Study limitations

This study has the following limitations: how to stimulate sweating in a standardized manner, how to compensate for different levels of sweating on the back, and how to exclude small anhidrotic/hypohidrotic areas, which may be artefacts. Heat stimulation was carried out in a sauna, as sweating from the trunk is thermo-regulated. When the sweating from the back began, an iodine-starch imprint was performed. It was not important to keep external factors, such as the temperature in the sauna and the duration of the visit to the sauna, constant between subjects, since the rate of sweating was individual and the quality of the imprints would be inadequate if the back was too dry or too wet when performing the iodine-starch test. However, on an individual basis the autonomic sudomotor neurone signalling to the sweat glands on the back was homogenous, which enabled us to compare the 16 measuring points. It is well known that sweating is more prominent in the middle of the back, down the spine, than on the lateral parts of the back. We compensated this heterogeneity by randomizing the subjects to different treatment sequences, which minimizes any potential bias. In addition, position on the back (lateral/medial) was incorporated in the statistical models, hence adjusting the treatment effects for position effects. In our study approximately 20% of imprints were excluded because of uncertain margins and artefacts due to too much or too little sweat on the back. To eliminate possible bias the exclusion was carried out prior to un-blinding.

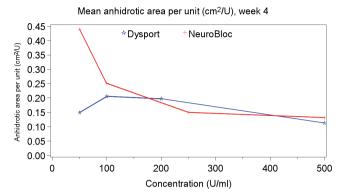


Fig S1. Enlargement of Fig. 2. to make explicit the mean anhidrotic area per unit for Dysport and NeuroBloc at week 4.

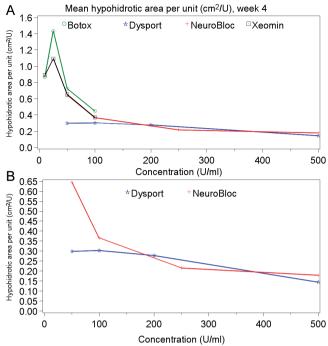


Fig. S2(A). Mean hypohidrotic area per unit 4 weeks after injection of Botox®, Dysport®, Xeomin® and NeuroBloc® at 4 different concentrations. Clear peaks can be seen for Botox and Xeomin, demonstrating that the optimal concentration for both products is 25 U/ml. There is no apparent difference between Dysport 50 U/ml, 100 U/ml and 200 U/ml. The mean hypohidrotic area per unit emerging where Dysport 500 U/ml has been injected is, however, smaller than that for the other 3 concentrations of Dysport. Optimal concentration for NeuroBloc is 50 U/ml. (B) Enlargement of Fig. S2A. to make explicit the mean hypohidrotic area per unit for Dysport and NeuroBloc at week 4.

Mean anhidrotic area per unit (cm²/U), week 8

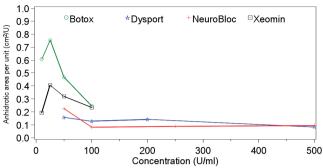


Fig. S3. Mean anhidrotic area per unit 8 weeks after injection of Botox®, Dysport®, Xeomin® and NeuroBloc® at 4 different concentrations. Clear peaks can be seen for Botox and Xeomin, demonstrating that the optimal concentration for both products is 25 U/ml. There is no apparent difference between Dysport 50 U/ml, 100 U/ml and 200 U/ml. The mean anhidrotic area per unit emerging where Dysport 500 U/ml has been injected is, however, smaller than that for the other 3 concentrations of Dysport. The optimal concentration for NeuroBloc is 50 U/ml.

Table SI. Descriptive statistics of anhidrotic area per unit (cm^2/U) at week 4, 8 and 12 (all data except 1 outlier*)

Product (U/ml)	Time-point	Mean	SD
Botox® 10	Week 4	0.362	0.374
	Week 8	0.607	0.901
	Week 12	0.339	0.455
Botox 25	Week 4	0.980	0.544
	Week 8	0.754	0.685
	Week 12	0.616	0.473
Botox 50	Week 4	0.495	0.218
	Week 8	0.467	0.310
	Week 12	0.423	0.302
Botox 100	Week 4	0.330	0.186
	Week 8	0.246	0.185
	Week 12	0.297	0.169
Xeomin® 10	Week 4	0.227	0.344
	Week 8	0.192	0.296
	Week 12*	0.238	0.239
Xeomin 25	Week 4	0.740	0.563
	Week 8	0.406	0.346
	Week 12	0.522	0.395
Xeomin 50	Week 4	0.420	0.246
	Week 8	0.319	0.168
	Week 12	0.349	0.199
Xeomin 100	Week 4	0.269	0.125
	Week 8	0.234	0.119
	Week 12	0.257	0.168
NeuroBloc® 50	Week 4	0.440	0.273
	Week 8	0.225	0.159
	Week 12	0.095	0.093
NeuroBloc 100	Week 4	0.251	0.157
	Week 8	0.081	0.115
	Week 12	0.083	0.083
NeuroBloc 250	Week 4	0.150	0.069
	Week 8	0.088	0.056
	Week 12	0.076	0.039
NeuroBloc 500	Week 4	0.132	0.052
	Week 8	0.097	0.047
	Week 12	0.065	0.040
Dysport® 50	Week 4	0.149	0.130
	Week 8	0.157	0.127
	Week 12	0.131	0.130
Dysport 100	Week 4	0.206	0.143
	Week 8	0.128	0.104
	Week 12	0.174	0.093
Dysport 200	Week 4	0.198	0.090
	Week 8	0.142	0.063
	Week 12	0.135	0.065
Dysport 500	Week 4	0.113	0.082
	Week 8	0.084	0.032
	Week 12	0.087	0.077

SD: standard deviation.

Table SII. Statistical analysis of anhidrotic area per unit (cm²/U), week 4, mixed model analysis of variance (ANOVA). Differences between dissimilar products at the same concentrations (100 U/ml or 50 U/ml) and at optimal concentrations are shown

Products (U/ml)	LS mean	95% CI	<i>p</i> -value
Botox® 100 – Xeomin® 100	0.070	-0.033, 0.173	0.1725
Botox 100 – Dysport® 100	0.133	0.027, 0.239	0.0162
Botox 100 − NeuroBloc® 100	0.082	-0.033, 0.197	0.1539
Xeomin 100 – Dysport 100	0.064	-0.009, 0.137	0.0848
Xeomin 100 - NeuroBloc 100	0.012	-0.075, 0.099	0.7760
Dysport 100 – NeuroBloc 100	-0.052	-0.142, 0.039	0.2518
Botox 50 – Xeomin 50	0.082	-0.070, 0.234	0.2763
Botox 50 – Dysport 50	0.351	0.226, 0.477	< 0.0001
Botox 50 – NeuroBloc 50	0.063	-0.101, 0.226	0.4381
Xeomin 50 – Dysport 50	0.269	0.150, 0.387	0.0001
Xeomin 50 – NeuroBloc 50	-0.019	0.140, -0.179	0.8054
Dysport 50 – NeuroBloc 50	-0.288	-0.423, -0.154	0.0002
Botox 25 – Xeomin 25	0.231	-0.171, 0.633	0.2490
Botox 25 – Dysport 100	0.775	0.479, 1.071	< 0.0001
Botox 25 – NeuroBloc 50	0.540	0.230, 0.851	0.0018
Xeomin 25 – Dysport 100	0.544	0.236, 0.852	0.0019
Xeomin 25 – NeuroBloc 50	0.309	-0.013, 0.631	0.0589
Dysport 100 – NeuroBloc 50	-0.235	-0.370, -0.100	0.0016

LS mean: least squares mean; CI: confidence interval