusters in Molten Steel
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An equation for the floating velocity of cluster-shaped alumina inclusions which considers changes in
average density was derived by quantifying the size and density of alumina clusters using fractal theory.
The results obtained showed that the dependency of the floating velocity on the cluster diameter is smaller
than in the conventional equations, which assume that clusters have a uniform average density. In particular,
the floating velocity of clusters 100 um and over is considerably smaller than the conventional floating velocity.

A model of the coalescence of cluster-shaped inclusions was also constructed, and the behavior of alumina
clusters in molten steel in the tundish of an actual continuous casting machine was analyzed considering
floating characteristics and agglomeration. The calculated results showed good agreement with the results
measured in the actual machine, demonstrating that it is possible to simulate the coalescence and floating
separation of cluster inclusions in molten steel with this model.
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1. Introduction

When molten steel is deoxidized with aluminum, small
particles of alumina collect in relatively loose, irregularly-
shaped groups to form so-called alumina clusters, which
can cause defects in cold-rolled sheets and other steel
materials if some of these inclusions remain at the sur-
face or interior of continuously cast slabs. Complete
separation and removal of inclusions in the steelmaking
process are therefore essential. An effective means of
removing inclusions is to promote collision and coale-
scence of the inclusion particles by stirring the molten
steel and float out and separate the inclusions by coars-
ening.

Basic research on the removal of inclusions includes
an inclusion separation model proposed by Lindborg and
Torssel,” in which coarsening of the inclusions due to
Stokes and gradient collisions is the rate governing
process, and a general model proposed by Linder,?
which considers the turbulent collision of deoxidation
products, material adhering to the vessel wall, and
floating separation. Nakanishi and Szekely® analyzed
the rate of Al deoxidation of molten steel in an ASEA-
SKF furnace based on turbulent cohesion theory and
the results of a flow simulation, Shirabe and Szekely®
analyzed the turbulent coalescence of deoxidation prod-
ucts in an RH degasser and calculated the particle con-
centration distribution and particle size distribution.

The calculations mentioned above assume that in-
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clusions are spherical particles which agglomerate to
form spherical particles with a larger particle diameter.
However, it is conceivable that small particles such as
alumina-type inclusions exhibit a different behavior when
they collect in a cluster morphology in molten steel.>®
Moreover, although the floating characteristics of sphe-
rical inclusions can be expressed by Stokes’ law in
the field of fluid dynamics,” the floating behavior
of cluster-shaped inclusions has not necessarily been
clarified.

Therefore, in this research, the size and density of
alumina clusters were quantified using fractal theory,
which has rarely been adopted in steelmaking research
to date, and the floating characteristics of the clusters
were clarified by model experiments. A model of the
coalescence of cluster-shaped inclusions by Brownian
coagulation, turbulent coagulation, and differential
coagulation was then constructed, and the behavior of
alumina clusters in the molten steel in the tundish of
an actual continuous casting machine was analyzed
considering the above-mentioned floating characteristics
and agglomeration.

2. Theoretical Analysis

2.1. Model of Collision and Coalescence of Alumina-type
Inclusions
2.1.1.  Fractal Dimension of Clusters

In the continuous casting of low carbon aluminum-
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killed steel, more than 70% of the inclusions in the
molten steel in the ladle before the metal is poured into
the caster tundish and in the tundish itself are alumina
clusters, which are formed when small particles of
alumina collect in a cloud-like body.®’ Using fractal
theory, the size of such alumina clusters and the dis-
tribution in three-dimensional space of the small
particles which make up the clusters can be expressed
quantitatively by Eq. (1)®:

N=p,(R[r)™

Here, R is the size of the cluster (representative radius)
(m), N is the number of constituent particles (—), r is
the radius of the small particles which make up the cluster
(m), Df is the fractal dimension of the cluster (—), and
P, is the numerical density. Because it is assumed that
all the small particles have the same mass, N can be
interpreted as the mass of the cluster, and p, as the
mass density.

Because the proportion of space which the cluster
occupies can be characterized quantitatively by Df, it is
possible to obtain the representative diameter of the
cluster from Eq. (1) if the number of constituent particles
is known.

2.1.2.  Model of Cluster Collision and Coalescence
The main assumptions adopted in constructing a model
of the collision and coalescence of alumina clusters were
as follows.
1) The alumina cluster consists of a collection of N
small spherical particles having a uniform radius r.
2) The size of the cluster (representative radius), R,
is in accordance with Eq. (1), and the volume of the
cluster, ¥, is equal to the volume of a sphere with the
representative radius R.
In new clusters which are formed by the collision
and coalescence of two clusters, the number of con-
stituent particles is equal to the sum of the number
of constituent particles in the two clusters, and the
size of the new cluster is specified by the relationship
in Eq. (1).
The frequency of collisions between alumina clus-
ters is in accordance with the theory of the col-
lision and coalescence of spherical particles.
According to the theory of the collision and coales-
cence of spherical particles, the frequency of collision,
N, per unit of time and unit of volume between two par-
ticles having the particle volumes v; and v; can be ex-
pressed by the following equation.*®

N,-J:ﬁ(vi LN

3)

4)

Here, B(v;, v;) is a function of the frequency of collision
between the two particles i and j (m3/s), and is determined
by the mode of flow and the size of the particles. Further,
n; and n; are the numerical concentration of individual
particles in i and j (1/m?3).

It is known that the agglomeration of inclusions in
steel in the tundish progresses mainly by coagulation due
to Brownian motion, coagulation due to differences in
the floating velocity of inclusions, cohesion due to
turbulent flows, and similar factors. The collision
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frequency functions for these respective coagulation
mechanisms may be introduced as follows.
Brownian coagulation'®:

2kT (1 1
Bu(vp;) = 3u <v_1/3 +m>(vil/3+u}/3) ....... 3)
i j
Differential coagulation!-%":
Ba(vs, v;) =m(a;— a;)* 1 Vi—= V| o 4
Turbulent coagulation®V;
£ 1/2
B.(v;, vj)=oc,rl.3(al-—+—aj)3( v> .............. (5)

Accordingly, the collision frequency function for
inclusions in steel in the tundish can be expressed by

Eq. (6).
B(v,, Uj) = By(vs, Uj) + Ba(v;s Uj)+ﬁt(vi’ Uj)

Here, v;, v; are the volume of the particles (m3), k is
Boltzmann constant (J/K), 7 is the absolute temperature
(K), u is the viscosity of the fluid (Pa-s), «;, a; are the
radii of the spherical particles (m), v;, v; are the floating
velocities of the particles (m/s), v is the kinematic viscosity
of the fluid (m?/s), ¢ is the dissipation rate of turbulent
kinetic energy (m?/s3), and «; is coagulation coefficient
(—).

Equation (5) was derived by Higashitani er al.'? by
considering coagulation coefficient due to the hydro-
dynamic interaction and dispersion force in an equation
proposed by Saffman and Turner.!? The coagulation
coefficient in the equation is graphed against a non-
dimensional number Ny (=6nu a3y/A4) which includes
Hamaker’s constant A(J) (=0.45x1072°])” and a de-
formation rate § (=(4e/157mv)°-%) (1/s), and can be ex-
pressed by the following equation.

0.24log Ny +0.047

logar

In the case of cluster-shaped inclusions, these equa-
tions are applied in the same manner by substituting the
representative radius, R, and volume, V, of the alumi-
na clusters for the radius, ¢, and volume, v, in Egs. (2)
through (7).

When a cluster-shaped inclusion consisting of i con-
stituent particles (hereinafter referred to as an inclusion
with a clustering degree of i) and an inclusion with a
clustering degree of j collide and coalesce, the rate of
change in concentration of an inclusion with a clustering
degree of k (=i+/) can be obtained if Egs. (2) through
(7) are substituted in the population balance equation in
Eq. (8), which was derived by Smoluchowski.'?

dn, 1 &

e Y N YN,
dt 2 ik igl ¢
1 2
=’2“ 2 B(v,, Uj)ninj'—nk Z By, vn; ....(8)
i+j=k i=1

The mass concentration ¢; (mass%) of an inclusion
with a clustering degree of i can be expressed approx-
imately using the density of alumina, py,0, (kg/m?),
and the density of molten steel, p (kg/m?), as follows:
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c=1i 3 Pano,lilpx 100 ... )

Therefore, the rate of change in mass concentration
of clusters f(¢,) expressed in terms of weight concen-
tration can be found by using the following equation,
from Egs. (8) and (9).

k(1 ; C; "
f(ck)="€3“<'" Z B(v;, Uj)ﬁ.l' —C‘J'_—C“ Z B, vy) E‘)
r 2 i J

X f
itj=k k i=1 i

Here, C=3p/(4mpa),0,) X 1074=4.248 x 1075,

2.2. Basic Equation of Flow Field

The main assumptions and the master equation for
analysis of the agglomeration behavior of cluster-shaped
inclusions in molten steel are presented below.

1) The k—& model'® is used for the turbulent flow
model.

2) The concentration of inclusions is classified sepa-
rately for each inclusion with a clustering degree of .

3) The effective Schmidt number and the effective
Prandtl number are equal to 1.

4) The terminal velocity of an inclusion is decided by
its clustering degree, and has the same value for all
inclusions with the same clustering degree.

Continuity equation:

9, dpw)
ot 0x;

| (11

Momentum balance equation (considering temperature
dependency):
%, dpu) __ip

ot Ox; 0x;

42 { <6“"+6”f> +8(0—po) oo (12)
ax' Hefr ax ax gi P po .......

J J t

Enthalpy balance equation:

ApT) o(pu,T) o oT
(0T)  ApwT) _ ( keff-a_>
X

ot 0x; 0x;

i

The concentration equation for an inclusion with a
clustering degree of i can be expressed as follows:

dpc;) N dpuffc) 0 <pDeffa—(i‘—>+ﬂf(Ci) i=1toi,,
ot 0x;

J axj

Ox;

J

Here, the following equation is introduced based on the
above-mentioned assumption 3).

pkcff=pDcff=/'Leff ...................... (15)

The second term from the right in Eq. (14) is the term
for formation by agglomeration, and therefore can be
found using Eq. (10), in other words, as shown in Eq.
(16). However, if the clustering degree after coalescence
exceeds the set maximum clustering degree, iy,,, for
reasons relating to the calculation procedure, Eq. (17) is
used rather than Eq. (16).
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Table 1. Geometry of Mizushima No. 4CC tundish and
computational conditions.

Length: 3.85m (half tundish)
Width: 1.79m (max.), 0.65m (min.)
Depth: 1.0m (max.)

70, 000 kg

Geometry

Mass of steel melt

Throughput per strand 68.3 kg/s (4.1t/min)

[O] at inflow 50 ppm

p=7100~1.12 (1560 - T )

Density of molten steel : kg/m3, T.C)

Clustering degree

{Number of particles in cluster) i=1-29
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Fig. 1. Computational mesh (26x46x20 grid cells) and
perspective view of half tundish.
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Here, u=(u,,u,,u3) is the flow velocity vector of the
molten steel (m/s), per=p+p, is the effective viscosity
of the molten steel (Pa-s), y, is the turbulent viscosity
(Pa-s), p is pressure (Pa), T is temperature (K), g is
acceleration due to gravity (=9.8 m/s?), p, is the densi-
ty of steel at the standard temperature (kg/m?), u}=
(uy, uy, us+v;) is the flow velocity of an inclusion with
a clustering degree of i (m/s), and v, is the terminal float-
ing velocity of the same inclusion (m/s).

2.3. Calculation and Boundary Conditions

Momentum, heat, and the mass balance of an inclusion
with a clustering degree of i were solved in a coupled
manner using the general-purpose code PHOENICS for
fluid analysis by the calculus of finite differences. The
object of this calculation was the tundish at No. 4
continuous casting machine at Kawasaki Steel Corpora-
tion’s Mizushima Works. The conditions of the calcula-
tion are shown in Table 1. Assuming the symmetry
of the tundish, the calculations were made using a 1/2
model. As shown in Fig.1, (the transverse direction x x
the longitudinal direction y x the height of the tundish
z) was divided into 26 x 46 x 20 elements. The cluster-
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Table 2. Boundary conditions.

Standard wall conditions
No-flux condition for alumina clusters
Heat flux: g, = 5.24 kcal / m?s

Wall boundaries

Frictionless impervious boundary
Inclusion concentration: q = 0.8 v, c;
Heat flux: q = 11.27 kcal / m2s

Free surface

Sucrose solution Measuring cylinder

(inner dia. 65mm)

/

Thermostat \

Polyethylene
cluster

Measuring zone
200mm

Cluster holding
Approach zone

device \
N 120mm

Fig. 2. Schematic diagram of experimental apparatus.

ing degree of inclusions was varied between 1 and 29.

The boundary conditions are shown in Table 2.
Because it is considered that alumina inclusions do not
adhere to the wall and that part of the inclusions which
reach the free surface are again entrained in the molten
steel, it was assumed here as fitting parameter of cal-
culation that 80% of the inclusion flux, v,c;, which
reaches the surface of the molten steel is removed, and
the remaining 20 % remains in the molten steel. For the
heat flux from the walls and the free surface, measured
values were used.

Assuming the density distribution, n?, of the initial
number of inclusions with a clustering degree of i in the
molten steel which flows from the ladle through the
pouring pipe can be expressed in the form of an index
function of the representative radius, R;, of the inclu-
sions,

n2 =Ny exp(— o R;) covvreveririennnenn. (18)

The initial mass concentration distribution, ¢

(mass%), can be expressed by the following equation by
substituting the Eq. (18) into Eq. (9).

o . Amr?
¢ =z——3—-— Pan0,Noexp(—oy R;)/px 100 ....(19)

i

Here, o, N, are constants, and o, was set at 3.45 x 10°
(1/m) from the measured value at the tundish inlet hole.
Further, N, is set so that the total calculated oxygen
concentration in the alumina inclusions of each clustering
degree is equal to the oxygen concentration of the molten
steel.

3. Experimental Procedure

3.1. Cluster Floating Experiment Using Cold Model
The experimental apparatus is shown in Fig. 2. The
measuring cylinder was filled with a sucrose solution,

and the solution temperature was kept constant by
surrounding the cylinder with a thermostat. The cluster

Fig. 3. Example of polyethylene cluster used in cold model
experiment.

was immersed in the solution using a rotating-type cluster
holding device, and kept for an adequate time to allow
all air bubbles to escape from the cluster. Next, the holder
was gently opened, and the cluster was allowed to float
up from the bottom of the measuring cylinder. An
approach zone was set to ensure that the floating velocity
would reach the terminal velocity. The time required for
floating was measured in the measuring zone above the
approach zone, and the floating velocity of the cluster,
v, was then calculated. The concentration of the sucrose
solution was varied between 40 and 60 mass%, while the
temperature was varied between 8.4 and 27.2°C (giving
a density range of 1.17 to 1. 29 g/cm?).

For this experiment, polyethylene clusters were made
from spherical polyethylene particles (Flow Beads man-
ufactured by Sumitomo Seika Co.) with a diameter of
600+ 100 um and a density of 0.918 g/cm*® by combin-
ing 10-100 particles into a cluster shape with an adhe-
sive (specific gravity after drying, 1.189). The fractal di-
mension, Df, of these clusters was adjusted to 1.8. An
example of a polyethylene cluster is shown in Fig. 3.

3.2. Maeasurement of Distribution of Alumina Clusters
at Actual Continuous Casting Machine

No. 4 continuous casting machine at Kawasaki Steel’s
Mizushima Works has a throughput of 4.1t/min per
strand. During the casting of ultra-low carbon steel,
molten steel is sampled from the vicinity of the pour-
ing pipe (depth 400 mm) in the tundish and from the
straight part of the immersion nozzle (depth 560 mm).
The samples taken are measured to determine the oxygen
content, and after grinding, a surface area approximate-
ly 800 mm? is observed at 400 x magnification with an
optical microscope. When two or more alumina particles
with a size of approximately 0.5 um or more are found
in proximity, the particles are judged to be a cluster.
Using a photograph, the number of constituent particles
is counted, and the diameter of a circle circumscribed
around the particles is measured as the diameter of the
alumina cluster. The mass concentration is calculated
from Eq. (9) using a constituent particle diameter of
3 um, after converting the number of clusters per cross-
sectional surface area to a number in the volume using
DeHoff’s equation.'#
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Fig. 4. Example of alumina cluster sampled from molten steel
in ladle immediately before teeming into tundish.
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Fig. 5. Relationship between number of alumina particles and
diameter of alumina clusters.

4. Results and Discussion

4.1. Cluster Distribution and Floating Characteristics
4.1.1. Fractal Dimension of Alumina Clusters

Figure 4 shows an example of an alumina cluster which
was detected in a sample of molten steel in the ladle.
Figure 5 shows the relationship between the diameter,
D, of alumina clusters and the number of particles, N,
in the alumina clusters in samples taken from the ladle,
tundish, and continuously cast slabs. The number of
particles, N, was converted from N,, which was mea-
sured on a 2-dimensional plane, to the number of
particles in a 3-dimensional sphere using N=N2/?. The
N, is largest when a cutting plane passes through in the
vicinity of the center of gravity of clusters. In this case,
the diameter D,, which was measured on a 2-dimensional
plane, is approximately equivalent to the diameter, D,
of alumina clusters on a 3-dimension. From the rela-
tionship between upper limit of the N and D illustrated
in Fig. 5, N can be expressed as:

Here, « is the proportional constant, and from the
function D=d, when N=1, a=d~''®. From this, it was
found that the fractal dimension of the actual alumina
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Fig. 6. Relationship between drag coefficient of polyethylene
clusters and Reynolds number.

clusters is 1.8.

On the other hand, the fractal dimension of the general
clusters which have been observed to date can be obtained
using a computer simulation by random walk. According
to a CICI (kinetic clustering of clusters) model for
3-dimension, Df is reported to be 1.78-+0.05.13 Al-
though the fractal dimension of alumina clusters has not
previously been measured, the value found in the present
work, 1.8, was substantially the same as this simulated
result, and it was therefore concluded that the fractal
value of alumina inclusions conforms to the fractal
dimension of clusters in general.

4.1.2. Floating Characteristics of Clusters

Figure 6 shows the relationship between the drag
coefficient, Cp, obtained from the floating velocity of
the polyethylene clusters, and the Reynolds number, Re,
which uses the cluster diameter, D, as the representative
length. The following relations can be obtained, for
clusters of 10 clustering degrees and over, using a value
on the order of Re=3 as a transition.

Cp=15/Re Re<3 oo, 1)
Cp=8/Re®5 3<Re<100 ............... (22)

These values, as shown in Fig. 6, are small compared
with the values for spheres obtained with Stokes’ law
(Cp=24/Re) and Allen’s law (Cp=10/Re®). This is an
influence of the character of clusters that the number
density of the constituent particles in a cluster is small
toward the outer side. The branches made by constituent
particles which extend as far as the circumference make
virtually no contribution to drag.

An equilibrium Eq. (23) for buoyancy and drag can
be introduced for clusters floating at a uniform velocity:
nd? nD? py?

N —p)g=C
6(0 P8 >,

From Eq. (20) through (23), the floating velocity, v,
can be expressed as follows for clusters of 10 clustering
degrees and over.

_8 D*%d"p—p,)g
5 184

A%
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v DO.ZdO.S(p - pp)2/3g2/3

= 3<Re<100 ....(25)
62/3[)1/3#1/3

Here, v is the floating velocity (m/s), D is the diam-
eter of the cluster (=2R) (m), N is the number of con-
stituent particles in the cluster (—), d is the diameter of
the constituent particles (m), p, is the density of the
constituent particles (kg/m?), Cp is the drag coefficient
(—). p is the density of the fluid (kg/m?), and u is the
viscosity of the fluid (Pa-s).

The terminal floating velocity of alumina clusters of
10 clustering degrees and over, in static molten steel, as
calculated using Egs. (24) and (25), is shown in Fig. 7.
Though Eqgs. (24) and (25) are derived from experiment
data of 10 clustering degrees and over, the floating
velocity, v of 2 clustering degrees calculated by Eq. (24)
is over estimated around from 38 to 56 %, it depends on
the direction of the cluster, than the floating velocity
calculated from analytical solution of two spheres.!®

The floating velocity of the clusters increases as the
cluster diameter and the diameters of the constituent
particles increase. However, the dependency of the
floating velocity on the cluster diameter is smaller in the
present case than in the results obtained by Asano et
al.,” who assumed that clusters have a uniform average
density. This is because the average density of clusters,
p.. converges on the density of the molten steel as the
cluster diameter increases, as shown by Egs. (26) and (27).

Pe=pPE+ Par,0,(l —¢)
6=1—(d/D)>~ ™

Here, p, is the average density of an alumina cluster
(kg/m?), p is the density of molten steel (=7 100 kg/m?),
Pano, is the density of alumina (=3990kg/m?), ¢ is
the volumetric fraction ratio of molten steel contained
within the alumina cluster (—), d is the diameter of the
constituent alumina particles (m), D is the diameter of
the alumina cluster (m), and Df is the fractal dimension
of the alumina cluster (=1.8).

The relationship between the volumetric fraction ratio
of the alumina in an alumina cluster, 1—¢, and the
diameter of the alumina cluster is shown in Fig. 8.
Although Asano et al.® reported a measured value of
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Fig. 9. Relationship between average density of alumina
cluster in molten steel and diameter of alumina clusters.

0.03 for 1—¢, this value becomes smaller than 0.03 in
clusters with diameters of 100 um and larger. The
relationship between the average density and diameter
of alumina clusters is shown in Fig. 9. In the case of
Asano et al., because 0.03 is used as the value of 1—e¢,
the average density is constant at 7007 kg/m® for all
diameters. However, in the present research, in particu-
lar, the clusters of 1 mm and larger which are observed
occasionally in steel slabs showed a value of 1 —¢ of
0.001 or under, and the average density of the alumina
clusters was more than 99.9 % that of molten steel. These
differences result in a large difference in the evaluation
of the floating velocity, as can be seen in Fig. 7.

4.2. Behavior of Alumina Clusters in Molten Steel

4.2.1. Flow Pattern, Concentration Distribution of
Inclusions

Figure 10 shows an example of the computed velocity
profile of molten steel in the tundish of an actual con-
tinuous casting machine with a molten steel capacity
of 70t and a throughput of 4.1t/min per strand. The
fluid which is discharged from the pouring pipe travels
to the bottom with virtually no spreading. After impact
against the bottom, the fluid flows along the bottom and
then forms an upward current. The upward current
divides, with one part becoming a circulating current
between the upward current and the pouring flow, and
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Fig. 10. Computed velocity profile in 70t tundish at through-
put rate of 4.1 t/min.
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Fig. 11. Computed contours of cluster concentration (cluster-
ing degree: number of particles in cluster, 7=1)in 70 t

tundish at throughput rate of 4.1 t/min.
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Fig. 12. Computed contours of cluster concentration (cluster-

ing degree: number of particles in cluster, i=29) in
70t tundish at throughput rate of 4.1 t/min.

the other forming a surface current that follows the
surface of the molten metal. At the side wall, this sur-
face current forms a downward current, and either is
discharged from the tundish through the immersion
nozzle or returns to the center of the bottom and forms
a large circulating counterflow in the vicinity of the
pouring flow. Although not illustrated here, it might also
be mentioned that the results of calculations using water
as the fluid and the measured values of the velocity profile
obtained with a water model showed good agreement.
It can be conjectured that the results with molten steel
would be substantially the same.

The computed concentration contours of alumina
clusters with clustering degrees of 1 and 29 are shown
in Figs. 11 and 12, respectively. It can be understood
from these figures that, during the movement of the
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Fig. 13. Reclationship between observed numerical concen-

trations of alumina clusters and clustering degree
(number of particles in cluster).

cluster from the upper stream to the lower stream, the
concentration of inclusions with a clustering degree of
1 decreases, whereas the concentration of inclusions with
a clustering degree of 29 increases. These agglomerations
are remarkable in the vicinity of the jet stream from the
pouring pipe. Because the turbulent intensity of the flow
is large in this area, the calculation results of the
concentration of clusters are considerably influenced by
Hamaker’s constant which effects turbulent coagulation
coefficient. Taniguchi et al. predicted that Hamaker’s
constant of alumina in liquid iron is 2.3 x 1072°(J).17
In this case, the coagulation coefficient is 1.48 times of
the value used in this study.

4.2.2. Agglomeration Characteristics of Alumina Clus-
ters

Figure 13 shows the concentration distribution of
alumina clusters by clustering degree as obtained from
bomb samples of molten steel in the tundish at the bottom
of the inlet and the top of the outlet. The ordinate in
this figure shows the numerical concentration of the
alumina clusters, n,, and the abscissa shows the clu-
stering degree. Because measurements were made on
a 2-dimensional plane, the clustering degree on the
abscissa was adjusted using N=N2/? in order to convert
the 2-dimensional measurements to three dimensions.
The concentration of inclusions with clustering degrees
of N=5 to approximately 90 decreased at the outlet.
However, quantitative evaluation of inclusions with
higher clustering degrees is difficult due to their low
frequency of appearance.

Figure 14 shows the concentration distribution by
clustering degree at the inlet and outlet as obtained by
numerical calculation. This figure also shows the ob-
served results of the numerical density in a plane from
Fig. 13, converted here to mass concentration values.
The calculated results showed good agreement with the
observed results. Tt should be mentioned that the
calculated distribution of the concentration of inclusions
at the outlet reached its largest value at the maximum
clustering degree because the effect of floating and
separation was small due to the fact that the maximum
clustering degree was set to a somewhat low value in the
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calculation. If the calculations had been made consider-
ing higher clustering degrees, it is conceivable that the
distribution would be smoother. Another influence of
limitation of maximum clustering degree on calculation
result is as follows. The collision and coalescence of
clusters below 29 clustering degrees and over 29 ¢l ustering
degrees is ignored. The concentration of 29 clustering
degrees inclusions is overestimated because the effect of
floating and separation was small in comparison with
that of inclusions over 29 clustering degrees. Con-
sequently it is considered that the result is not much
influenced by the limitation of maximum clustering
degree.

It can therefore be said that the agglomeration and
floating separation of cluster inclusions in molten steel
are simulated satisfactorily with this model.

4.2.3. Comparison of New and Conventional Compu-
tational Models

The computational model for alumina clusters using
fractal theory is superior to the conventional model in
the following points.

First, as shown in the upper part of Fig. 15, the fractal
model shows the same mass before and after coalescence
because cluster-shaped inclusions with N, and N,
constituent particles coalesce to form an inclusion with
N+ N, =N, constituent particles. On the other hand,
the conventional models of agglomeration®* are sus-
ceptible to rounding errors, as shown in the lower
part of Fig. 15. Specifically, when spherical inclusions
with radii al and a2 coalesce, the radius of the sphere
after coalescence are generally not identical with the
radius which is set for computational reasons in order
to decide the radius of the sphere so that the volume (or
mass) of the original spherical inclusions is preserved,
and this results in a rounding error.

Second, as mentioned in Fig. 7, in this model, the
floating velocity of large inclusions is smaller than in the
conventional models, which provides an easier under-
standing of the large cluster inclusions that are occa-
sionally seen in slabs.

Third, in the conventional models, when a small-radius
particle (a,) coalesces with a large-radius particle (a,),
there are cases in which the small-radius particle
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Fig. 15. Comparison of cluster model of agglomeration and
spherical particle model.

disappears computationally while the radius of the
large-radius particle remains unchanged, which also gives
rise to errors in the numerical density distribution. This
problem occurs when the volume of the particle with
radius ¢, is small in comparison with the difference
between the volumes of the particle with radius a, and
the particle with the next largest radius (ay+ Aa).
Conventionally, computational means are adopted to
reduce these errors, for example, by maintaining the
same total volume of the inclusions,® but it is not pos-
sible to eliminate the distortions in the numerical den-
sity distribution. With the new computational model, it is
not necessary to consider the above-mentioned error.
Thus, this model is capable of providing an accurate
grasp of the behavior of cluster-shaped inclusions, and
is expected to contribute to future research in this field.

5. Conclusion

The characteristics of alumina clusters in molten steel
were quantified using fractal theory, and cold experi-
ments were performed to investigate the floating behavior
of clusters. The following results were obtained regarding
the floating and agglomeration of alumina clusters in
molten steel.

(1) The fractal dimension of alumina clusters in
molten steel is 1.8.

(2) Byintroducing the fractal dimension, it is possible
to derive the following equations for the floating velocity
of cluster-shaped inclusions of 10 clustering degrees and
over, which consider the changes in average density that
accompany changes in the diameter of clusters.

8 D*d'*p—p,)g
18u

5
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(3) In comparison with the conventional equations,
which assume a constant average density, the dependency
of the floating velocity on the cluster diameter is small in
the equations obtained in (2). In particular, the floating
velocity of clusters larger than 100 um is considerably
smaller than the floating velocity obtained with the
conventional models.

(4) A model of the coalescence of cluster-shaped
inclusions was constructed and applied to alumina
clusters in molten steel in the tundish. The calculated
results showed good agreement with the measured re-
sults, demonstrating that it is possible to simulate the
agglomeration and floating separation of cluster inclu-
sions using this model.
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