RESOURCE SELECTION BY ANIMALS

Resource Selection by Animals

Statistical Design and Analysis for Field Studies

Second Edition

by

Bryan F.J. Manly

Western EcoSystems Technology Inc., Cheyenne, Wyoming, U.S.A.

Lyman L. McDonald

Western EcoSystems Technology Inc., Cheyenne, Wyoming, U.S.A.

Dana L. Thomas

Department of Mathematical Sciences, University of Alaska, Fairbanks, U.S.A.

Trent L. McDonald

Western EcoSystems Technology Inc., Cheyenne, Wyoming, U.S.A.

and

Wallace P. Erickson

Western EcoSystems Technology Inc., Cheyenne, Wyoming, U.S.A.

KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-48151-0 Print ISBN: 1-4020-0677-2

©2004 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: and Kluwer's eBookstore at: http://kluweronline.com http://ebooks.kluweronline.com

TABLE OF CONTENTS

PREFACE	
LIST OF SYMBOLS	
 INTRODUCTION TO RESOURCE SELECTION STUDIES Motivation and Definitions The Data for Resource Selection Studies Sampling Protocols and Study Designs Comparison of Designs Indices of Selection Hypothesis Tests and Confidence Intervals Discussion Chapter Summary 	1 3 4 8 9 11 14 15
 STATISTICAL MODELLING PROCEDURES Simple Sample Comparisons Linear Regression Logistic Regression Log-Linear Models Proportional Hazards Models Generalized Linear Models Tests Used in Modelling Model Selection Using AIC Analysis of Residuals I Bootstrap Methods Chapter Summary 	16 16 17 17 18 18 19 20 21 22 22 23 24
 3. EXAMPLES OF THE USE OF RESOURCE SELECTION FUNCTIONS 3.1 Introduction 3.2 Examples 3.3 Sample Designs 3.4 Assumptions Chapter Summary 	27 27 28 42 43 44
 4. STUDIES WITH RESOURCES DEFINED BY SEVERAL CATEGORIES 4.1 Introduction 4.2 Sampling Designs and Protocols 4.3 Choice of Estimators for Selection Ratios 4.4 Variance of a Ratio and the Difference of Ratios 4.5 Chi-Squared Tests 4.6 Design I with Known Proportions of Available Resource Units 4.7 Tests on Proportions of Used Units 4.8 Inferences Concerning Selection Ratios 4.9 Comparison of Selection Ratios 	46 46 47 48 49 50 52 55 57

 4.10 Design I with Estimated Proportions of Available Resource Units 4.11 Design II with Sampling Protocol A 4.12 Census of Available Resource Units 4.13 Sample of Available Resource Units 4.14 Design III with Sampling Protocol A 4.15 Census of Available Resource Units 4.16 Sample of Available Resource Units 4.17 Discussion Chapter Summary Exercise 	59 64 65 72 76 76 78 78 80 81
 5. RESOURCE SELECTION FUNCTIONS FROM LOGISTIC REGRESSION 5.1 Census Data 5.2 Use With a Random Sample of Resource Units 5.3 Separate Sampling 5.4 Separate Samples of Available and Used Units 5.5 Separate Samples of Available and Unused Units 5.6 Separate Samples of Used and Unused Units 5.7 Variances for Estimators and Their Differences 5.8 Discussion Chapter Summary Exercises 	N 83 83 84 99 99 102 103 106 109 110 110
 6. RESOURCE SELECTION OVER SEVERAL TIME PERIODS 6.1 Census Data 6.2 Sample Data 6.3 Small Proportions of Used Resource Units Sampled 6.4 Samples of Unused Resource Units Only Chapter Summary Exercises 	118 118 123 127 132 135 135
 7. LOG-LINEAR MODELLING 7.1 General Log-linear Modelling of Count Data 7.2 Examples Chapter Summary Exercise 	139 139 140 148 149
 8. DISCRETE CHOICE MODELS WITH CHANGING AVAILABILITY 8.1 The Theory of Discrete Choice Models 8.2 Two Units Per Choice Set 8.3 Examples 8.4 Availability Sampled Chapter Summary Exercises 	150 150 152 153 161 162 162
 9. APPLICATIONS USING GEOGRAPHIC INFORMATION SYSTEMS 9.1 Defining Use and Availability 9.2 Variable and Model Selection 9.3 Mapping of Resource Selection Functions 9.4 Examples Chapter Summary 	164 165 165 165 170

10. DISCRIMINANT FUNCTION ANALYSIS	171
10.1 Linear Discriminant Function Analysis	171
10.2 Samples of Available and Used Resource Units	173
10.3 Samples of Available and Unused Resource Units	173
10.4 Samples of Unused and Used Resource Units	174
10.5 Quadratic Discriminant Function Analysis	177
10.6 Discussion	177
Chapter Summary	177
Exercise	178
11 ANALYSIS OF THE AMOUNT OF USE	170
11.1 Introduction	179
11.1 Infoduction 11.2 Analysis of Counts of the Amount of Use	179
11.2 Analysis of Continuous Measures of the Amount of Use	1/9
11.5 Analysis of Continuous Measures of the Amount of Use	10/
Chapter Summary	109
Appendix: Estimation of a Modified Log Linear Model	190
Appendix. Estimation of a Modified Eog-Elifear Model	190
12. SOME OTHER TYPES OF ANALYSIS	192
12.1 Compositional Analysis	192
12.2 Mahalanobis Distance	195
12.3 Estimation Using Machine Learning Methods	197
12.4 Chapter Summary	199
13 RISK ASSESSMENT AND POPULATION SIZE ESTIMATION	200
13.1 Risk Assessment	200
13.2 Estimating Population Size	200
Chapter Summary	203
Chapter Summary	204
14. COMPUTING	205
14.1 General Considerations	205
14.2 Logistic Regression Example Code	205
14.3 Log-linear Model Example Code	207
14.4 Discrete Choice Model Example Code	208
Chapter Summary	209
REFERENCES	210
NAME INDEX	217
	217
SUBJECT INDEX	220

PREFACE

We have written this book as a guide to the design and analysis of field studies of resource selection, concentrating primarily on statistical aspects of the comparison of the use and availability of resources of different types. Our intended audience is field ecologists in general and, in particular, wildlife and fisheries biologists who are attempting to measure the extent to which real animal populations are selective in their choice of food and habitat. As such, we have made no attempt to address those aspects of theoretical ecology that are concerned with how animals might choose their resources if they acted in an optimal manner.

The book is based on the concept of a resource selection function (RSF), where this is a function of characteristics measured on resource units such that its value for a unit is proportional to the probability of that unit being used. We argue that this concept leads to a unified theory for the analysis and interpretation of data on resource selection and can replace many ad hoc statistical methods that have been used in the past.

This second edition differs from the first edition in several ways. There is much new material including the uses of the Akaike information criterion (AIC) for model selection, a considerable rearrangement of the material on logistic regression, and completely new chapters on discrete choice models, the analysis of data from geographical information systems (GIS), approaches to studying resource selection other than using RSFs, the uses of RSFs for assessing the risks involved to animals if habitats are changed or estimating population sizes, and computer software that can be used to carry out the calculations for RSF analyses.

The book has the following structure: Chapters 1 and 2 provide a review of statistical methods that have been used in the past to study resource selection and some examples of how different types of study can be analysed in terms of RSFs; Chapter 3 gives a brief introduction to a range of statistical techniques that are used for modelling data in the later chapters; Chapter 4 covers the particularly important special case where the resources being studied are in categories of habitat or food types; Chapter 5 covers the use of logistic regression for estimating a RSF; Chapter 6 covers situations where samples of used or unused resource units are taken over a period of time; Chapter 7 covers the uses of log-linear modelling; Chapter 8 (completely new) covers the uses of discrete choice models; Chapter 9 (completely new) covers the use of GIS data; Chapter 10 covers the uses of discriminant function analysis as an alternative to logistic regression for estimating RSFs; Chapter 11 gives some suggestions on how to analyse data when the amount of use of resource units is recorded rather than simply whether or not they are used; Chapter 12 covers methods such as compositional analysis that do not use RSFs for studying resource selection; Chapter 13 covers the use of RSFs for assessing the risks involved in habitat changes, and for estimating population sizes; and finally Chapter 14 discusses some software that is available to carry out RSF calculations. The book requires much special notation, and readers may find the list that follows this preface to be useful in keeping track of this notation.

We acknowledge the help of many of our colleagues in writing this book. Particularly, we acknowledge Dan Reed who assisted with early versions of Chapter 4, Ed Arnett, C.R. Bantock, S. Farley (chair of the Interagency Brown Bear Study Team), W.F. Harris, Gregory Golet, and Tom Ryder who provided us with raw data from their studies, John Payne, David Yokel, Robert Skinner, Ed Merritt, Fritz Reid, Robb Macleod and Dick Kempka for support and funding for the development of Chapters 9 and 12, Steve Arthur for figures in Chapter 8, Diana Craig who read over the final manuscript for the first edition of the book, Ryan Nielson and Kimberly Bay who did the same for the second edition of the book, Shay Howlin for help with analyses, and Nadine Wilson who made many of the final changes to the text. Many users of the first edition of the book also made comments that have helped us to improve the second edition. However, any errors or omissions in this edition are entirely our responsibility.

BFJM, LLMc, TLM, DLT and WPE Laramie, March, 2002

LIST OF SYMBOLS

Ι	Number of categories of resource units
m _	Size of a sample of available resource units
m _i	Number of available units in category i in a sample of available resource units
π _i	Proportion of the population of available units that are in category i
Â _i	m_i/m_* , sample proportion of available units in category i
u ₊	Size of a sample of used resource units
u _i	Number of units in category i in a sample of used units
0 _i	u_i / u_{\star} , sample proportion of used units in category i
\mathbf{f}_{i}	Proportion of the available category i items that are used.
ŵ,	$o_i / \hat{\pi}_i$, the forage ratio (also called the selection ratio and the preference index)
Ei	$(o_i - \hat{\pi}_i) / (o_i + \hat{\pi}_i)$, Ivlev's electivity index
L _i	$o_i - \hat{\pi}_i$, Strauss' linear selection index
Qi	$[o_i (1 - \hat{\pi}_i)] / [\hat{\pi}_i (1 - o_i)]$, Jacobs' first selection index
D _i	$(o_i - \hat{\pi}_i) / (o_i + \hat{\pi}_i - 2o_i \hat{\pi}_i)$, Jacobs' second selection index
α	$(o_i/\hat{\pi}_i) / \Sigma(o_i/\pi_i)$, Chesson's selection index
B _{i1}	$(u_i/m_i)/\Sigma(u_i/m_i),$ Manly's standardized selection index with used resource units replenished
B _{2i}	$log(1$ - $f_i)/\Sigma log(1$ - $f_i),$ Manly's standardized selection index with used resource units not replenished
Wi	$f_i/\Sigma f_j,$ Vanderploeg and Scavia's first selection index
E*,	$(W_i - 1/I)/(W_i + 1/I)$, Vanderploeg and Scavia's second selection index
SI	$Max[(\Sigma m_i/m_+) - (\Sigma o_i/o_+)]$, Rondorff <i>et al.</i> 's selection intensity for continuous data

w*(x)	Resource selection probability function for a single period of selection where resource units are characterized by their values $\mathbf{x} = (x_1, x_2,, x_p)$ for variables X_1 to X_p
w(x)	Resource selection function, which is $w^*(\mathbf{x})$ multiplied by an unknown positive constant
w*(x ,t)	Resource selection probability function for selection from time 0 to time t
w(x,t)	Resource selection function for selection from time 0 to time t
φ*(x ,t)	Probability that a resource unit is not used ('survives') in the time interval 0 to \boldsymbol{t}
$\phi(\mathbf{x},t)$	$\phi^*(\mathbf{x}, \mathbf{t})$ multiplied by an unknown positive constant
ßi	Coefficient of the variable \mathbf{X}_{i} in a resource selection or survival function
β _i	Estimate of β_i
$se(\hat{\beta}_i)$	Standard error of the estimator of β_i
X _L ²	Log-likelihood chi-squared statistic for measuring the goodness of fit of a model for data
X _p ²	Pearson chi-squared statistic for measuring the goodness of fit of a model for count data
R _i	Standardized residual for the ith observation in a set of data
μ _x	Population mean of the random variable X
s _X	Sample standard deviation of the variable X
r _{XY}	Sample Pearson correlation between variables X and Y
var(X)	Variance of the random variable X
cov(X,Y)	Covariance of random variables X and Y
A,	Size of a finite population of available resource units
A _i	Number of the A_{+} units that are in category i
w* _i	Proportion of the A_i available resource units that are used
\hat{w}_{i}^{*}	An estimate of w [*] ,
Zα	Value that is exceeded with probability $\boldsymbol{\alpha}$ by a standard normal random variable
E(X)	Expected (mean) value of a random variable X

u _{ij}	Number of category i resource units used by animal j
u,,+	Number of category i resource units used by all animals
u _{+j}	Number of resource units used by animal j
u++	Total number of units used by all animals
$\hat{\mathbf{w}}_{ij}$	Selection ratio for the jth animal and the ith resource category
π_{ij}	Proportion of the resources available to animal j that are in category i
$\hat{\pi}_{ij}$	Sample estimate of π_{ij}
S	Number of selection episodes
Θ_{ij}	Probability that a type i resource unit will be used in the time interval from $t_{j\text{-}1}$ to t_j
Pa	Probability of sampling an available resource unit
P _u (t)	Probability of sampling a used resource unit at time t
$P_{\tilde{u}}(t)$	Probability of sampling an unused resource unit at time t
u _i (t)	Number of resource units of type i found in a sample of used units taken at time t
ū _i (t)	Number of resource units of type i found in a sample of unused units taken at time \boldsymbol{t}
P _u	Probability of sampling a used resource unit when only one sample of these units is taken
$P_{\tilde{u}}$	Probability of sampling an unused resource unit when only one sample of these units is taken
μ	Population mean vector
Σ	Population covariance matrix
$\Omega(\mathbf{x})$	A function such that selecting individuals with measurements $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2,, \mathbf{x}_p)$ with probabilities $\Omega(\mathbf{x})$ from one multivariate population will produce a second population
ρ	Proportion of available units that are used