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I. Introduction

In the past few years first-principles calculations
based on the Kohn-Sham (KS) density functional theo-
ry® have gained enormous interest among solid-state
physists, materials scientists, and quantum chemists.
Successful applications of the KS theory to various
properties of realistic materials and molecules can be
found in the literatures®®, This is due not only to
reasonable accuracy of the local density approxima-
tion®, but also to developments in algorithms to
minimize the KS energy functional, or equivalently to
obtain self-consistent solution of the KS equation. A
common approach lying in the algorithms for the self-
consistent solution, which can be embodied in terms
of electron density®, one-electron potential®®, or
wavefunctions®?, is to define a computational scheme
through which an approximate solution is reincarnated
as a better one repeatedly until a given convergence
criterion is satisfied.

The up-to-date self-consistency strategies, by which
the KS energy functional is minimized with respect to
the wavefunction, involving molecular-dymanics94?,
steepest-descent®¥ and  conjugate-gradient®»-¢7
methods are the mathematically ‘‘cooler’” and have won
a great success in particular for large-scale applications.
Kohyama® and Kresse and Furthmiiller® have,
however, pointed out that the traditional self-consistency
strategies, by which the KS energy functional is
minimized with respect to the electron density or the
one-electron potential, are the more robust and versatile
than those with respect to the wavefunction, because the
former strategies are insensitive to fluctuation in electron
occupancies at eigenstates near the Fermi level. This is

true in particular when the strategies are equipped with
preconditioned relaxation methods based on the
Thomas-Fermi® or perturbation®’-® theory, or with
the Anderson method®”@, the Broyden method“??9C"
or its modified variant®®@,

A cost which must be paid for the robustness and
versatility of the traditional self-consistency strategies is
that a gradient, a functional derivative of the KS energy
with respect to the approximate solution, cannot be cal-
culated easily and thus must be replaced by a difference
between the input and output densities or potentials®.
This leads to computational inconvenience that simple
and efficient algorithms such as the conjugate-gradient
method are not readily appliciable®”, because the
Jacobian operator, through which the difference quan-
tity is obtained from the input, is no more a Hermitian
one'%¢D Therefore as mentioned above, to accelerate
convergence there have been adopted more complicated
algorithms such as the Anderson and Broyden methods,
which require iteration history data which consist of the
input and difference quantities to be stored. When it
takes many iterations to obtain the converged solution, a
huge storage must be reserved for the iteration history
data. This problem has motivated us to develop the
Broyden-like computational scheme. Our scheme may
resemble those proposed by Kresse and Furthmiiller *
and by Eyert®?, but is shown to be tolerant of the iter-
ation history data partially discarded and in addition,
incorporates the spirit of the Anderson method with a
device against numerical instability to achieve smoother
and faster convergence.

Our paper is organized as follows: In Sec. II we
describe briefly the test problem which is used through-
out the present study. In Sec. III we explain our
storage-saving schemes based on the Broyden method
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and examine them against the test problem. In Sec. IV we
refine one of our storage-saving schemes by adding a
multiple-secant feature and show the efficiency and sta-
bility of the resultant schemes. Finally in Sec. V we
summarize the motivation, structure, and test results of
our schemes and mention future implication.

II. Test Problem

A test problem for computational schemes in general
should be easily implemented but also should faithfully
represent physics of objects to which we intend to apply
the schemes. We have decided to take the latter require-
ment seriously and chosen the self-consistent electronic-
structure calculations of a Si (011) surface model as the
test problem, because it is easy to implement the com-
putational schemes which appear in the present study
into an existing electronic-structure code.

First, we adopt the traditional self-consistency strategy
where the self-consistent solution is sought in terms of
the one-electron potential. Let us assume that we have an
initial guess for the one-electron potential as the input
quantity Vi,. Then we solve the KS equation,

h2
( _2m Vz+ I/ext'l' I/in>‘//n=8n‘//m (1)

where 7 is the Planck constant, m, is an electron mass,
Vex is an external potential representing constituent ions,
&, is the nth lowest eigenvalue, and v, is the corre-
sponding wavefunction. We have utilized the Davidson-
type algorithm® to solve eq. (1). The electron density p
is obtained by,

P=2 f(en—&) yal? )
where & is the Fermi energy and f is an appropriate
smoothing function. From p the Hartree potential Vy is
obtained by solving the Poisson equation,

V:Vy=—8np, 3)

while an exchange-correlation potential V., which
represents quantum mechanical contribution to the elec-
tron interaction, is given by formulae roughly propor-
tional to p'/® within the local density approximation. The
output one-electron potential V,, is given by

Vout = VH + I/xc- (4)

The functional derivative of the KS energy Exs with
respect to the input potential is given by®®

OEks
Vi

where x, is an independent-particle polarizability opera-
tor and Vyg is defined by,

Vdiﬂ"= Vout - I/in-

©

The self-consistent solution V. may be defined as Vi,
which satisfies dExs/dVin=0. Since it is computatinally
demanding to evaluate x, and thus §Exs/Jd Vi, however,

=xoVais, o)

1187

in practice Vi is defined as Vi, such that
Vdiﬁ‘=0 (7)

is satisfied. Since eq. (7) is a nonlinear equation implicitly
defined as a set of eqgs. (1) to (6), it is solved by iterative
schemes as explained in the next section.

The Si (011) surface model is a rectangular supercell
containing five (011) and three empty layers, and thus ten
Si atoms. The atoms are fixed at each ideal site. The
size of the supercell is 5.43x107°mx3.84x1071°
m X 1.536 x 107° m. The supercell is so small that the
reader reexamine the results with ease but large enough
to cause slow convergence with an inappropriate scheme
as shown later. Wavefunctions are expanded by a plane-
wave basis set within an energy cutoff of 2.58 x 107 J,
while the electron density and potential of 1.03 x 1071 J,
which corresponds to 12051 plane waves. A soft norm-
conserving pseudopotential®¥®> js adopted to avoid
dealing explicitly with chemically inert core electrons.

Remaining aspects of the computational framework
not described here are found in Refs.®?,

III. Storage-Saving Schemes Based on the
Broyden Method

Considering discretization, we introduce a vector no-
tation for the potentials, each of which is expanded by A4~
Fourier components. Since as explained in the previous
section the self-consistent calculation is reduced to solve
eq. (7), if the Jacobian operator A4, implicitly defined by

Vag= — AV, ®)
is available, the Newton-type iterative procedure,
PR =T+ Am T, )

will lead to a vector sequence {P%, V2, -, V&) rap-
idly approaching V.. Here superscripts in parentheses
denote iteration numbers and Vi and A™ are the
potential difference and the Jacobian operator calculated
from VY, respectively. Due to convenience, we have
changed the sign of 4 compared to common practice.
Since explicit evaluation and handling of 4 are as
demanding as of y,, however, Bendt and Zunger®® have
shown that when the inverse Jacobian [4™]~! is recur-
sively approximated by B™ using Broyden’s updating
formula®,

{6V 5 "+ B Y5V Gz "y oV Gz

B"=B""0= 167 % "I . (10a),
with

SPLI=PO- P,
and

VY=V P,
then the input potential for the next cycle predicted by
PE =7 +BOVE, (10b)

converges toward the solution V. in fewer iterations than
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that generated by a simple relaxation formula,

VatP=v+ BV, amn

where f is a mixing parameter. Note that by | - || we mean
the Euclid norm of a vector. This efficiency originates
from B™ so defined in eq. (10a) as to satisfy a secant
condition,

OV V==BWsP 5", (12)
which is a mimic of an equation,
V= —[A"6V &, (13)

valid at the limit of I8V Sxl—0.

1. Description of storage-saving schemes

The Broyden method exemplified by eq. (10a) seem-
ingly requires huge 4" X 4" matrices to be handled, but
Srivastava®) have developed an alternative computa-
tional scheme,

n—2 E'(k) ) I‘;(k)f

E(n—1)=517i(:-1)+ {B(l) Z }JV(" l), (14a)

1673212
and
(n+1)_ t>(n) a_ o lg(k)al-)&(i,i‘%T 7 (n)
VTSV BO- 2 pm | Ve (140)

where the approximate inverse Jacobian matrix B™ is
implicitly expressed by a sum of an initial guess B’ and
dyadic products of vectors. Srivastava’s scheme
represented by eqgs. (14), where only vector sequences
{Var, Vin- -+, Vi '} and {0, ED,-.. E=D} must
be stored, is preferable if B for the inverse Jacobian
matrix is easily dealt with and if the iteration count # is
not too large.

Recently, Byrd, Nocedal, and Schnabel®® (BNS) have
proposed the other computational scheme where B™ is
implicitly handled. In their scheme V%" is given by

V(n+l) V(n) B(l){1+ y@- 1)[Q(n 1)] ly(n— l”}V(")
+§ QU Y TG, (152)
where I is an A" X A" identity matrix, S®~Y and Y*~ D

are A X (n—1) rectangular matrices defined by vector
sequences,

Se-V={sVQ, 6V2,---, V5 "}, (15b)
YOO ={oV, 6V, 6V "), (15¢)

respectively, and @9 is a small (n— 1) X (n— 1) matrix
OtsoO
ol {JV ST if k<l

0 otherwise.

The rectangular matrices ™~ and YV contain the
iteration history data and thus must be stored. Along
with Srivastava’s, the BNS scheme is preferable if BY is
easily dealt with and if the iteration count » is not too
large.

Equatlons (14) generate the vector sequence (v,
7@,---, V) which coincides with what is obtained by
using eqgs. (10) under exact arithmetic, as do egs. (15).

(15d)
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With this respect the two schemes, one is proposed by
Srivastava and the other by BNS, are equivalent to each
other. This is not the case, however, when the vector se-
quences for the iteration history data are no more fully
kept in the computer storage.

Let only the history data of the v latest iterations be
allowed to survive. When the iteration count n exceeds
v+1, eqgs. (14) exemplifying the Srivastava scheme can be
modified into,

n-2 "(k)&f)(k)T o
Fen—gpi 4+ {Bo- 3 & V"
¢ Ve { k;v Nov Rz [0 45 >
(16a)
and
n—1 "(Ic)af/"(k)'f -
(n+1)__ () 1 é (n)
=V +{BY— ",
Vi { kz,,: 27
(16b)

with {P&”, V&g ", -+, Vg °} and {E, Enmve,
-, £#=1} stored. Unfortunately, however, the scheme
based on eqs. (16) deviates from the original Broyden
method, because £® appearing in the right-hand sides of
eq. (16a) and (16b) is implicitly dependent on & with
I<n—v through earlier iteration cycles. This inexactitude
will result in inefficiency as shown later. The limited-

storage analogue of eqs. (15) are given by
vah= V"”+B<l>{1+ gm0 Jombed i @i 74
+SGIQGTIN Y LI P, (172)

(n—1)

where S(:=)) and Y{3_)) are 4" X v rectangular matrices
defined by vector sequences,

SO D=LV, sVET,. 5Vf,': M (17b)
E: 3={5V(” v) 6V(n v+l)’ . (n 1)} (170)
respectively, and Q (i~} is a v X v matrix
(n—1) VSISV if k<l
Q (n—vu= . (17d)
0 otherwise.

In contrast with eqs. (16), eqgs. (17) lead to a storage-
saving scheme which remains exactly the Broyden
method where the approximate inverse Jacobian matrix
is updated using information of the v latest iterations
only. This is shown as follows: Let us substitute p+v+1
for n in eqs. (17). Then we have

7 (p+v+2) _ mr(p+v+1 P+ (2+V)y- +
prtA=pEet g+ Y E Q&I Y e

i7(p+v+1) @+ P+ -1y (VT (p+v+])
X V&V +SEIQEI T YEINvETTY,

(18a)
with
SER={oVED, oV E*?,- - V™), (18b)
YOiy={oVE ", oVE ™, -, V&™), (18¢)
and
(p+v) SV V s if k<l
Q (p+i= ) (18d)
0 otherwise.
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Clearly, if in egs. (18) we substitute O for p and n—1 for
v, which is nothing but a shift in definition of the itera-
tion index, then eqs. (18) become formally equivalent to
eqs. (15). Therefore, the scheme represented by eqs. (17)
is the exact incarnation of Broyden’s idea despite its
storage-saving feature.

2. Comparison of storage-saving schemes

Before turning to the comparison of the storage-saving
schemes immediately, we show the equations which are
actually used in our computer program. The storage-
saving Srivastava (SSS) scheme is given by a set of equ-
ations,

Fomne W;;—n+{3a>_ 5 zwww}avg’g“, (192)
k=n—v
and
n—1
Pty V(n)+ {B(l)_ Z E(k)«/'}(k)T} [75';‘}, (19b)
k=n—v
where 7' ® defined by
B SV
'V(k) , 19
B @

is introduced to avoid unnecessary _evaluaEion of
ISV {32 The vector sequences {¥ (=9, g =7+,

., YD} and {00, En=v+D ... F@-D} must be
stored and kept unchanged outside subroutines em-
bodying egs. (19). ¥ is given by,

_ {n—l if
v=
v

where v is the history data limit as introduced previously.
The core equation of the storage-saving BNS (SSBNS)
scheme is,

VR +BOI+ Y06 Y s}
X Vit+SGoal@G-31 'Y (23 Vi,

1 ~ .
where S{r_5 and Y{»_j) are A4 x ¥ rectangular matrices,

n=<v+1
. (20)
otherwise,

V(n+l)
(21a)

-1 ann—v) 6I7§n—|7+1) 517@—1)
Sn-n= -“:;—v s -'u::—-\'z s ’ -u::—
= {uavgiﬁ I 167 Sz 0l 16V $s "u}
(21b)
and
po-n_ oVG? VG oV G "
N VP 1 2l R P ] 2 e R P} el
(2lc)
respectively, and Q (n_ is a ¥ X ¥ matrix
617(k—n+17+1)1'517(1—-n+ﬁ+1)
n=1) Y74 AR TTTE Y 72 e if k=l
Q4 Ju=1 110V ag oV s (21d)
0 otherwise.

¥ is given by eq. (20) as with the SSS scheme. Note that
in the actual program the matrices S{r_5, Y-, and
Q(" 3 are defined as normalized quantities to enhance
numer1ca1 stability.
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Table 1  The required iteration counts to reach self-consistency using
the storage-saving Srivastava-type and storage-saving Byrd-Nocedal-
Schnabel schemes with various history data limits.

History data limit
3 6 9 12 15 o

35 26 27 31 23 22
25 24 24 22 22 22

Scheme

storage-saving Srivastava
storage-saving Byrd-Nocedal-Schnabel

The test problem is already described in the previous
section, but here three features in it are furthermore
specified. First, the input potential at the first iteration,
V“’ is calculated from a superposition of valence elec-
tron density of neutral silicon atoms. Second, the initial
guess for the inverse Jacobian is give by,

BW=0.71 2)

and allowed to be scaled only at the second iteration so
that

1679 +BOST Y (23)

is minimized. Third, the self-consistency is regarded as
achieved when all the Fourier components of the poten-
tial difference SV G fall within 2.2 x 1072 J, which is a
tight criterion.

As mentioned above, we have expected that when a
small amount of the computer storage is reserved for the
iteration history data, the SSBNS scheme has an advan-
tage of faster convergence over the SSS. This is
confirmed by the actual calculations. Table 1 shows how
many iterations are performed to obtain the self-consis-
tent solution with various history data limits. Clearly,
unless the history data limit is removed, the SSBNS
scheme leads to the faster convergence consistently. On
the other hand, as misgiven, the SSS scheme is inferior
not only in the convergence, but also in stability, because
increasing the limit does not always result in smaller
iteration counts. Therefore using the SSBNS scheme is
recommendable.

IV. Multiple-Secant Schemes Based on the
Broyden Method

1. Description of multiple-secant schemes

In the present section we propose further improved
schemes. As already mentioned, the secant condition
given by eq. (12) is responsible for the fast convergence
achieved by using the schemes based on the Broyden
method. Unfortunately, however, when the approximate
inverse Jacobian is updated, an analogous equation,

Ve "=-B 24

is no more satisfied. Therefore, it is quite natural to ex-
pect that a scheme where a multiple-secant condition,

oVP=_pwsp ) (25)

with k<n—1 holds exactly®”®? or approximately @@

("+1)517¢(1'i'fr_1),
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will lead to even faster convergence.

In the previous section we have shown that when the
iteration history data are not kept fully, the SSBNS
scheme has an advantage of the faster and more stable
convergence. Another advantage that the multiple-secant
condition can be straightfowardly incorporated into the
BNS scheme®®, and thus into the SSBNS scheme. The
multiple-secant variant of the SSBNS scheme, referred to
as MSBNS scheme hereafter, is given by eqgs. (21) except
for the v x v matrix Q{»_3), which is defined by

-1 1 1
QL)=Y0 'Yy (26)

(n 7).

The MSBNS scheme satisfies the multiple-secant condi-
tion exactly. We will concentrate on the MSBNS and
related scheme, because though the scheme with the
multiple-secant condition satisfied approximately has
been proposed and utilized in the electronic-structure
calculations®, it is less efficient than that where the
multiple-secant condition holds exactly®?.

We show that the multiple-secant variant of the
Broyden method can be regarded as Anderson’s®@9@)
nonlinear least-square method. This has been already
pointed out"¢? but it is important to remind us the
equivalence. Suppose that we have already obtained the
vector sequences, S(n_» and Y{,_ defined by egs. (21b)
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and (21c¢), respectively. Then the input quantity | 2%

predicted by the Anderson method as follows: within the
subspace spanned by the vectors {6V /16§ I,
SVETT NSV ST, - -+, 6V S N6V S VN, VY, the
best approximate solution 78 is constructed as,

S7®
Ve =vP+ > 27
kzn:v “UsvRIC @
by requiring that a predicted difference vector
Ve
V(:t) — (tlt) + (n) 28
an =V ais 2_ PIZ T 28

approximates a zero vector in a least-square sense. The
predicted vector 1448 might be an adequate candidate for
the next input quantity potd In reality, however, this is
not the case, because the vector 7% does not expand the
input vector space from which 7 is extracted. There-
fore, the next input quantity 7 *" should be given by

Vat' =V +BOV iy, (29

where B® is an approximation to the inverse Jacobian as
. . . . (n)
appeared in the previous section. The coefficients #)" are
determined so that | 7§32 || is minimized. This leads to a
linear least-square problem equivalent to solving a

simultaneous linear equation®?,

(n) (n)

avn—fw,n—i 67}n—|7,n—i‘!+1 67}71—17,"—1 ﬂn V Un—3
(n)
OVp—s41n—7 OUn—5+1,n-5+1 OVp—5+1,n—1 ﬂn—ﬁ+1 Un-v+1
. =l . ) (30a)
(n) (n)
OUp—1n—5 OUn—1n—v+1 OVp—tn—-1 Nrn-1 Nn-1

with
501, = VSV G, (30b)

and
u"=6VEV . (30¢c)

If to write down V,(.'.’ explicitly we combine egs. (27) to

(30), we have
Vit =pPP+BOVR+{SG3+BOYI-))
X[QG YLV, G1)
where S_3), Y3, and Q{i~3) are exactly the same as
those defined by egs. (21b), (21c), and (26), respec-
tively. To derive eq. (31) we have used the fact that the
matrix appearing in the left-hand side of eq. (30a) is the
same as QEZ:‘% given by eq. (26). Obviously, eq. (31) is
equivalent to eq. (21d) and thus the multiple-secant
variant of the Broyden method can be regarded as the
Anderson method.

It is still under debate whether the Anderson method,
or equivalently the multiple-secant variant of the
Broyden method is superior to the original Broyden
method in the actual calculations®, From the purely
mathematical viewpoint the former would be better than
the latter. Thus if this is not the case, numerical insta-

bility is the probable cause. Since inversion of the matrix
o EZ:‘% given by eq. (21d) is well-defined for any Yfﬁ:% but
that by eq. (26) is not always so, the multiple-secant
variant of the Broyden method is vulnerable to linear
dependence among the vectors {oV %z /167 I,
VG NSV GO, - -+, VS P16V G PIl}. Setting
the limit that the information of the latest ¥ iterations are
allowed to be stored as in the previous section may cure
the multiple-secant method of the numerical instability.
The limit has to be chosen with great care, however.
When the limit is too loose, the numerical instability
cannot be avoided. On the contrary if the limit is too
tight, the MSBNS scheme cannot demonstrate its poten-
tial fully.

Instead of setting the limit ¥ by hand to avoid the nu-
merical instability rather than to economize the com-
puter storage, we introduce another limit x4 which we
decide automatically by estimating the degree of linear
dependence among (VS NN6V SN, oV ™)
N6V 5" "I, -+, 678 °/ 1675 "I} and then modify
the difinition of Q(,,_v). The degree of linear dependence
is measured numerically by a condition number®’ of
QfZZg defined by eq. (26). In general, the condition
number x(A4) with a matrix A4 is given by
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(A)=1A411A47". (32)
Here the norm for a matrix A4 is given by
I|AII={n"a:)§ lAxIl, (33)

where x is any vector and llx|l and || 4xI| are vector norms
as already appeared. If K'(Q(,,_v)) is smaller than a
specified value &, the input vector Vm 1s calculated by
egs. (21) except for the ¥ X ¥ matrix Q(,, V) ) defined by eq.
(26). Otherwise we introduce new definitions of Qfﬁ'v)
covering both egs. (21d) and (26) on extreme occasions.
For the first definition, QﬁZZ% is given by

5 I—;(k—n+a+1)15[—,~(1—n+v+1)

(k 1 I—n+v+1
167 & " s v S0

if k=l or u=<l
(34

(n—1)
(n— v)kl

0 otherwise,

where u is the minimum positive integer so determined
that K(Q (n— v)) satisfies

K(QG N <k.
Here & is a maximum condition number which we have
to prescribe. By combining eq. (34) with eqgs. (21a),
(21b), and (21c) we have a set of formulae where the
latest ¥—u+1 iterations and the older remainder
influence the determination of V{*" through the mul-
tiple-secant variant and the original formulation, re-
spectively, of the Broyden method. For the second
definition, Q{_3 is given by

3%

5V(k—n+i"+1)fal7gi}n+f:+l)
(B2 AR T E 1 Z2 Al
if <k and </
A= AEAED 66
© if u>k=I
0 otherwise,

with u determined as above. Equation (36) leads to
prediciting V7Y by the multiple-secant Broyden method
referring only to the information retrieved from the latest
V—u+1 iterations. For both cases, when eq. (35) is
violated with any u, we define Q(,, ;,) ) by eq. (21d), that is,
return to the original Broyden method.

(n—1)
Q(n v)kl

2. Comparison of multiple-secant schemes

We have performed the same electronic structure cal-
culations as in the previous section except that we have
used the multiple-secant schemes, called MSBNS(1) and
MSBNS(2) hereafter, to which eqs. (34) and (36) lead,
respectively. # in eq. (35) is set to be 10°. As already
mentioned, these schemes are obtained by modifying the
definition of Q%Z:é; in eqgs. (21) for efficiency without
sacrificing robustness. We expect these schemes to yield
faster convergence toward the self-consistent solution
than the SSS and SSBNS, which are examined in the
previous section. In addition, if & is not too small, we
expect the MSBNS(1) and MSBNS(2) schemes to exhibit
similar convergence properties, because while overridden
in the MSBNS(1), information contained in the (n—¥)th
iteration to the (n—¥+u—1)th is simply ignored in the
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Table 2 The required iteration counts to reach self-consistency using
the multiple-secant Byrd-Nocedal-Schnabel schemes with various
history data limits. See text what multiple-secant Byrd-Nocedal-
Schnabel(1) and (2) stand for.

History data limit

Scheme

3 6 9 12 15 «©

multiple-secant Byrd-Nocedal-Schnabel(1) 22 19 17 17 17 17
multiple-secant Byrd-Nocedal-Schnabel(2) 22 19 17 17 17 17

MSBNS(2). It is left to actual calculations which scheme
performs better.

Table 2 shows the iteration counts required to reach
the self-consistent solution using the MSBNS(1) and
MSBNS(2) schemes with the various history data limits.
First, no difference in convergence is found between the
MSBNS(1) and MSBNS(2) as expected. The latter,
however, has an advantage. In the present study u has
not exceeded eleven. Thus in the MSBNS(2) scheme, we
can economize the storage further by discarding, not ig-
noring, the history data formed before the (n—V+u)th
iteration. Actually this feature is not implemented.

Second, as expected, the MSBNS schemes outperform
the SSS and SSBNS, in which the multiple-secant condi-
tion does not hold. See also Table 1. When the SSBNS
and MSBNS schemes are compared, the maximum
reduction in the iteration counts is seven. This improve-
ment, brought by the multiple-secant condition, is a less
pronounced one than observed in comparison of the SSS
and SSBNS schemes but a consistent one. Therefore we
recommend the MSBNS(2) scheme, not only because the
MSBNS(1) and MSBNS(2) schemes are no more compli-
cated than the SSBNS, but also because in the latter the
storage can be further economized.

V. Conclusion

In the present study, we have investigated the com-
putational schemes, which are variants of the Broyden
method, for acceleration of self-consistent electronic-
structure calculations. In particular we have focused
ourselves on the storage-saving schemes, some of which
are generalized to the consideration of arbitrarily many
previous iterations.

Extending the works of Srivastava and of BNS, we
have proposed the two storage-saving schemes, where
iteration history data are partially discarded after a
prescribed storage limit is reached. As revealed in the test
calculations of a Si (011) surface model, the storage-
saving scheme based on BNS’s formula is the superior in
convergence and stability, because even when iteration
history data are not kept fully, this scheme remains
mathematically equivalent to Broyden’s original formu-
la.

Furthermore, starting with the SSBNS scheme, we
have derived the two schemes. These satisfy the mul-
tiple-secant condition in the vector space determined on
the fly so that the numerical instability is conquered.
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Watching an omen of linear dependence in a given vector
sequence is the key mathematical technique. Consistent
reduction in the iteration counts is found. Neither is su-
perior to the other in convergence. We have, however,
pointed out that using one of the schemes may lead to
further economization of the computer storage.

Finally, the BNS and related schemes have an advan-
tage which is not exploited in the present study. When
using eq. (21a) we need only a single application of BY to
a vector at each iteration step. This implies that B® is no
more restricted to a matrix which should be kept un-
changed throughout the calculation. For example, we
can set B to be a matrix representation of an electronic
dielectric response function®. Moreover, BY can be a
more general, say nonlinear, procedure given as a set of
subroutines. A self-consistent 0 (N) code“?®? which is
less accurate but runs faster, may be embedded in a place
which BY as a matrix occupied. We plan in the near fu-
ture developing a code in which the traditional first-
principles plane-wave pseudopotential method is com-
bined with one of less accurate but faster methods in an
above-mentioned way to achieve far more rapid conver-
gence.

Acknowledgements

The authors wish to thank Prof. R. Yamamoto for
stimulating discussions.

REFERENCES

(1) W. Kohn and L. J. Sham: Phys. Rev. 140 (1965), A1133-A1138.
(2) D. D. Koelling: Rep. Prog. Phys. 44 (1981), 139-212.
(3) G. P. Srivastava and D. Weaire: Adv. Phys., 36 (1987), 463-517.
(4) J. Ihm: Rep. Prog. Phys., 51 (1988), 105-142.
(5) W. E. Pickett: Comput. Phys. Rep., 9 (1989), 115-197.
(6) D. K. Remler and P. A. Madden: Mol. Phys., 70 (1990), 921-966.
(7) M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D.
Joannopoulos: Rev. Mod. Phys., 64 (1992), 1045-1097.
(8) T. Ito: J. Appl. Phys., 77 (1995), 4845-4886.
(9) R. G. Parr and W. Yang: Density-Functional Theory of Atoms
and Molecules, Oxford Univ. Press, Oxford, (1989), 1-324.
(10) P. Bendt and A. Zunger: Phys. Rev. B, 26 (1982), 3114-3137.
(11) R. Car and M. Parrinello: Phys. Rev. Lett., 55 (1985), 2471-2474.
(12) F. Tassone, F. Mauri and R. Car: Phys. Rev. B, 50 (1994),
10561-10573.
(13) M. C. Payne, J. D. Joannopoulos, D. C. Allan, M. P. Teter and
D. H. Vanderbilt: Phys. Rev. Lett., 56 (1986), 2656-2656.
(14) A. Williams and J. Soler: Bull. Am. Phys. Soc. B, 32 (1987),
562-562.
as) L. §tich, R. Car, M. Parrinrllo and S. Baroni: Phys. Rev. B, 39
(1989), 4997-5004.
(16) M. P. Teter, M. C. Payne and D. C. Allan: Phys. Rev. B, 40
(1989), 12255-12263.

A. Sawamura, M. Kohyama, T. Keishi and M. Kaji

(17) M. J. Gillan: J. Phys. C, 1 (1989), 689-711.

(18) M. Kohyama: Modelling Simul. Mater. Sci. Eng., 4 (1996), 397~
408.

(19) G. Kresse and J. Furthmiiller: Comput. Mater. Sci., 6 (1996), 15-
50; Phys. Rev. B, 54 (1996), 11169-11186.

(20) G. P. Kerker: Phys. Rev. B, 23 (1981), 3082-3084.

(21) K.-M. Ho, J. Ihm and J. D. Joannopoulos: Phys. Rev. B, 2§
(1982), 4260-4262.

(22) B. I. Dunlap: Phys. Rev. A, 25 (1982), 2847-2849.

(23) A rapidly converging scheme based on the perturbation theory is
proposed also within the context of quantum device simulations.
See A. Trellakis, A. T. Galick, A. Pacelli, U. Ravaioli: J. Appl.
Phys., 81 (1997), 7880-7884.

(24) D. G. Anderson: J. Assoc. Comput. Mach., 12 (1965), 547-560.

(25) P. Pulay: Chem. Phys. Lett., 73 (1980), 393-398; J. Comput.
Chem., 3 (1982), 556-560.

(26) C. G. Broyden: Math. Comput., 19 (1965), 577-593.

(27) G. P. Srivastava: J. Phys. A, 17 (1984), L317-L321.

(28) D. Vanderbilt and S. G. Louie: Phys. Rev. B, 30 (1984), 6118-
6130.

(29) D. D. Johnson: Phys. Rev. B, 38 (1988), 12807-12813.

(30) A preliminary and daring application of the conjugate-gradient
method to the traditional potential-based approach is found in X.
Gonze: Phys. Rev. B, 54 (1996), 4383-4386; Convergence proper-
ties of the conjugate-gradient method are, however, not compared
to those of other methods.

(31) P. H. Dederichs and R. Zeller: Phys. Rev. B, 28 (1983), 5462-
5472.

(32) V. Eyert: J. Comput. Phys., 124 (1996), 271-285.

(33) A. Sawamura, M. Kohyama and T. Keishi: Comput. Mater. Sci.,
14 (1999), 4-7.

(34) A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos:
Phys. Rev. B, 41 (1990), 1227-1230; Phys. Rev. B, 44 (1991),
13175-13176.

(35) G. Kresse and J. Hafner: J. Phys. C, 6 (1994), 8245-8257.

(36) R. H. Byrd, J. Nocedal and R. B. Schnabel: Math. Prog., 63
(1994), 129-156.

(37) 1. G. P. Barnes: Comput. J., 8 (1965), 66-72.

(38) D. M. Gay and R. B. Schnabel: Solving systems of nonlinear
equations by Broyden’s method with projected updates, Nonlinear
Programming 3, edited by O. L. Mangasarian, R. R. Meyer and S.
M. Robinson, Academic Press, New York, (1978), pp. 245-281.

(39) R. B. Schnabel: Quasi-Newton methods using multiple secant
equations, Technical Report CU-CS-247-83, Dept. of Computer
Science, Univ. of Colorado at Boulder, (1983), pp. 1-35.

(40) G. H. Golub and C. F. van Loan: Matrix Computation, The John
Hopkins Univ. Press, Maryland, (1993), pp. 221-233.

(41) G. H. Golub and C. F. van Loan: Matrix Computation, The John
Hopkins Univ. Press, Maryland, (1993), pp. 128-130.

(42) T. Hoshi and T. Fujiwara: Phys. Rev. B, 52 (1995), R5459-R5462.

(43) T. Hoshi and T. Fujiwara: Towards large-scale
Sully-selfconsistent LDA-electronic structure calculations (Order-
N Method), Physics of Complex Liquids, edited by F. Yonezawa,
K. Tsuji, K. Kaji, M. Doi and T. Fujiwara, World Scientific, New
Jersey, (1998), pp. 129-143.



	
	
	
	
	
	
	

