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The Zener equation was first reported by C. S. Smith in 1948 and since then it has become an integral
part of any theory which deals with recovery, recrystallization and grain growth in particle-containing
materials. Several modifications to the original equation have been made over the past five decades to
improve its applicability to more realistic situations. This paper summarises these modifications and discusses
which modifications are reasonable and justifiable based on the analytical models and experimental evidence
reported in the literature. Several examples of the applications of the equation are provided to describe
annealing phenomena in a wide variety of materials. The paper also examines the impact of the equation
in the field of materials science and engineering and suggests a direction for its future development.
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1. Background

In 1948, Cyril Stanley Smith published a seminal
paper!’ which outlined the fundamental principles of
interpretation of microstructures in terms of the equi-
librium between phase and grain interfaces. The paper
included a paragraph from a private communication
from Clarence Zener concerning grain growth in par-
ticle-containing materials which has become famous in
the five decades since that date. Numerous attempts have
been made since then to improve the so-called Zener equa-
tion. The present paper is a historical overview that traces
the evolution of the equation and outlines its impact
in the field of materials science and engineering.

Zener!) proposed that the driving pressure for grain
growth due to the curvature of the grain boundary would
be counteracted by a pinning (drag) pressure exerted by
the particles on the boundary. As a consequence, normal
grain growth would be completely inhibited when the
grain size reached a critical maximum grain radius (R,)
given by:

where R, is the Zener limit, r the radius of the pinning
particles and f the volume fraction of particles. Equation
(1) is known as the Zener Equation and its general form
is given as:

RC=K,./f)71

where K is a dimensionless constant and m an index for f.

It should be pointed out at the outset that the Zener
equation is not a theory of grain growth in particle-
containing materials. Any such theory must describe
at least three parameters: (i) the mean grain size; (ii)
the grain size distribution as a function of time, and
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(i) the time-invariant grain growth rate. In this context,
the Zener limit is simply the critical grain radius which
neither grows nor shrinks due to the balance of driving
and pinning pressures. The equation gives no information
about the actual process of grain growth, the growth rate
or the size distribution of grains. Nevertheless, Eq. (1)
is of great significance because it demonstrated for the
first time, both qualitatively and quantitatively that, for
a given particle-containing material, an increase in the
volume fraction of particle, and/or a decrease in particle
size results in a decrease in grain size. It is an important
factor in the achievement of a fine grain size in materials,
such as microalloyed steels, aluminium alloys and many
other industrially-significant particle-containing mate-
rials. Furthermore, it has played a pivotal role in the
subsequent development of theories concerning anneal-
ing phenomena in particle-containing materials.

The derivation of Eq. (1) involved several assumptions
which were addressed by the subsequent research to
improve its applicability for describing grain growth in
a variety of materials. The following sections will dis-
cuss the mathematical derivation of the equation, the
assumptions made in its derivation, consequent modifi-
cations, the applications of the equation to studies of
annealing phenomena and possible future developments.

2. Derivation of the Zener Equation

Zener did not provide a diagram for the interaction
geometry of a particle with a grain boundary, but
based on the description given by Smith" a schematic
illustration was prepared by Reed-Hill® (Fig. 1). The
derivation of the Zener equation can be divided into five
steps:
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Fig. 1. Schematic diagram of the interaction of a spherical

particle with a grain boundary (after Ref. 2)).

STEP 1: Calculation of maximum pinning (drag) force
(F,) exerted by a single particle on the grain

boundary (g.b.)

F,=(total line of contact in three dimensions) x
(component of surface tension in the direction
opposite to the direction of movement of the
g.b)

This may be written as:
F,=2nrysinfcos 6

For maximum pull, § =45° which gives the maximum
pinning force per particle (F,) as:

F, is also called the Zener pinning force.

STEP 2: Calculation of the surface density of particles
(n)) on the grain boundary

n,={number of particles per unit volume (n,)} x (r)

No explanation was given for this postulate. However,
Gladman® suggested that the condition which de-
termines whether the particle is in contact with a grain
boundary should be when the centre of the particle lies
within +r of the boundary. This idea was explained
in more detail later by Nes et al.¥ where it was also
suggested that », should be multiplied by 2r since all
particles within a distance +r of the grain boundary (on
both sides of the boundary) would interact with the
boundary. This modification clearly increases the surface
density of particles by a factor of two, but does not
necessarily increase the pinning pressure by the same
factor. The reason for this is that particles do not always
interact with the grain boundary with maximum pinning
force as assumed in Eq. (3b), so that the decreased F,
would, to some extent, balance the increase in #,. The
pinning force varies with contact angle according to the
sine function (Eq. (3a)) and takes values from an at-
tractive maximum at 6= —n/4 to a pinning maximum
at 8= +mn/4. Therefore, depending on the interaction
position of the particles with respect to the grain
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boundary, the interaction force can either assist or re-
sist the movement of the boundary. If all particles are
randomly distributed (as assumed in the Zener analysis),
there is a further problem in that the particles assisting
and resisting the movement of the boundary may balance
each other which would result into a net zero force on
the boundary. However, it has been suggested®* that
this situation would only occur if the grain boundaries
remain rigid, which is not the case. The boundaries are
flexible and more highly curved near the particles.
Therefore, the boundaries may remain in contact longer
with the pinning particles than those assisting their
movement, resulting in a net drag pressure. Thus, the
resultant net drag pressure also depends on the as-
sumptions made to characterise the grain boundary-
particle interaction geometry, and not only on n,. In
view of this analysis, multiplying n, by 2r appears rea-
sonable because it indicates more accurately how many
particles interact with per unit area of a grain boundary.
Nevertheless, following the original proposal:

n,={volume fraction of particles (f)/volume of one
spherical particle} x r

which may be written as:

ny=3f/4nr?

STEP 3: Calculation of the maximum pinning pressure
due to all particles (P,) on the grain boundary

P,=Fn,=3fy/4r {from Egs. (3b) and (4)} ....(52)

If the suggestion of Gladman® and Nes er al® is
considered, then P, is given as:

P,=31y2r v (5b)
Equation (5a) can also be written in the general form as:
P,=92 i, (6a)

where z (=3 f/4r) is called the Zener factor. It is pertinent
to note, however, that according to Gladman® and Nes
et al.," the Zener factor is given by:

STEP 4: Calculation of the driving pressure (P,) for
grain growth

Smith stated ““. .. the driving force for grain growth is
provided by the surface tension and is quantitatively
equal to y/p.. To a first approximation, one can
anticipate a definite relation between curvature of the
boundary (virtually equal to grain size)....” From these
statements, we construct an equation for P,, that is:

Py=7/pper

where 1/p,=1/p;+1/p,, where p, and p, are the
principal radii of curvature of the grain boundary. For
a spherical grain, p; =p,=p which leads to p,.=p/2.
Substituting this into Eq. (7a) yields:

The next problem is the relation between p and the ‘grain
size’. It is not clear whether Smith was referring to “p,e”
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Table 1. Possible equations for the limiting grain radius (R.).

Eq. (7¢) = Eq. (7¢c) = Eq. (7d) = Eq. (7d) = Eq.(7e) = Eq. (7e) =
Eq. (5a) Eq. (5b) Eq. (5a) Eq. (5b) Eq. (5a) Eq. (5b)
v/R. = 3fyldr Y/R. = 3fy/2r Y/2R, = 3fy/4r Y2R.= 3fy/2r 2y/R. = 3fy/ar 2y/R, = 3fy/2r
R¢ = 4r/3f R =2r/3f Re=21/3f Re=1/3f R, = 8r/3f R =4r/3f
Likely Possible Possible Not possibl Not possibl Likely

TR L]

or “p” as the grain size. It is also unclear whether he was
referring to “R’ (grain radius) or “D” (grain diameter)
as the grain size.

There are four possibilities:

(1) pnel= R7 (ll) pnel=Dv (111) p:Ra or (IV) p:D
Substituting (i) and (ii) into Eq. (7a) gives:

Py=9/R i (7c)
P,=y/D=y[2R .ot (7d)

Substituting (iii) and (iv) into Eq. (7b) gives:
P,=27/R oot (7e)
P,=2y/D=2y2R=7y/R ........ (7f)y=(7c)

We thus have three different expressions for P,, name-
ly y/2R, y/R and 2y/R.

STEP 5: Calculation of the equilibrium condition P,= P,

When the system is at equilibrium (P,= P,), the grain
radius is the Zener limit (R,). As there are three possible
equations for P, {Egs. (7c), (7d) and (7e)} and two
possible equations for P, {Eqgs. (5a) and (5b)}, there are
six possible equations for R, (Table 1). Therefore, the
final result of Zener (R, =4r/3f) is achieved by the
combination of either Egs. (7¢) and (5a) or Egs. (7e)
and (5b).

3. Modifications of the Zener Equation

Several assumptions were made either explicitly or
implicitly in the derivation of Eq. (1), and this section
summarises the modifications made by other workers
over the past five decades. The most significant mod-
ifications are summarised chronologically in Table 2,
which shows the evolution of the original equation.
The following sections explain in some detail the key
ideas which have resulted in the modifications listed
in Table 2.

3.1. Consideration of the Geometry of Particle-Grain
Boundary Interaction
In their consideration of the geometry of interaction
between a particle and a grain boundary, Smith and
Zener:

e assumed that grains and particles were spherical;

e considered the particles to be incoherent;

e considered the surface tension between grains (y)
but ignored the interface tension between the grains
and the particle, and

e did not consider the precise shape of the particle—
grain boundary interface.
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Gladman® analysed the last of these points and con-
cluded that a grain boundary cannot remain planar near
a particle and that the grain boundary will be pulled to-
wards the particle causing curvature, and arrived at:

This result is slightly higher than that due to Zener (Eq.
(3b)).

The interaction of a coherent particle with a grain
boundary was considered by Ashby ez al.'® who arrived
at the following value for the Zener pinning force:

F,=27ry o, ©

This result is twice the value given by Zener (Eq. (3b)).
Doherty'® accounted for the experimentally observed
fact that small coherent particles can be dissolved (a
process equivalent to the inverse of precipitation) by a
moving grain boundary and derived an equation for F,
similar to that of Ashby et a/.*?

The effect of particle shape on F, was studied in detail
by several workers.!7-2% Ryum et al.'™ considered the
effect of an ellipsoidal particle and its orientation with
respect to the grain boundary on F, and derived the
following equations in terms of the eccentricity of the
particle (¢) and the maximum pinning force due to a
spherical particle of the same volume (F3):

For ¢> 1, and when the major axis of the particle (M)

- is perpendicular to the grain boundary

F,=F3/n[(14+2.14e)/e%33] .............. (10a)

For ¢<1, and when M is perpendicular to the grain
boundary

F,=F%%%7 . (10b)
When M is parallel to the grain boundary
F,=F2/(1+6)e%33] oo, (10c)

For highly eccentric particles such as thin plates and long
needles meeting the boundary edge-on, the predicted
pinning force is considerably greater than Eq. (3b).
Ringer et al.*® showed that for cubic shaped particle
of a given orientation, F, was approximately double the
maximum pinning force offered by spherical particles of
the same volume. By taking into account the surface
tension between particles and grains, they found a sig-
nificantly lower value of K in Eq. (2) (i.e. more effective
pinning) compared with the value of 1.33 given by Zener.
The effect of grain shape (for truncated octahedra) on
P, was first considered by Haroun and Budworth® where
it was suggested that p= 18 R which is significantly great-
er than 2R as assumed in the Zener analysis. This
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Modifications of the Zener Equation (Arranged chronologically).

Reference

Equation (R, =)

Comments

Zener [Smith] (1948): Ref.[1]

1.33v/f

QOriginal equation (Pg = 2y/p, p =D, so that P, = y/R).

Fullman (1952): Ref. [5]

1.33/1 where | = ef{r) /r

1is a dirt factor which accounts for a range of particles; f(r) is the volume fraction of spherical particles of radius r (P;= 2y/p, p = D, so
that P, = y/R).

Hillert (1965): Ref. [6]

0.44r/f
0.67r/f

Lower limit for normal grain growth inhibition.
Upper limit for total grain growth inhibition.
Considered the effect of grain size distribution on grain growth. P, o€ (1/R,- I/R £ 2).

Gladman (1966): Ref. {3] and

[ (1/4-153Z)] rif =

Driving force is considered to be a function of grain size distribution which is therefore proportional to Z and so R, depends on the

Gladman (1967): Ref. [7] 0.05 - 0.26 t/f value of Z (typically, Z = 1.41 and 2.0). Z is the heterogeneity factor and Z 2 4/3 for grain growth to occur.
Haroun and Budworth (1968): | 0.074 1/f Considered p = 18R, and not p = 2R as assumed by Zener.
Ref. [8] 1 .03r/f0'5 Modified Zener equation under the condition that at least one particle exists on each grain boundary.
(Both equations were derived for a truncated octahedral grain shape and yield similar results for f = 0.5%).
Wold and Chambers (1968): 21/3Kf{(3Z mex-4)/(2Zex)] | Proposed k >1 after considering that particles would be present preferentially on the grain boundaries rather than in the grain interior.
Ref. [9] They also combined Gladman ™ approach.
Ashby et al. (1969): Ref. [10] | 0.33r/f* Determined that F, = 2nry which is twice the value given by Zener. They also considered the effect of coherency of particles on the

maximum pinning force (n, = 3f2nr® and P, =vR).

Hellman and Hillert (1975) 4r/9Bf=0.28 - 0.59 r/f | Depending on the value of p/r, which can be between 10'-10% B is expected to decrease as the volume fraction increases. The authors
Ref. [11] B = 0.1251n (40p/r) also suggested p = 6R.

Anand and Gurland (1975): | | g * A=1.63r/(f)"*. They proposed A (mean linear intercept) / 1.38 = mean grain radius of a truncated octahedron.

Ref. [12]

Hazzledine et al. (1980): Ref.
[13]

0.73 - 0.91 1/f *

Considered the effect of pulling of the grain boundaries by the particles causmg ‘dimples’ on both sides of the grain surface (P, = 1.1 -
1.37 yflr (P = v/R).

Hunderi-and Ryum (1982):
Ref. [14]

0.67 r/for
033 1/f

R, = 1/2z where z is either 3f/4r or 3f/2r (this was not clarified in the paper).

Louat (1982): Ref. [15]

41/3f {16/ (In[Re?/ 2r])}

Considered the effects of: a) particles at distances-> r from the grain boundary, and b) some particles would assist the motion of the
grain boundaries.

Doherty (1982): Ref. [16]

0.17r/f*

Considered the effect of coherent particles and arrived at F, = 2 ry, a value twice that given by Zener (but similar to Ashby etal. %),
P, = 6yfir which is 8§ times that suggested by Zener; (P, = y/R).

Ryum et al. (1983): Ref. [17]

refer to text for equation

Considered the effect of ellipsoidal particles and their orientation with respect to the grain boundary on F,.

describing F,
Srolovitz et al. (1984): Ref. [18]| Ay =3a/f Ay is the average grain area in the pinned state and a is the area of the particle. The equation is a result of a 2-D computer simulation.
) Re ~ 1/f* :
gh;m[?;;i Humphreys (1984); | 1.45r/ {** * Considered the effect of ledge mechanism of grain boundary migration to arrive at an equation for P, (Py = Zy/R).
ef.
Nes et al. (1985): Ref. [4] 1540 Correction of original Zener's equation. They also considered the effect of initial distribution of grain size on R.. Dimple model: P, =
13¢5 r (P, = 24/R).
Rios (1987): Ref. [20] 0.17r/f Considered an energy dissipation approach, rather than pinning pressure when a grain boundary moves through a dispersion of particles |
Doherty et al. (1987): Ref. [21] | | 7;/ fo's Result of a 2-D computer simulation considering a non-random particle distribution, v
Hillert (1988): Ref. [22] Y 3-D calculation; < 0.1
180" 3-D calculation; f> 0.1
1.7r/fM 2-D calculation (attempts to explain computer simulation results by using mean field theory).

Elst et al. (1988): Ref. [23]

23B (312-2/Z)vlf =
0.075- 0.45 v/f

Combined the approaches of Zener " , Ryum et al. "7, Gladman ¥, and Hellman-Hillert '". They also calculate R, for elongated
precipitates, bimodal distribution, and grain boundary prempltates

Anderson et al. (1989): Ref.
[24]

4.5 + 0.8 r/f*31:0%2

Results of a 3-D Monte Carlo computer simulation,

Ringer et al. (1989): Ref. [25]

12K (/)

K depends on interaction geometry of the boundary with the particle. (Assuming incoherent particles and p = 2.15D: i) R, = 0.16r/f for
spherical particles, and ii) R, = 0.06 / 0.08 / 0.12r/f for cubic particles of different orientations with respect to the grain boundary).

Hunderi et al. (1989): Ref. [26]

6.10/°% * for £<0.03

Considered Louat effect ¥ viz. some particles tend to assist grain boundary movement (P, = 2y/R).

Hazzledine and Oldershaw 1.81/% Based on a 2-D computer simulation,

(1990): Ref. [27] 2/ Proposed equation for particle-containing thin films, similar to above.
R, t/f For £<0.01 (analytical result).
Re e 1/ For £>0.01 (3-D computer simulation result).

Gassold et al. (1990): Ref.(28) | 0.6r/°% Result of a 2-D computer simulation, f< 0.1

Patterson and Liu (1992): Ref.
[29,31)

Theoretical: 0.311/f

Experimental: 0.051 -
0.155 v/f

Considered the relationship between A (Mean Linear Intercept) and the grain boundary curvature: p = 4/0.31, A = 1.33R, so p = 4.3R.
Experimentally-determined values of K lower than theoretical values due to a non-random intersection of pores with the grain
boundaries. Data for Al-Al,0; system by Tweed et al. *® fitted well with the proposed equation.

Manohar et al. (1996): Ref.[32]

0.17r/f

Prediction from the equation correlated well with the experimental data for the growth of mean austenite grain size durmg reheating of
Ti-Nb microalloyed steel siabs.
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Table 2. (Continued)
Liu and Patterson (1996): Ref. | A;=kx,/Rf Proposed a general form of the Zener equation based on a stereological approach and suggest the use of the factor R (degree of contact
[33] k=031 which depends on numbers, size, shape and location of the ;aarticles) to avoid a fractional power of f. They analyse and explain the
- results of the dimple model ", several geometric models 3 2-D computer simulation and topological model '¥, 3-D computer
simulation model 2, Friedel model ", 3-D boundary-particle pinning model %, and 3-D corner-particle pinning model ", based on
the proposed generalised Zener equation. (A, is the mean linear intercept for grains; A, is the mean linear intercept for particles).
Rios (1996): Ref. [35] 0.330/f The proposed equation is based on three different approaches.
Gao et al. (1997): Ref. [36] 0.59r/1"% Result of a 2-D computer simulation by considering that the degree of contact between the grain boundaries and particles increases
during the process of grain growth and reaches a stable value when boundaries become pinned.
Manohar (1997): Ref. [37] 0.23r/ (BH)™ Prediction from the equation correlated well with the experimental data for grain growth of mean austenite grain size during reheating
B=ag27R, of Ti-Nb MA steel in as-cast slab as well as controlled-rolled plate conditions. a, is the size of cubic particle and § depends on the
relative sizes of the grains and particles.
Kad and Hazzledine (1997): 14106 Result of a 2-D Monte Carlo computer simulation based ona square and hexagonal lattice in the presence of a dispersion of specially-
Ref. {38] shaped (sphere, needle, plate) particles.
Rea 1% Result of a 3-D Monte Carlo computer simulation based on a simple cubic and fcc lattice in the presence of a dispersion of specially-
shaped (sphere, needle, plate) particles.

* These equations have been derived 7

modification results in a significantly lower value of K
(=0.074) in Eq. (2).

It is clear from these additional studies that interface
geometry, particle shape, grain shape and particle co-
herency have an influence on the form of Eq. (3).

3.2. Consideration of Particle Distribution

The following assumptions were made by Zener with
respect to particle distribution:

e all particles are of equal size;

e particles are randomly distributed, and

e particles interact with only one grain boundary.
Fullman® accounted for a range of particle size by
introducing a ‘dirt factor’ (/) which is given by Y f(r)/r
where f(r) is the volume fraction of monosized spherical
particles of size r. The pinning pressure was given as:

The effect of non-random particle distribution was studied
by Wold and Chambers® who argued that particles form
preferentially at the grain boundaries and derived the
following equation:

P,=3kyf/4r

where k is a factor greater than unity which expresses
the greater likelihood of finding particles on the grain
boundary than in the grain interior.

Hunderi and Ryum3® argued that the assumption of
particles interacting with only one grain boundary is
incorrect, particularly in materials with a high volume
fraction of particles (f>0.1) such as particulate re-
inforced metal-matrix composites (PMMCs) and super-
plastic materials. They suggested that, for large vol-
ume fractions, some particles will interact simultane-
ously with three grain boundaries meeting along triple
lines or with six grain boundaries meeting at quadruple
points. They derived an equation for R, by assuming
that the total fraction of particles at different positions
will depend on constants o and f, and the parameters r,
fand R such that:

R =8r/9f[20f +0.25+/Qaf +0.25) + 15287 ...(13)

The condition «=f=1 indicates that restraining force
from the particles in triple lines and quadruple points is
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after equating the Zener pressure (P,) with the appropriate expression for Py as given under ‘comments’.

zero while the condition a = f§ =0 occurs when all particles
interact with equal force.

Hazzledine et al.’® proposed that the attraction of the
flexible grain boundary by many particles causes dimples
on both the inner and the outer surface of the boundary
and found:

P,=1.1—13Ty/r

Equation (14) is close to the modified Zener estimate of
1.5yf]r (Eq. (5b)). A similar result was obtained by Nes
et al.® viz.:

P,=139f%%2)r=13yflr

Louat’® proposed that particles ahead of a moving grain
boundary attract the boundary and assist its movement
resulting in particle-assisted grain boundary movement.
In addition, the effect of particles which trail the bound-
ary at distances exceeding r was also considered to ar-
rive at:

R.=4r/3f{16/In(Re?/2r)}

This result indicates that for large R values, R, would
be smaller than the Zener equation (i.e. higher restraint)
and for small R values, R, would be larger (i.e. less
restraint).

Hunderi et al.*® incorporated the Louat effect!® in
their model which can be given as:

P,=0.33y£%87/r for £<0.03 amn

The effect of the mechanism of grain boundary migration
on P, was considered by Chan and Humphreys'® where
it was proposed that grain boundaries may migrate by
means of ledges or steps sweeping across the boundary
(surfaces of the grain boundaries are not atomically
smooth), suggested that P, for Orowan spacing of
particles may be calculated as:

P,=1.38yf%5/r

which results in a pinning pressure almost an order of
magnitude larger than Eq. (5b).

The effect of grain size on P, was first considered by
Hellman and Hillert'!?’ who suggested that as a grain
increases in size, the grain boundary is able to stay in
contact with particles over a longer distance thereby
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increasing the pinning effect that is proportional to p/r,
where p (= 6R) is the macroscopic curvature of the grain
boundary. They found that:

Ry=45[9BS oo, (19)

where f is either (i) 0.1251n(8p/r) or (ii) 0.125In(40p/r),
the latter expression being closer to numerical calcu-
lations. It is clear from Eq. (19) that the ratio p/r con-
trols the value of R.. Considering (i) for p/r=10, R .=
0.59r/f while for p/r=10*, R,=0.28r/f. This result is in
qualitative agreement with Louat!® although based on
a completely different concept. Stearns and Harmer*?
also considered the effect of grain size on P, but pro-
posed that, as grain size increases, while the fraction of
particles on the grain boundary (¢) decreases, the number
of particles per unit area of grain boundary (n,) in-
creases, thereby resulting in a much smaller predicted
grain size according to:

Ro=(4.88r2[fe) =9 .. (20)

where $=20.4, e=1.88 x 10™% (m°°) and x=0.6.
Using a simplified lattice model, Humphreys and
Hatherly*!? showed that pinning pressure is affected by
both grain size and particle spacing. For a grain size less
than the particle spacing, it was shown that, as grain size
increases, the pinning pressure rises according to:

P,=39f14r oo (21a)

When the grain size reaches the particle spacing, the
pinning pressure was found to be a maximum (R=R,):

P, =129 %7 r . 21b)

A further increase in grain size beyond R, resulted in a
decrease in the pinning pressure to the value given by
Eq. (5b).

3.3. The Relationship between Boundary Curvature (p)
and Grain Radius (R)

In Zener’s original derivation, the driving pressure for
grain growth (P,) was given as y/p,., where p,. = p/2 and
p is the macroscopic curvature of a spherical grain. Thus
the driving pressure for grain growth (P,) is 2y/p, which
when related to grain radius (R) gives P,=7y/R (Eq. (7f)).

Feltham*® analysed the relationship between the
radius of curvature and the shape of a grain in two
dimensions and arrived at:

R/p=sin[n/6(1 —n*/n)]/sin[n/6(n*/n)] ....... (22)

where 7 is the number of sides of a grain and »* the most
probable number of sides of a grain to be expected in a
truly planar arrangement (=6). This equation demon-
strates that a grain with less than six sides has convex
boundaries and will shrink, whereas a grain with more
than six sides has concave boundaries and will grow.
Other values of p were suggested by Haroun and
Budworth® (p=18R) and Heliman and Hillert!?
(p=6R). Patterson and Liu?® incorporated a metallo-
graphic parameter ‘mean linear intercept’ (4) in their
analysis and derived the relation A=0.31p for a three
dimensional aggregate of grains. Using the relation
4=1.33R reported by Han and Kim*® for spherical
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grains, the value of p thus becomes p=4.3R. Tt is clear
that these approaches give a much smaller value of P,
than that proposed by Zener, a result which strongly
affects R..

3.4. Consideration of Initial Grain Size Distribution

The original derivation of the Zener equation did not
involve any consideration of the effect of initial grain
size distribution on P,. Hillert® analysed the effect of
grain size distribution together with the pinning effect of
particles on the overall process of grain growth and found
two limiting values:

where R, is the limit for normal grain growth. However,
abnormal grain growth may then occur until a second
limit is reached:

Ry =0.67r[f oo, (23b)

where R, is the limit for total grain growth inhibition.

Gladman®” analysed the effect of grain size distri-
bution on the driving pressure (and therefore R.) and
found that:

R.=r[f[n(0.25-0.33/Z)] wovveorrvree. (24)

where Z is the ratio of growing grains to matrix grains
and thus represents the heterogeneity of grain size dis-
tribution in the sample. Equation (24) indicates that
an increase in Z will result in a greater tendency for
grains to coarsen, that is, a larger limiting diameter.
Using Gladman’s model, Wold and Chambers® in-
troduced a factor ‘.’ (1 <k <2) and showed that:

R.=2r3kf[ BZ=4)/2Z] worrcrrrere.... (25)

which demonstrates both the effect of non-random
distribution of particles and the heterogeneity of grain
size distribution on R..

The effect of mobile particles on grain boundary mo-
tion was studied by Gottstein and Shvindlerman*# by
introducing a dimensionless parameter §§ to explain the
phenomenon:

e}
p= j Ay, (Ndr ..o (26)
0

It was proposed that for f« | (small particles) boundary
motion is controlled by boundary mobility [#,], but for
p>1 (large particles), boundary velocity is determined
by particle density [7(r)] and particle mobility [m,(r)].
This theory qualitatively accounts for the experimental
fact that the actual grain size in the pinned state is much
smaller than that predicted because particle coarsening
leads to a decrease in particle mobility which sub-
sequently decreases the velocity of grain boundary
migration.

4. Applications of the Zener Equation

The Zener equation has been utilised for fifty years to
provide both a theoretical explanation of grain growth
and to model other annealing phenomena in particle-
containing materials. Some typical examples of applica-



ISIJ International, Vol. 38 (1998), No. 9

tions of the equation to recovery, recrystallization and
grain growth are given in the following sections.

4.1.

Second-phase particles may affect both static and
dynamic recovery by either (i) pinning individual dis-
locations and so restricting the initial formation of low
angle boundaries, or (ii) restricting the growth of sub-
grains. While no sound theories of boundary mobility
based on dislocation interactions have been formulated,
reasonable progress has been made on the effect of
particles on subgrain growth. Jones and Hansen*®
demonstrated, in aluminium containing a fine dispersion
of Al,O; particles, that pinning of low angle grain
boundaries and dislocations can strongly influence the
recovery process. [t was also shown that secondary events
such as interaction of particles and dislocations retard
the rate of recovery in addition to the Zener pinning
effect. Using a range of plain carbon steels, Anand and
Gurland!? obtained a good correlation between subgrain
size and the size of spheroidized cementite particles, and
showed that the limiting subgrain size was consistent
withan £~ Y2 relationship. Chang*® studied the subgrain
growth in a particle-containing Al-Cu alloy where TEM
observations of 0 particles revealed that almost all par-
ticles lie on subgrain boundaries. Subgrain growth was
found to be stagnated when the dispersion parameter
(f7r) was greater than 0.25 um ™!, a limit well below that
given by Eq. (1). It was concluded that subgrain growth
was more strongly inhibited by a non-random distribu-
tion of particles.

Recovery

4.2. Recrystallization

Second-phase particles may also impede both nuclea-
tion and the subsequent growth of recrystallized grains.
The net driving pressure for recrystallization (P) may
be determined from a balance of driving pressure for
growth (Pp) with both the Zener pinning pressure (P,)
and (for the early stages of growth) the retarding pres-
sure due to boundary curvature (Pc)*":

P=Pp—P,— Pc=adpGb*—3fy/2r—2y/R ....(27)

where G is the shear modulus, b is the Burgers vector,
R is subgrain (nucleus) radius and Ap is the change
in dislocation density associated with the migration
of the recrystallization front into the deformation sub-
structure. It is clear from Eq. (27) that a recrystallized
grain can not grow unless P is positive and the prog-
ress of recrystallization will be critically dependent on
the value of the dispersion parameter (f/r). Humphreys
and Hatherly*Y have shown that nucleation will be
suppressed when f/r>0.15um™"', a value which is in
reasonable agreement with experimental observations.
The growth of a recrystallization nucleus is impeded
for values of fJr between 0.2 and 0.6um™" which is
consistent with particle-inhibition of nucleation.'® It
was concluded that Zener pinning plays a major role in
retarding primary recrystallization by affecting both
nucleation and growth of grains. The use of the balance
of pressures (as in Eq. (27)) has important implications
in the control of grain size and texture of many
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industrially-significant alloys (Sec. 5).

The influence of f/r on recrystallization kinetics was
experimentally demonstrated first by Doherty and
Martin*" in a range of Al-Cu alloys where it was shown
that the rates of both nucleation and growth of grains
during recrystallization were greatly dependent on f/r.
The mathematical treatment which predicted the re-
crystallization kinetics in the presence of a dispersion
of particles was developed by Nes.*® The model suc-
cessfully accounted for the recrystallization kinetics of
a cold-deformed Al-Mn alloy, and has been used to
account for the recrystallization kinetics of other cold-
deformed Al-alloys.*%3® It was shown by Nes that
the effect of large particles and small, finely dispersed
particles on recrystallization was significantly different.
Small, finely dispersed particles (small f/r) pin the
potential nuclei and decrease the nucleation rate. The
formation of a viable nucleus must be accomplished
prior to the stage where subgrain growth has caused the
growth of the average subgrain size to a value equal to
dor/3f (e~ 1); at this stage the nucleation is completely
inhibited. On the other hand, large particles (large f/r)
act as nucleation sites and promote nucleation rate. A
particle size of ~0.5-1.0um was considered the
minimum critical size for particle to act as a nucleation
site. This theory was developed further by Hum-
phreys®! =33 who showed that the deformation zones
that form around coarse (>1pum), non-deformable
particles facilitate the formation of recrystallized nuclei
by particle stimulated nucleation (PSN). The critical
particle size (#.) for the growth of a nucleus was found
to be:

ﬂczzy/(PD—Pz)

Thus, the competition between nucleation in the vicinity
of coarse particles and the pinning effect of fine particles
results in a critical particle size for nucleation, and, as
the Zener pinning pressure increases, the critical particle
diameter for PSN increases.

The balance of pinning and driving pressure for re-
crystallization is currently being applied by some
workers>#%3 to study the hot deformation behaviour of
microalloyed steels. It is suggested that inhibition of
recrystallization would occur when the pinning pressure
generated by precipitate particles on austenite grain
boundary exceeds the driving pressure for recrystalli-
zation. Palmiere er al.®® successfully predicted the
recrystallization-stop temperature in one of their steels
based on this approach. The recrystallization and
precipitation in microalloyed steels, which may be
sequential or simultaneous, occurs during thermo-
mechanical processing and the nature and kinetics of
these reactions depend not only on material composition,
but also on the processing variables (&, ¢, T, interpass
time). On the other hand, recrystallization theory cited
here relates to the sequential recrystallization phenome-
non during isothermal treatment following the cold de-
formation of materials. Therefore, application of such
recrystallization models to thermomechanical processing
of microalloyed steels is a more difficult problem and
needs further development.

© 1998 ISIJ
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4.3. Normal and Abnormal Grain Growth

The Zener equation has been utilised most extensively
to describe grain growth in particle containing materials
(see Table 2), and the correlation between experimental
results and prediction in a wide range of materials has
been found to be encouraging. For example, Palma et
al*® found the equation useful in predicting grain size
in sintered high speed tool steel while Hellman and
Hillert'? used the equation to explain grain growth of
ferrite in the presence of cementite particles. Several
workers have utilised the Zener approach to calculate
the limiting grain size in C-Mn steels®” and in C-Mn
steels containing Al/Nb/Ti,*® Ti*® and Nb3?37 and
Al additions.®® Grain growth behaviour has also been
studied in a wide range of other particle-containing
materials such as Al-Al,O, alloys,*® Al-Si alloys,'®
copper-based shape memory alloys,?¥ a Ni-base su-
peralloy containing carbides,®!’ two-phase Ti alloys®?
and a range of ceramic materials.®3

The way in which the particles and the grain size
distribution parameters interact to determine both
normal and abnormal grain growth was demonstrated
by Gladman® who suggested that when a boundary is
unpinned, the energy of the system is increased. This
increase in energy has to be balanced by the decrease in
energy due to grain growth which leads to the following
condition:

Fau=OR fIn(3/2—2/Z)" " i (29)

where r.,; is the critical particle radius for unpinning, Z
is a heterogeneity ratio (R,,../ Rmean)- This equation shows
that when particles coarsen to r.;,. they can no longer
pin the grains and grain growth can then proceed. r;,
increases with increasing matrix grain size (R,) and
volume fraction of particles (f) and with decreasing Z.
An increase in r; will increase the grain coarsening
temperature (GCT) because the particles must grow to
. before grain growth can commence. On the other
hand, for a material with a highly heterogeneous grain
size distribution (high Z), even very fine particles are
relatively ineffective in pinning grain boundaries because
Ferir decreases with increasing Z. Thus Gladman’s theory
indicates the possibility of a higher GCT (i.e. higher r,;)
if a material (i) has a relatively coarse matrix or mean
grain size (higher R,), (ii) contains a high volume fraction
of precipitates and (iii) has a lower heterogeneity in the
grain size distribution (low Z). Gladman®* also con-
sidered the effect of a non-random particle distribution
on r.;., and found:

Fain=2R, f05(3/2=2/Z)"" oo (30)

Several workers” %4~ 74 have since demonstrated that the

GCT of microalloyed steels is a strong function of size,
distribution, volume fraction and stability of microalloy
precipitates.

5. [Incorporation of the Zener Factor in Theories of
Annealing

The Zener factor (z=3f/4r) is common to many the-
ories of annealing in particle-containing materials, and
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has therefore made a profound impact in the studies of
annealing.

5.1. Kinetics of Normal and Abnormal Grain Growth

Most theories for predicting the kinetics of grain
growth and grain size distribution have incorporated
the Zener pressure into the basic kinetic relation:

where v is the velocity of boundary migration in re-
sponse to the net pressure P on the boundary and
M is the mobility of the boundary. In a model proposed
by Hillert,® the Zener factor was used to determine the
kinetics of grain growth in particle-containing materials.
The rate of grain growth (v=dR/dt) was given as:

%zaMy(]/Rcr_]/RiZ/a) ............. (32)

where o is a geometric constant of the order unity
in a 3-D analysis and R, is the critical minimum grain
radius for grain growth. As the pinning pressure (P,=yz)
always opposes the movement of the grain boundary,
the rate of growth of the mean grain size is:

dR?

=0.5aMy(1 —zR/a)* .o (33)

An analytical model to predict the growth kinetics of
abnormal grains was developed by Anderson et al.”®
according to:

ARy, —My{ ! J3_ ¢ ]...(34)

dt QR\ R, 2R,
Rab tan< S > ab lim

ab

where R,, is the radius of abnormal grain, R is the
radius of matrix grain, Q is a parameter which re-
lates the grain boundary segment to the grain radius

7 n/{ R \? _
Q= < —— | , ¢’ is parameter which relates R to
2 6\ R,

the radius of curvature (p) for a spherical grain, Ry, is
the limiting grain size (=kr/f). The model considers the
dynamic events which occur during the overall process
of grain growth i.e. when R, R,, and R, increase with
time and temperature. The important aspect here is
to find the rate of growth of each relative to others
which determines the nature (normal or abnormal) of
grain growth. The solution of Eq. (34) was suggested
to be the general criterion for initiation of abnormal
grain growth in terms of the ratios R,,/R and
R/R);,. The model explains qualitatively the experimen-
tally observed phenomenon of grain coarsening tempera-
ture (GCT) in microalloyed steels and also supports the
predictions based on classical grain growth theories.”
A similar approach has been proposed by Rios”®~7# to
predict the onset and termination of abnormal grain
growth by calculating relative rates of growth of R, R,
and R.. The applicability of this model to explain the
normal and abnormal grain growth during reheating of
microalloyed austenite has been discussed in detail by
Manohar and Chandra’® where it was shown that the
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model could be used to calculate the GCT in microalloyed
steels. However, full potential of this model could be
realised when appropriate models are developed to de-
termine the volume fraction and the growth rate of
abnormal grains.

In a recently proposed unified theory of recovery,
recrystallization and grain growth in particle-containing
cellular microstructures, Humphreys®?-8!) utilised Eq.
(31) to determine the growth rate of a ‘particular’ grain
of radius R with respect to an assembly of equiaxed
grains of mean radius R such that;

dR

= MGIR=9/R—Zuy|R) oo, (35a)
%1:_ = M7/R(J4—Z) oo, (35b)
[4

where M and 7 are the mean mobility and energy of an
assembly of grains, M and 7y are the mobility and energy
of a ‘particular’ grain and Z, is a dimensionless pa-
rameter incorporating the Zener factor (Eq. (6b)):

[t was suggested that a given softening phenomenon may
or may not occur depending on the value of the param-
eter (Zy):

Zy=0 Normal grain growth.

0<Z,<0.1 Broadening of the grain size distribu-
tion.

0.1<Z,<0.25 Normal and abnormal grain growth.

02<2Z,<1 Abnormal grain growth but no normal
grain growth.

Zy>1 No grain growth.

5.2. Recrystallized Grain Size

The Zener pressure has also been used to model the
recrystallization kinetics and to predict recrystallized
grain size and texture in particle-containing materials.
Several workers*®82784 have utilised the balance of
driving pressure and pinning force (Eq. (27)) to determine
the critical diameter for growth of a recrystallization
nucleus and hence predict the recrystallized grain size.
Given that the number of successful nuclei per unit
volume can be calculated, the recrystallised grain
diameter (Dg) for site saturated nucleation may be
predicted by:

Dyssy= [N.(mc)1™ 13

Wert and Austin®® showed for Johnson-Mehl kinetics
that the recrystallized grain size (Dg) in bimodal alloys
is given by:

DR(JM):K[(PD”‘PZ)/N‘,(V]C)]U4 ............. (37)

where N (1) is the number of particles greater than a
critical diameter for PSN and K is an experimental
constant incorporating nucleation frequency and mobil-
ity factors. The model accurately predicted the varia-
tion of recrystallized grain size with strain for alloys
containing a wide range of particle dispersions and has
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been used to predict the recrystallized grain size in
aluminium alloys suitable for use in superplastic ap-
plications. Nes and Hutchinson®® have reviewed the
effect of Zener pinning on the mode and kinetics of
recrystallization which determine the final grain size and
texture during industrial processing of aluminium,
copper and low carbon steel sheets. A series of processing
maps were developed which related the recrystallized
grain size during industrial processing to the particle
dispersion (f/r).

6. Discussion

6.1.

It has been shown in Sec. 3 that many modifications
have been made in an attempt to make the equation
more practical in predicting the limiting grain size in real
materials (see Table 2). These modifications have resulted
in an equation of the general form R.=Kr/f™ (Eq. (2)).
[t was shown that the pinning force due to a single particle
(F,) could be either lower or higher than the original
estimate depending on the position of the grain boundary
with respect to the particle, coherency and shape of the
particle. In addition, it was also shown that the particle
density (n,) was higher, pinning pressure due to all
particles on the grain boundary (P,) much higher and
the driving pressure for grain growth (P,) lower compared
to the original estimate; the overall effect is a finer
predicted limiting grain size than that given by Eq. (1).
The maximum pinning (drag) pressure (P,) has been
found by several researchers'®!%-25) to be considerably
higher than the Zener estimate. Values of P, slightly
higher than the original estimate (Eq. (5a)), but closer
to the modified estimate given by Eq. (5b) were reported
by Nes er al.¥ and Hazzledine et al.'® On the other
hand, the approaches by Louat,'> Hellman and Hillert!V
and Worner and Hazzledine®® showed that P, also
depended on the ratio p/r. It was found that P, was lower
than the Zener estimate when p/r was low but was higher
for larger values of p/r. In our view, the use of the factor
p/r is important because it can accommodate different
initial microstructures and particle sizes and thus allows
an estimation of the effects of these variables on P,. In
a model recently developed by Manohar,?” the effec-
tiveness of this approach was demonstrated by ade-
quately predicting the limiting grain radius during re-
heating of a range of microalloyed steels.

The driving pressure for grain growth (P,) was
originally suggested" to be y/R (Eq. (5¢)) while later
researches have found that this value is a considerable
overestimation. For example, values of P, have been
suggested to be: (i) 8.5 to 50% by Gladman® (depend-
ing on Z), (ii) 23% by Liu and Patterson3? based
on experimental observations, (iii) 5.5% by Haroun and
Budworth® and (iv) 18 % by Hellman and Hillert!? of
the original estimate. The value of P, depends on the as-
sumptions concerning shape, geometry and dimension-
ality of the grain structure and it is difficult to assess
the validity of each assumption. In view of the com-
parable results reported by several investigators,®-!!:13)
p ~4R therefore seems to be the most reasonable choice

Modifications to the Zener Equation
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Fig. 2. Ratio of the limiting grain radius to particle radius
(R./r) as a function of volume fraction of particles (/).
The equations for R, listed in Table 2 are grouped into
three bands for the exponents m=0.33, 0.5 and 1.0.

which resultsin P, of about 25 % of the original estimate.
With reference to Table 2, some further observations
can be made regarding the modifications to Eq. (1) such
as the variation in the values of K and m. In all cases
where m=1, K is significantly lower than that given by
Zener, and a lower value of R, is therefore predicted.
Furthermore, for all modifications, whether derived
analytically or determined experimentally, the exponent
for f lies in the range 0.3<m< 1.0, and so depending
on the values of both K and m, a range of values for R,
is predicted. Figure 2 shows the effect of volume fraction
of particles on the limiting grain radius for the majority
of the equations listed in Table 2. It can be seen that the
results are grouped into three bands depending on the
value of m (0.3340.1, 0.5+0.1 and 1.0). Figure 2 also
shows that, for the range of particle volume fractions
commonly found in engineering materials (f=10"%-
107 2), values of R, (for m=0.33) fall within the band
m=0.5, and that all bands overlap in this range for f.
Clearly, the Zener limit provides an upper limit for
predictions of R, but for high volume fractions (f>0.1),
equations with m-values in the range 0.3-0.5 approach
this limit. The dashed line in Fig. 2 shows the limiting
grain radius for K=0.17 and m=1, which are values
close to those given by a number of equations in Table
2.3:7.16.20.31,32,57) Byperimental grain growth data in a
variety of material systems are presented in Fig. 3. It is
clear from Fig. 3 that a number of data closely follow
the line for K=0.17 and m=1.0, particularly at lower
volume fractions. This suggests that for material systems
where f is less than 0.05, K=0.17 and m=1.0 is a rea-
sonable choice. This is not surprising if one considers
that the pinning pressure has been suggested to be twice
while the driving pressure a quarter of the Zener estimate
as discussed above. The overall effect of these mod-
ifications is that they result in K which is an eighth
of that given by Zener (1.33) which leads to K=0.17.
On the other hand, in high volume fraction materials
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Fig. 3. Experimental data of ratio of limiting grain radius to
particle radius (R./r), as a function of volume fraction
of particles (f). For f<0.05, the data fall close to the
line for K=0.17 and m=1. The data follows more
closely a m<0.5 relationship for />0.05.

(f>0.05), the data points follow the line for weaker
dependence on volume fraction (i.e. m<0.5). This ob-
servation compares well with the computer simulation
results obtained by Hazzledine and Oldershaw?” which
shows a discontinuity in the R /r v/s f curve at f>0.01.
It has been suggested®”8® that for f>0.05 the non-
random correlation of boundaries with particles becomes
more significant leading to a deviation from f~! to
f 713 dependency of R..

6.2. Future Considerations

If it is assumed that the current analytical models and
experimental data provide us with sufficient information
on grain growth in particle-containing materials, an
integrated global model for the Zener equation may be
formulated. The aim of such a model is to account for
the majority of the modifications and then to predict the
limiting grain size (R.) as a function of material, mi-
crostructure and processing variables. Considering the
complexity of such a model, it is likely to be based on
artificial intelligence (AI) techniques utilising knowledge-
bases and mathematical modelling. Such a model may
be represented in the general form:

,
R=—
S
LA f2(C) f3(0, 1) fa(Rumax/ R)* f5(0)- fo(@) - f2(®)]

where T is absolute temperature, C, is matrix compo-
sition, f3(6, y) is a parameter taking into account the mis-
orientation and energy of grain boundaries, f4(Rumax/R)
is a parameter which represents heterogeneity in the
initial microstructure, f5 (p) and f,; (¢) are parame-
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ters defining shape and distribution of grains and parti-
cles respectively, and f; (¢) is a parameter describing the
interaction geometry of a grain boundary and particles.
The input parameters would describe the material
composition (C,), initial microstructure (R, ., R, shape,
size, type and distribution of particles) and processing
parameters (7, ?). The output of such a computer
program will depend on the intelligent choices the
program makes to suit the given input parameters. The
precise nature of the functions f; to f, in Eq. (38) can
be defined through knowledge elicitation. While these
functions may interact in a synergistic manner, these
interactions may be incorporated into the model if
various rules can be formulated. For example, based on
the analytical models and the knowledge gained from
the experimental results it is possible to construct
knowledge-based rules such as:
e stable particles decrease R_;
e homogeneous grain size distribution lowers R, while
heterogeneous grain size distribution increases R.;
e a heterogeneous particle distribution decreases R,;
e fine initial grain size may decrease R,;
e high grain boundary energy and high g.b. mobility
may decrease R;
e non-spherical shaped particles lowers R_;
e anincrease in boundary misorientation may increase
R, and
e an increase in temperature may have a mixed effect
on R..
The proposed global model would have applicability in
many areas where grain growth is important. A typical
example may include steel processing to predict the
limiting grain size during slab reheating. The model may
also be used with existing recrystallization models to
calculate the limiting grain size in multi-pass hot rolling,
or be used to assess grain size control during sintering
of ceramic and metallic powders and during annealing
of particle-containing alloys and ceramics. In general,
the global model may be used in any application where
a knowledge of the limiting grain size in particle-
containing materials is needed.

7. Summary

The Zener equation and its derivatives have been
incorporated in theories dealing with recovery, re-
crystallization and grain growth in particle-containing
materials. It has been used to describe annealing phe-
nomena in a wide range of particle-containing mate-
rials including plain carbon steels, Al/Nb/V/Ti treated
microalloyed steels, Al-treated C—~Mn steels, maraging
steels, sintered tool steels, Ni-based superalloys, Al-
base alloys, Cu-base alloys, Al-Al,O; alloys, Al-Si al-
loys, copper-based shape memory alloys, Ti-base alloys,
PMMCs and in a number of ceramic materials.

Modifications of Eq. (1) have shown that the value of
K (for m=1) is lower than that given by Zener and the
value of m lies in the range 0.3 <m < 1.0. In comparison
with the original equation it has been found that F, is
either lower or higher, n, higher, P, much higher and
P, lower than the original estimate. For the range of

volume fractions of particles present in most engineering
materials (f<0.1) the consequence of these modifica-
tions is a predicted limiting grain radius smaller than
that given by the original equation. Although most of
the modifications exhibit similar functional dependence
of R, to r(f, with typical values of K and m (for f<0.05)
being 0.17 and 1.0 respectively, it is likely that the
future form of the Zener equation may be based on the
artificial intelligence techniques.
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Nomenclature
o: geometric constant
D: grain diameter
Dy : recrystallized grain diameter
e: base of natural logarithm
¢: particle eccentricity, strain
§: strain rate
/' volume fraction of particles
¢: fraction of particles on a grain boundary
F,: Zener pinning force due to a single particle on

the grain boundary
F;: maximum pinning force due to a spherical
particle with same volume as an ellipsoid
g.b.: grain boundary
y: energy per unit area of a grain boundary (surface
tension of a grain boundary, J/m?)
I: dirt factor in Fullman’s theory
K: dimensionless constant in the Zener equation
A: mean linear intercept
m: exponent for fin the general form of the Zener
equation
M: boundary mobility
ng: number of particles per unit area of a grain
boundary (surface density of particles)
n,: number of particles per unit volume
n.: critical particle size for particle stimulated
nucleation (PSN)
P: net pressure on a boundary
Pc: retarding pressure due to boundary curvature
Pp: driving pressure for recrystallization
P,: driving pressure for grain growth
P,: Zener pinning pressure due to all particles on a
grain boundary
R: grain radius
r: particle radius
Feqyt  critical particle radius at unpinning
R, . critical minimum grain radius for grain growth
to occur according to Hillert’s theory
R_: limiting grain radius at the inhibition of grain
growth (Zener limit)
T: absolute temperature
p: radius of curvature of a grain boundary
Pnei: et radius of curvature of a grain boundary
v: velocity of grain boundary migration
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z: Zener factor (3f/4r)
Z: Gladman’s heterogeneity factor (R,,/Ryecan)
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