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l. Introduction 

Graybill [1961] ha.s .shew& tb.a.t the usual analysis ot- 'l'a:rtance proeetiures 

produce best quadratic unbiased estimators (BQUE's) of variance components 

when data are balanced, i.e., have the same number of observations in each 

subclass. Choosing among unbiased estimators when data are unbalanced is more 

difficult. Several estimators have been suggested but there is relatively 

little information upon which to base a decision to use one rather than another. 

This paper attempts to alleviate this situation by developing BQUE's of variance 

components for tbe 1-way classification random model, with unbalanced data. Two 

cases are considered: when the overall mean in the model is assumed zero, and 

when it is assumed non-zero. 

Although the practical value of the BQUE's is limited by the fact that 

they are functions of the unknown variance components, investigation of their 

behavior as various limits are approached permits evaluation o:f different 

procedures. In addition, if an experimenter has some prior knowledge, or even 

a reasonable guess, about the relative magnitudes of the unknown components, 

approximate BQUE procedures may be useful in yielding estimators that have 

smaller variances than the usual analysis of variance (ANOVA) estimators. 

Evidence of this is available from numerical studies. 

2. Zero Mean Model 

The simplest variance component model for data in a one ... way classification 

is where the linear model for an observation, yij' is 

Y =a + e ij i ij J 
(1) 
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with i = 1,2, ••• ,c and j = 1,2, ••• ,n .• The a. and e .. are assumed to be 
)_ )_ lJ 

independent ra.n.dom samples from two normal populations vli th zero means and 

variances a 2 and a2 , respectively. It is also assumed that no relationship 
a e 

exists between the number of observations in a subclass (n.) and the subclass 
)_ 

effects (a.), a form of' the model considered by Harville [1967]. 
)_ 

Suppose the vector of observations is lvritten as 

Y12•••Y1n •••Y·1•••Y· •••Y 1•••Y ) 
1 l. :ln. c en )_ c 

Then E(y) = Q , >vhere E denotes expectation over repeated sampling lvith the 

same values of the ni • The variance-covariance matrix of l shall be denoted 

by y • It is a diagonal matrix of submatriees V. , of order n. , and can be 
-)_ )_ 

written as 

c+ 
- .!:1 v. 

)_C -). 
(2) 

where E+ denotes the operation of taking the direct sum of matrices. The form 

of V. is 
-)_ 

(3) 

••ith I. being an identity matrix of order n. and J. being a matrix of order 
-)_ 1 -). 

n. x n. , with every element unity. 
)_ )_ 
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A best quadratic unbiased estimator (BQUE)· of a variance a;:: is defined a}:; 

that quadratic forn of the observations HhiGih· is an unbiased estinator of e1 2 r· 

which fror1 among all such quadratic forms has minimum variance. Consider 

(4) 

where, "Tithout loss of generality, !: is syrnmetric. It can be shoun (e.g., 

Graybill [1961, problems 17.6 an_d .17_• 7~ Lthat. the _rtean and variance ~f l' ~~ 

are respectively tr(y~) and 2tr(Y!:) 2 The estimator in (4) \vill therefore 

be a BQUE of cr 2 provided !: is chosen so th£~t 2tr(y!:) 2 is riini.r1ized subject to 

e1 2 = tr(y~) • Derivation in this manner, of the BQUE's (and their variances) of 

the variance components cr 2 and cr 2 of the :'Ylodel (1), based on V given in (2) 
a e 

and (3), is shown in the Appendix~ bn defining 

and 
c 

r = I' 1/ ( 1 +n . p) 2 + N- c , s = 
i=l l 

c 

c 
= E n. 

i=l 1 

I' n~/(l+n.p) 2 and t = 
i=l l l 

c 

1..-re have, from (Al7) - (A20) of the appendix, the BQUE of 

2 ; c 
(s-tn.)(l+n.p)- (y~ /n.) + s Z 

l l l. 1 \ i=l 

( 5) 

n~ n } l.. "":) ...... ":') \ .-
)" v'·· - ' yrc. /n ('') 
L-; oJ • • "- • • ! ' \) 

'-l lJ '-1 1 l/ J- 1- • 
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with variance 

(7) 

and the BQUE of cr2 is 
. a 

A 1 {c 2 
Bcr2 = (rs-t 2)- I: (rn.-t)(l+n.p)- (y~ ln.) 

a . 1 1 1 1o 1 
l.= 

c 1 c 
n. ~ - t ( I: I: y~ . - I: y~ In. ) ( 8) 

i=l j=l l.J i=l 1 " l. 

with variance 

(9) 

It should be noted that (7) and (9) can be shown equal to the equivalent 

expressions given by Crump [1951) and Searle [1956) for the large sample 

variances of maximum likelihood estimators of a 2 and cr 2 when a general mean 
e a 

~ is included in the model. 

2b. C9mparisons of BQUE's with other estimators 

"" The BQUE of o2 is first compared to the ANOVA estimator cr2 , where 
e e 

"" c ni c 
cr 2 = ( 2:: .E y~ . - I: y~ In. ) I ( N- c) • 

e i=l j=l lJ i=l lo 1 
(10) 

The most obvious relationship is that 

= (rs-t 2 )-l { ~ (s-tn.)(l+n.p)- 2 (y~ ln.) 
. 1 1 1 1. 1 
l= 

A 

Therefore, in some sense it can be said that the first term of Ba~ provides 



information about cr 2 which is not utilized in the ANOVA estin<-o.tor. Hhen this 
e 

"'-, f., ""' 

additional infornation is irrlportant-, and ,;o ,:;hat -e*tent its inclusion in Bcr~ 

affects the variance of the estir11ator can be partially ansvered b;'/ noting that 

"' "' 
lin (Bcr~) :;:::: (J2 

' e 
r>-tco 
t--' --

"' " 
as shm~n in Tovms end ( 1968]. Hence the difference betFeen cr 2 and cr 2 diminishes 

c B e 

as cr 2 becoQes large compared to cr2 • 
a e 

A A 

Further cof.".parison of cr 2 and cr 2 is '"1E,de by .looking at their vc:.r1ances. B e e 

That for Bcr~ is given in (7) and 

,....., 4 
var(cr 2 Y-= 2cr /(N-c) e e 

(11) 

in the usual Hay. Tc' facilitate discussL::m 1vr2 define 

"' 
-·- ver{Bcr~) 

(12) 

This is <:C measure of the extent to 1-;hich the ve.riance of an est L12.tor of cr~c 
e 

is increased by using the ANOVA estir'lator rather than the EQUE, this increase 

in variance being measured as a fraction of the :·',inirn.url variance, namely thet 

of the BC),UE. p therefore represents the penalty incurred, in this vRriance 
e 

sense, by using the Ar:IOVA estimator rather than the BQUE • 

Since the BQUE tends to the ANOVA estir1ator when c: -.c::. •'.!C look at the other 

extreme, mr'lely when p :;:::: 0 • In this c2.se, putting r ::: 0 in (5) gives r = N , 
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c 

s :::: L n~ -=-c s2 and t = N 1 thus allovring (6) to be re,lritten as 
i=l ]. 

"" 
( o2 IP = o) B e 

n. c ]. 
= (s2 E L Y~. 

i=l j=l l.J 

'I-Ii th its variance, from (7) 1 being 

A 

c 
N >= y~· )/N(i32-N) 

i=l ]. • 
(13) 

Since o 2 is unaffected by differtog values of p its variance is as in (11). 
e 

Using that and (14) in (12) gives 

p (p=O) 
e • (15) 

For given c and N, (l?)is maximum when s2 is maximum uhich, it can be proved 

(using integer algebra), is maximum when all groups except one have only one 

observation, i.e., when the n.'s are (11 1 1 ••• ,l,N-c+l) ~ This max~~um value 
l. 

of s2 is (c-1) + (N-c+l) 2 ~ (N .. c:) 2 + 2N-c , in wni.•..:h cesc the ::.a;.d.tr..'Jm value of 

p reduces to 
e 

max pe(p=O) 
n. 

l. 

= ( c-l)(N-c) 

(N-c) 2 + (2N-c) 
(16) 

For given N, it can be read;i.ly shovm that {lc) is r:H".:::iJ,,ize,~ ov.;:r ~ ·wb~n 

.... = N + l .. Ji 1 which make1 

max 
c,n. 

l. 

,;; ll2 
p (p=O) = ,_:_ .. 

e 2-iN-1 
(17) 
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..... 
It should be emphasized that Ba: of (6) is a function of p, which is 

" unknown in most practical cases. Therefore Ba: cannot be used directly but 

only approximated, by using a value for p which is somehow felt to be reason-

able. Of course this increa~es the variance of the procedure because it is 

no longer best. Since in practice p is neither zero nor known, and because 

sets of ni-values as extreme as used in (16) and (17) rarely occur, the usual 

ANOVA procedure l'i'ould seem to be a fairly good choice for estimating o2 • 
e 

'·There is no page 9·'' 
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" 
Returning to the case when p = 0 it can be noted fro~ (13) that ( o2 I p = 0) 

B e 

is the same as an estimator suggested by Koch [1967]. The sane is true for a2 
a 

Putting p = 0 in (8) gives 

C A 

p = o) = [ E (n~-n. )y~ - (N-c)a2] I {s2-N} 
.ll.l.l.. e 
l.= 

(18) 

which \1111 be found identical to the estimator of a2 put for1·ra.rd by Koch [1967] a 

for the zero mean model. 

The usual ANOVA estimator of o2 for the one-way classification does not a 

utilize the zero mean assumption being used here. When this assumption ~ 

made, the ANOVA estimator of a: is 

with variance 

A 

t12 = 
a 

( 
C A 

.E n.y~ - ca2) I N 
i=l 1 1 * e 

(19) 

(20) 

Although,a.s noted previously, the limit of the EQUE of a2 as p~ is the 
e 

ANOVA estimator of a:, the same kind of limiting result does not hold for the 

BQUE of a2 • Indeed a 

= ( 
c c -1"' 
I: Y~ - I: n. a2 )· I c 

· 1 1 · 1 1 e l.= • l.= 

as shown in Townsend [ 1968]. Furthermore, because the terms 
A A 

demonimators of summations in Ba2 , and because both var(a2 ) a a 

(21) 

(l+n.p) 2 occur in 
l. 

" 
and var(Ba: I p = 0) 
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bear no simple relation to one another as they do in the case of cr 2 [see (15), 
e 

A 

for exarnple], it is difficult to examine the behaviour of Bo~ for p varying 
A A 

between zero and infinity. Hovrever, (Bo~1 r: == 0) of (18), o~ of (19) and the 

li~it of o 2 as p~ro of (21) can be compared to some extent, by considering the B a 

terms in 

"' 
in (12 in 

e. 

-2 y. 
1.. 

each 

in each 

case. 

i.e., the terms in Y.7 over and above their occurrence 
l.o 

The v1eight given tc y~ when p is zero is seen in (18) to be proportional 
1.. 

to (n~-n.) and as p approaches infinity, in (21), equal 1·1eights are given. The 
l. l. 

M'OVA estimator (19) always gives weights proportional to subclass size. There-
A 

fore, o2 gives too much weight to small groups and not enough to large groups 
a 

when p is small \vhereas the converse is true vrhen p is large. These results 

correspond closely to the conclusions drmm by Robertson [1962] for small p 

and Tukey [1957] for large p • 

A A 

Because the largest difference betv1een the variance of u2 and cr 2 occurred 
e B e 

at p = 0 , it 1-1as readily established that in most practical situations the 
A A 

difference is rather small. This tJ~e of comparison between o2 and o2 is ~ore 
a B a 

difficult because the maximmn difference does not occur at the same value of 

p for all sets of n.-values. Therefore the practical value of using the 
l. 

A 

estimator Bcr~ on actual data has yet to be considered. However, in order to 
A 

use Ba~ , a numerical value is needed for p • Since p is unknown, an estinate 
A 

is required, implying that any practical procedure based on Bcr~ Hill not 
A 

actually be a BQUE of o2 • Hence one asks how accurate ''mst the est inate of 
a 

p be to give an estimator whose variance is less than that of the ANOVA pro-

cedure and how nuch less vrill it be? Some empirical ansHers to these questions 

follow. 
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"' A prior estimate of p , say p , is substituted into cr 2 of (8) and the 
o B a 

resulting estimator designated as B~~ , with variance 

where r , s and t are r,s and t of (5) computed using p • Thus the variance 
0 0 0 0 

of the approximate BQUE is a function of both the true c and the prior estimate, 

"' 
p • 

0 
The intractability of (22) forces numerical comparisons between var(cr 2 ) 

a 

and var(B;=) • 

Analogous to p of (12) the ratio e 

(23) 

is defined to aid the comparisons. It represents the extent to which the 

"' variance of cr~ differs frorr: that of i~ , relative to the variance of B~! , 

When p = 0 , both estir11ators have the same variance, and uhen p is positive, 
a a 

A 

Bj! is ~than cr! where "better" rneans smaller variance. The converse is 

-2 . 
A 

true flhen· p is negative, because Pa negative means ;r J.S pcorer than cr 2 . 
-. a B a a 

Cbmparisons made over a range of p and Po for selected n-patterns (sets of 

n.-values) are sum.marized in Figures l-5 • Figures 1, 2, and 4 are fer cases 
1. 

of N = 25 and c = 5, Figures la end 2a being extensions of Figures l and 2 • 

Figure 3 has n '"' • i.) 

1. 
that are double those of figures 1 and 2, Figure 4 has 

N = 25 and c = 10, and Figure 5 is a case of N = 380 and c = 50 • Each figure 
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:.s for a particular n-p.attern with the abscissa shorTing values of p = a2/ a 2 
a: e 

~nd the ordinates giving values of p0 , the prior value.of p • Each curve is 

for a given value of p , e.g., a curve labeled p == 0 cormects those points 
a a 

(;,,;; 0 ) at I•Thich 'Pa == 0 • These points •,;ere determined by solving 

(p -l)var(B~2) == 0 a a (24) 

for ;_, 0 , given the n-pattern and p • As the expression for var(B~=) in (22) 

is particularly intractable, (24) was solved numerically for p using the rnethod 
0 

of reguli falsi (Conte, 1965). 

In each figure, two curves for p ; 0 are given, since for a given n-pattern 
a 

and r , hm values of p satisfy (24). In general, one of the p = 0 curves 
o a 

lies above the line p0 = p and the other belov1 it. This is because B~= is BQUE 

when ;::; 0 ::: p and, as p0 deviates from p in either direction, the variance of 
A 

8;~ increases until it equals that of cr~ , at which time pa = 0 • Thus the 

'J~per p • 0 bowdary indicates how much p can b(f larger than p \.;rithout making a o 
"' u;2 poorer than cr 2 • Si.rnilarly the lower p = 0 boundary shorTS hov1 much p can 

o a - a a o 
A 

be snaller than p vli. thout making Ba~ poorer than cr~ • For example, in Figure 1, 

-v:itb p = 0.4 we may overestimate p by as much as (). 349 (p = 0. 749) or under-
a 

estimate it by as much as 0.167 (p = 0.233) 1·1ithout causing the approximate 
0 

BQUE to be poorer (have a larger variance) than the ANOVA estir(lator. 

The region between the two p = 0 curves in any figure is the set of points 
a 

A 

, ; , 0 ) for •llhich BO.~ is better than cr= • (Remaining parts of the quadrant 
.... 

are Hhere o2 is poorer than cr 2 • In all cases this region has approximately B a a 

'~he sa.P'l.e forn. Its lovter boundary first rises sharply, until it reaches a r 
') 
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corresponding to the. value of p at vlhich , the ANOVA est ilnator cones nearest to 
.· .. ' 

being the BQ.UE of o!, at which point t.he i!lower boundary levels off. Conversely, 

as p incr~ases from zero, the upper boundaty. of the region remains nearly con­

stand, at approxmately the same value of ·p~ as the level .Po~tion of the lower 

boundary, until that value of p at whieh the lower boundary levels off is reached. 

The upper boundary then clmbs sharply. Although these t'-10 boundaries (the 
",;; 

Pa :;; 0 curves) do not touch in Figure·U., they .. do so ... in sorte si.tuations (for 

other n-patterns} as is discussed subsequently. 

The region between the two p .= 9· ,cu;r:ves in .F.igure 1 is very large. This a ... ,, ·.. ., . I. 

means that when p is larger than approximately 0.7 a ~~ry inaccurate p0 (so far 

as being close to p is concerned) used in ~: gives an estinator whose variance 
,.. 

is smaller than that of a! . For example, with p > 0.6, any p > 0.24 makes 
,. . 0 

the variance of Bri= less than tha~ of the AIDVA estimator. It is not much less, 

' however, as can be seen in ·Figure la which is an extension of Figure 1 for p and 

p 0 extending (on a diffe.rent .scale) up to 10 and 13, well [>eyond their lmits 

of 1.0 and 1.3 on F~gure 1.• And in Figure la the presence of the p = 0.05 
a \ ~--..... 

curve when p ~ 2 indicates that" the penalty incurred ~Y ·using the AOOVA estmator 

rather than the approximate !QUE can be only 5% or a little greater for large 

values of p , and the line p = 0.10 does not appear. In a 

many instances, for data as moderately unbalanced as is the n-pattern of Figures 
5% 

~2 

1 and la, this/penalty does not seem sufficiently large to warrant using Boa 
,.. 

rather than a2 • a 

Figure 1 also illustrates situations in which p < 0 , ~eaning that the . a 
.... 

variance of a: is less than that of an approximate BQUE. For example, at 

(p 1 p ) = (o.4, o.o65), p = -0.051 indicating that the ANOVA estimator has a o a 
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variance equal to 95% of the approximate BQUE at that point. 

Figures 2 and Za are for an n-pattern more unbalanced (n. = l,l,l,ll,ll) 
1 

than is that of Figures 1 and la (n. = 3,4,5,6,7). A noticeable difference 
1 

between these two pairs of figures is that in Figures 2 and 2a the two p ~ 0 
a 

curves appear to cross instead of just approaching one another as in Figures l 

and la. The point at which the curves appear to cross is (p,p ) = (0.337, 0.337). 
0 

At this point, the approximate BQUE is the exact BQUE (because p = p) and for 
0 

this n-pattern has variance equal to that of the ANOVA estimator when p = 0.337. 

Therefore, for p = 0.337, there are no values of p for which the approximate 
0 

BQUE is better than the ANOVA estimator. Hence, the two boundaries of the region 
~ A 

in which Ba 2 is better than cr 2 , touch at the point (p,p ) = (0.337, 0.337). a a o 

Although in Figures 2 and 2a the boundaries appear to be crossing at this point 

they are, in effect, just touching. Their behaviour can be envisaged by think-

ing cf the bro p = 0 curves in Figures 1 and la as being moved toward each a 

other until they have a point in common. This occurrs for some n-patterns and 

not for others. 

Additional to the tangential property just discussed, Figures 2 and 2a 
A 

display considerably larger differences betvreen the variances of Ba 2 and cr 2 
a a 

than are to be found in Figures l and la. This is evidenced by the curves 

p = 0.25 and p = 0.50 in Figure 2a. The pa = 0.25 curve of Figure 2a is a a 

considerably closer to the p = 0 curves than is the p = 0.05 curve of Figure a a 

la, indicating that the penalty incurred by using the ANOVA estimator rather 

than the approximate BQUE is oot only greater but is more quickly encountered 

as one moves away from the p = 0 boundaries. For example, at the point 
a 

(p,p ) = (2.25, 1.0) the penalty in Figure la is approximately 5% but in Figure 
0 

2a it exceeds 25%· Also, in Figure 2a, when p is large,4.5 say, and p0 is chosen 
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as l. 5, the penalt~r for using the ANOVA estimator rather than the approximate 

BQUE is more than 5CJI/o. 

50% indicated in (17). 

[This is not to be confused with the upper limit of 

That is for estlinating cr 2 and pertains to using the 
e 

e.xact OO,UE and not an approximate BQUE as is beirig discussed here for cr 2 • 1 a . 

An example of the effect on p of increasing the nw~ber of observations in 
a . 

the· data vlhile leaving the relative values of the n. undisturbed is illustrated 
l 

in the comparison of Figures 2 and 3. The n-pattern in Figure 3 is that of 

Figure 2 but with every n. doubled. ro Figure 3 the p curves have shifted down 
1 . . a 

and to the left compared to those in Figure 2. Consequently the region in which 

the approximate BQUE is better than the A1DVA estimator nov extends over a wider 

range of (p,p ) values. Also, the penalty for not using it is larger for any 
0 

given point in the region. For example, at (p,p ) = (0.9, 0.6) the penalty is 
0 

lo% in Figure 2 but it exceeds 25% in Figure 3. 

In contrast to Figure 3,. the p -curves of Figure 4 are shifted up and to 
a 

the right, compared to Figure 2. The change in the n-pattern has been one of 

holding N constant, N == 25 and increasing the number of classes, to have n.-
. l 

values = l,l,l,l,l,4,4,4,4,4 • The pa = 0 curves nm-1 touch at (p,p 0 ) = (o.64, 0.64) 

approxL~ately, compared to (0.16, 0.16) in Figure 3 and (0.337, 0.337) in Figure 

2. This means that the lower left portion of the region bounded by the pa = 0 

curves is larger in Figure 4 than in Figures 2 or 3, whereas the upper right 

portion is smaller. Consequently, for small values of p, a less accurate p 
c 

can be used ·Hithout causing p to be negative, but for large values of p a 
a 

more accurate p is needed if the approxlinate BQUE is to be better than the 
0 

~~VA estimator. 
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An n-pattern considerably larger than those of Figures l-4 is used in 

Figure 5; it is for N = 380 and c = 50. 1he principal consequence is that 
~ "' 

greater gains and losses can occur when using Ba 2 rather than o2 • For ex-a a 
" 

ample, the penalty incurred through using a: can be as much as 100%, as evidenced 

by the presence of a p = 1.00 curve. Conversely, the presence of p = -0.50 a a 

curves indicates that the variance of the AIDVA estimator can be 5CJ1/o smaller 

that that of the approximate BQUE. However, the p > 0 region is very large a 

when p is greater than .3 or .4 indicating that quite inaccurate values of p0 may 

with its variance still being less than the variance of 
A 

o2 • In view of the substantial reduction which may be obtained when p is 
a 

moderately large and the fact that p need not be very accurate to obtain these 
0 

reductions, B~ would seem to be useful as a practical procedure for this type 

of n-pattErn if p is moderately large. 

Interesting conclusions regarding the practicality of Be~ may be drawn 

from Figures 1-5. Despite the fact that B~= requires a prior estimate of 

p ; o!(o! , it is clear that in many situations its use can provide estimates 

of p having smaller variance than the AIDVA estimator 1 even when the prior 

estimate, p 1 is not close to p • This is especially true when p is very 
0 

small or very large, and the n-pattern is badly unbalanced. Under these 

conditions the variances of B~ can not only be less, but substantially less, 

"' than the variance of a 2 • Furthermore, the presence of the p = 1.0 curve 
a a 

in Figure 5 shows that having many groups and a large total number of observa-

tiona does not automatically imply that the choice of an estimator is unimportant. 

Although we have not specifically investigated iterative techniques using 

successive approximate BQUE's) some inference about this class of procedures 

can also be made from figures 1-5· Figure 2, for example, clearly indicates 



-18-

that 1-rhen ,,, ;:: • 337 an iterative proced~;.re cannot be ns g:Joci .c.,s -che ANOVA procedure. 

This is so true because cr 2 is the BQUE of a2 11hen p has this value and there-
B a a o 

fore has tree smallest variance possible f:::Jr unbiased quadratic est:L1ators. On 

the other hand, vrhen p is very small or very large, it see,1s lil\:ely that iterative 

procedures r;,ight lead to estifn.ators whose variances would be snaller than the 

.ANOVA estir1ator. 

3. Non-zero mean 

The -..ean and variance of y' Ay 1-1hen y is normally distriblJ.ted Hith vector 

of means 1-L and variance-covariance matrix V are 

(25) 

and 

Utilize,tion of these results in the procedure for deriving B:UE' s of a~ and 

a2 have so far proven intractable in the case of the non-zero Llean model y, , 
e lJ 

= 1-L +a. + e.. • This is so despitE the fact that ~ of (25) takes the slightly 
l lJ 

simpler for"' 1-L~ • Nevertheless, the preceding study of the zero '•.ean model 

provides information which can be applied to the general class of unbiased 

est bators suggested by Tukey [1957] to investigate an approxir1ate BQUE of a"' 
a 

along the lines of that for the zero qean case. 

"' 
Comparison of Bo~ in (6) to Tukey' s [l957] class of esti 1ators of a! indicates 

"' that the latter is not sufficiently general to include Ba~ • Hov1ever, since for 
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the zero .1ean case we have seen that little reduction in the variance of an 

" " estimator of a2 can be anticipated by using a2 rather than a2 , it is not 
e B e e 

unreasonable to conjecture that the gain may be even less in the non-zero mean 
,.... 

case. We therefore accept the AIDVA estimator o2 in the non-zero nean case and 
e 

" 
proceed to investigate an estimator alternative to o2 for o2 • 

a a 

3a. An alternative estimator for o2 
a 

The general class of estimators for a2 given by Tukey [1957] is 
a 

c 
= t I: w.(y. 

li=l 1. 1.. 

c " c c 
I: w.~)2 - a2 L w.(l-w.)/n.J /(1· L w7) 

i=l 1 • e i=l 1 1. 1. i=l 1. 

(26) 

where the w. are a set of weights which can be assumed, i·Tithout loss of general-
1. ,.... 

ity, to sum to unity. Recalling a2 of (10) we now notice that the BQUE of a2 
e a 

given in (8) can be rev1ritten as 

A C )( )-2-2 "'-a2 = f r: (rn7 - tn. l+n.p y. - t(N-c}oe2 J, /(rs-t2) 
B a Li=l 1. 1. 1 1.. 

(27) 

In comparing (26) and (27) we see that, except for subtracting a mean in (26), 

the first term of both estimators is a weighted sum of squared group means. 
A 

Also, the second term in each is a multiple 1 2 , whose purpose is to remove 
e 

o 2 from the expectation of the first term; and a denominator occurs in both 
e 

expressions to make the estimators unbiased 'VTith respect to cr~ 

Tukey' s estimator ivith 

is considered as an estimator of a2 
a 

' 

Therefore 

(28) 
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Further inspeetion of the first term of (26) reveals that the mean sub-

tracted fror:o each group mean is a weighted '"lean, Y,, say. This is effectively 

an estimator of the mean~ and as such can be improved upon, i.e., values w. 
l 

can be found such that the variance of y is smaller than Hhen (28) is used 
\'·i 

for vT. • There appears to be no rea~on, other than simplicity, for using the 
')_ 

same weighting v1hen esthnating the mean as is used when summing the squared 

deviations of the group means from that estimated mean. Therefore in the place 

of y we use 
i-7 

c 

c 
yu = L u.y. , 

i=l l l. 

with L u. 
i=l l 

= 1, and define the u.' s 
l 

so as to r1inirnize var(Y ) • 
u 

we take 

var(y. ) = (l+n.o)/n.o2 
lo 1 l e 

var(Y. ) n. n 
i lo l I \_',· u . = __ .....;;;._ = -=--.;;;_-

l c l+n.p L l+n.p 
L: var(y. ) l i=l l 

i=l l. 

(29) 

Since 

(30) 

in (29) and use that value of yu in place of 'w y in (26). The resulting 
. <..1 i i. 
l== 

estimator we suggest is therefore 

(31) 

l·:here c1 and c2 are yet to be chosen, to r:take ~~ an unbiased est :L1ator. It 

is not difficult to sho·w that 
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c c c 
E f 4: w. (y. - y ) 2] = a2 4: (w.-2u.w.+u~) + a2 4: (w.-2u.\'l.+u~)/n1 Li=l ~ ~. u a i=l 1 ~ ~ 1 e i=l 1 1 ~ ~ 

so that c1 and c2 are taken as 

c 
cl = .E (w . - 2u. w. +ui2 ) 

. 1 l. ~ J. 
J.= 

c 
and C2 :::: I: (w.-2U.'i-l.+U~)/n' 

i~l J. 1 1 1 i 
(32) 

The estimator we suggest is therefore (31) using w. of (28), y of (29), 
l. u 

ui of (30) and c1 and c2 of (32). With ~hese substitutions its variance can, 

after a little algebraic simplification (as iii. Townsend [1968]), be written as 

follows. Define 

and 

Then 

el.. = (w. - 2u,,·l. + u;;);n;;' 
1 1 1 J. 1 

k.;J· = (u.u. - u.w - u.w.)/n.n. 
.J. l.J lj Jl. 1J 

y = C/(N-c) 

" 4 ( c 4 c c 
var(~~ == 2a 4: n.e 2 + E E n~~k~j) 

a a i=l ~ i i=l jfii 1 J 1 

4 c c c l 
+2a [t:n;;9~+(N-c)v2 + 4: En.n.k~. 1 

e i=l 1 1 ' i=l jfii 1 J 1J~ 

for ifoj = k,2, ••• ,c, 

(33) 

It seems clear that (33) is intractable for analytic study for comparison 

with the ANOVA estimator, which in this case of the non-zero mean 1s the 

familiar 
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c 
\ 

I ,_ -2 
\ ;_, n.y. 

i=l l. l.. 
Ny~. ) / ( c-1) 

4cr2 cr 2 (N2-s ) 
+ e a 2 

N( c-1) 2 

c 

./".. ---

a~J /[N-SjN)/(c-1)] 

where s2 = ~ n~ as before, s3 ; 
i=l l. 

~ n~ and f ; 
i=l l. 

(N-S/N)j (c-1) as, for example, 

in Searle [1956]. 

3b. Comparisons with the ANOVA estimator 

The suggested estimator (31), through its dependence on Tl'!. and u. of (28) and 
l l 

( 30) , depends on p = a:f a~ which is unknmm, Therefore, to assess its value vre 
"' 
"' use a prior estimate for p, p say, in place of p in a2 , calling the resulting o a 

- ~ 
estimator a2 • a N1.m1eric comparison of cr 2 with the ANOVA estimator cr 2 is made 

a a 
by ·~Nfhs.l of variances of the estimators, using 

" -
var(cr2 ) - var(a2 ) a a 

in the same manner as previously. Figures 6-8 show some results of these 

comparisons, portrayed in exactly the same manner as Figures l-5 • 

Then-patterns of Figures 6,7,8 are identical to those of figures 1,2 and 

5 respectively. Gross comparison between the two sets of figures indicates 

-
great sil'lilarity, suggesting that cr 2 is near the true BQ,UE ·Of cr 2 i·Jhen p = p • 

a a o 
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One 
/ salient difference 1 illustrated by a compa,rison of Figures 2 and 7, is that 

the two pa ::.:: 0 curves never touch. This cleans that the ANJVA estinator is never 

as good as the suggested procedure when p = p and thus is never the BQUE of o2 • 
o a 

Maybe this is true generally. In the zero mean case vlhen the ANOVA procedure was 

BQUE, it occurred only for some value of p other than p = 0 • Yet in the non-

zero rnean case, the estimator of the mean used in the ANOVA procedure is 
c 

y = L n.y. /N, which 
• • i=l l l. 

is the minimum variance unbiased best estimator of 1.! 

>'rhen p = 0 • Nmv, when o2 and rJ 2 are knmvn, the best estimator of 1.J. is a e 

i·Then p = 0 • 

Furthermore, the best estimator of 1.J. when sL~ultaneously estimating o2 and a2 
a e 

is unknown, but \·Thatever it is it seems reasonable to conclude that it is not 

y as used in the ANOVA estlinator. If so, it follows that the ANOVA estimator 

of a2 for the non-zero mean case is never the EQUE. 
a 

4. Conclusions 

Figures l-7 and the preceding discussions thereof lead one to 

tender the following conclusions. 

For the zero mean case: 

(a) The BQUE of o2 has little practical advantage over the ANOVA estimator, 
e 

except for ~ unbalanced data and very snall (close to zero) values of p • 

(Equation (16)] 

(b) The ANOVA estimator of a2 approaches the B~UE for some value of p and a 

actually is BQUE for some designs n-patterns. [Figures land 2.] 

(c) i'Jhen p is moderately large a rather inaccurate pre-deterr:lined p may 
0 

be used in an approximate BQUE of o2 to yield an estimator vith smaller va'riance a 

than the ANOVA estimator. [Figures 1-5.] 



(d) Data \vhich ·are not badly unbalanced. offer little opportlmit;y for 

reducing the variance ·of the approximate BQ,UE of rr 2 belm; that of the ANOVA 
8. 

estimator. [Figure 1.] 

(e) Increasing the number of observations, while holding the nurnber of 

groups constant, extends the region in 1-rhich the approximate B'_UE of cr 2 is 
a 

better than the AIDVA estimator. [Figures 2 ·and 3.] 

(f) Increasing t]J.e number of groups vhil~. poJ..¢1.ing the total nur1ber of 
.;,j 

1 ••• : .• 

observations constant curtails the region in which the approxi.c'late BQ,UE of 
·' .. ; 

cr 2 is better than the ANJVA estimator. [Figures 2 and 4.] 
a 

(g) An incree,se in both total number of observations and number of groups 

does not guarantee that the ANOVA estli'lator will compare favorably with the 

BQUE. [Figure 5.] 

For the non-zero mean 

(h) The suggested estimator of a2 , 11hilst not a BQ,UE nor even a direct 
a 

appr9xli~ation,thereto appears close to it for p0 = P; and it is better than 

the AIDVA estir'lator over a wide range of values. [Figures 6-8.] 
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5 • APPENDIX 

The equation of the model, (l), can be written as y = Za + : uhere a is the 

c;<l vector of a 0 's 
l 

and Z is the corresponding incidence !"'latrix, a diagonal 

n1atrix of vectors , for ' being a vector of n 0 ones. Thus 
=i ~i l 

0
:' = (1 1 1 ••• 1), of n 0 elements 
=i l 

and 

Z = diagf:'.. 1 :'..~ 
-- - c: 

.• } -... .... -,.: . -c (Al) 

Consequently V , the variance-covariance matrix of y is 

c 
v = azz' + ei = 2:: + ( aJ 0 + ei. ) 

i=l -l l 
(A2) 

as in (2) and (3), except for writing 

for notational convenience. 

BQlJE' s of e and a are derived by obtai..'1ing A such that 2tr(y~) 2 is miniHizcd 

subject to a 2 = tr(y~) for a2 = e and a2 = a in turn. This vould be easily 

c-cchieved if V v1ere diagonal. To attain this form 1ve :-:take the transformation 

~ = !:' ¥. where P is an orthogonal matrix such that P' VP = ~ , the diagonal matrix 
A ~ 

of latent roots of V a2 of (4) is then a2 = x'P'APx = x' Qx for t:) = 
~ 

P'AP and 

vre have to minimize 

(A3) 
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subject to 

(A4) 

Having found ~ to achieve this, the BQUE of a 2 is 

(A5) 

vrith variance 

(A6) 

This is done in turn for. a2 = e ~p.d a2 = a • \ve first find the latent roots 
f • 

4a. Latent roots of V 

From (A2), the latent roots ~o'rV '"are· the 'Solutions for A. to 

;.·· (.. ;.,.,- ... 

c ·. • c n.-1 
\y-1~.!1 =rr !a.J. + (e-~,)I.I =·;.Th·{e-~). J. .. (n1.a +e-X.)= 0, 

i=l -~ . . . J. i=.t 

using, for example, Searle (1966, p. 196). for, :ttq.e expansion of the determinants. 
• • \. .6 

Hence 
~ 

c 
(e-A.)N-c n (n.a + e-A.) = 0 

i=l J. 

' 
and the latent roots of V are e with rriul.tiplicity N-c 0

, and n.a + e for 
1. 

i=l, ••• 1 c • He denote these by · 

},, = n.a + e for k=l,2, ••• ,c .and A.k = e fork= c+l, ••• ,N,. (A7) 
<C K 

and have 

~ = diagf\) fork= 1,2, ••• ,c,c+l, ••• ,N (A8) 

;~ . 
,· ... ... ' .. 
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4b. Latent vectors of V 

Let 

( U U,..1 • o o I U • :U l U 2 , • • o J u.,_) 
-1 -c -c ·• -J.c+ -c+ . -liJ 

be t1.!.e m.a.trix of N latent vectors corre-~psnding-~·tG- the 'latent roots in (A7). vle 

seek a value fOr U such that its columns are pair-ivise orthogonal; column 

normalization of U then yields P ,· req_uli.Jed!· in· (A5). a:nd (A6). - - .. ~ 

Note first that ~ is a satisfactory' -va+u~ for u1• ; i.e., that columns of 

Z are latent vectors of y correspondingr:o thr ,~~~~pt roots_ )-.k = ~a + e for 
-~ ..... 

k = 1,2, ••• ,c • This is so because from (Al) and (A2) 

; ., 
'. =~~ -
; .. -~ 

1- c+ __ c·._ __ i ''c~ ;· .. . , ~+ 
VZ = L L: (o:J. + er.)j ILL::...\= L: (an._.+ et.) ~ ·-z: (aiY; + .e:)·~--

i=l -]. -1. i=i ]._. i=l 1.-1. -1. i=l 1. -]. ' 
·, 

:.-1.' 
.. ~ . . . } 

11hich, on comparison v1ith (A2) is Z i-lith its i'th column nuftiplied by an. + e • 
l 

Furthermore, fror~t (A2) 1 it ;i:-,s, clear that~~~= diagfni} fori= 1,2, ••• ,c ; 

hence columns of ~ are pair-wise orthogonal. Thus we take ~l :::: Z and write 

!! = (~ ~2) • For the columns of '::! to be p~ir-w~sc ~rthogonal we want !!2'!!2 

diagonal and ~~y2 = 0 ; and for them to also be latent vectors of y correspond­

ing to the N-c latent roots e of (A7) vle must have yy2 = e!!2 • Using (A2) for 

V this means ~~·~2 = ~ , which is satisfied 1-1hen ~·~2 = ~ • Hence it is· 

sufficient that ~2~2 be diagonal o.nd ~' y2 = 0 • He shO'~>l that 

1 1 l ... l 

-1 l l ... l 
c 

~2 = L:+ E. with E .. 0 -2 1 ... l I of order n.x(n.-1) 
i;:l .. l. -1 l 1. 

0 0 -3 ... l 

• 

! 0 
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satisfies these conditions. ~ve have, by the nature of E. , 
-1 

c -
= E+ ld.iag{j(j+l)} for j ; 

i=l 

\vb.ich is diagonal; and from (Al) 

Hence 

c 
Z'U,.., :::: I:+i'.E. :::: 0 
-2-.::: . -1-1 1==1 

c 
u = (z u ) = \·- 1: + 1 . 

- -2 -1 
~i=l 

1,2, •.• ,n.-11 
1 -' 

is a matrix of latent roots of V Nornalizing the colunns of U :rields P a.s 

1.-1here 

cR· r + -1 
p = l I> n. ::_., 
- . 1 - .... 1=1 

-1 
~i = ~i [diag( /2 ./b ••. /j(j+1) ••• /ni (ni-l)}l 

1//2 I'",.. 1 ..; lj ••• 1//n.(n.-1) 
1 l 

-1//2 Jjjb ••. 1//n. (n.-1) 
l ). 

-· 0 -2//6 ... 1//n. (n. -f) 
J.. l 

0 0 

• . 
0 0 . .. -(n."-l)/Jn. (n.-1) 

1. l 1 

(A9) 

(A10) 
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.L:+ Ltn~;-· 

i=l ;\) l. -l 
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the.t e. rearrangement of the colunns of P gives c" ,,C?.trix 

' G. \, 
-l..J 

G'. \ is a He.lmert r1atrix in the "strict 
-l ....i 

sense," as given by Lancaster [1965] • 

BQUE of cr 2 
e 

Using~ of (A9), the B:1UE of cr~ cor'tes from (A3) and (A4) b~· choosing r: so 

as to ininimize, for D of (A8), 

2tr(~) 2 

subject to 

N c 
= 12 i~., qkk == a: I: nl q, , 

k=l K k=l \. "ili 

This last equation implies 

c 

.L: n, q_l·'· 
k=l K. U\. 

so that we have to min~nize 

::: 0 and :;:: 1 

+ e 

(All) 

1·1here 41"", 1 and 4,.1,.., are Lagrange •:mltipliers. Equating to zero the derivD.tive::: 
.._ c.. 

of e 1·1ith respect to qkk' for k f k' gives 8 ; .. k;'K, qkk' = 0 • Since none of the 

\.' s are zero [see (A7)] this means qk..'<-' :..: 0 for all k /= k' • Hence ~ is 

diagone.l. Equating to zero the derivatives of e vTith respect to t"., and :Yi 0 
.L '-

yields (All); and 'vith respect to qkk yields 
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and (Al2) 

4 A~~ + 4- m1 = 0 for k > c • 

Substituting for ~k from theee equations into (All) then gives 

um1 + wm2 :z: -1 

and (A13) 

= 0 

v1here 
c 

u = and n - \ n,j' 2 " - ~ '"', 
k=l K 

(A14) 

With 
., 

D. = uv - w~ 

(Al3) have solutions 

(Al5) 

Hence fro;'1 (Al2) 

fork= l 1 2, ••• ,c 

and (Alb) 

fork= c+l, ••• ,N. 

Substituting these values for the elements of the (diagonal) r1atrix Q in 

(A5) it can be shown, after a little algebraic simplification, that the BQUE 
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( 2)-1 ( )( ')-2( -, I ) - rs-t \.I: s-tn. l+n1p y": 1 n. 
Li=l 1 l• l 

+ s 
\i=l 

l c ' n. } 
I: ~,;;: .- I y~ /n . ., (Al7) 

j=l lJ i=l l· l/ 

c 
1 2/ 2 d W11ere o = a a , N = Z n. a.n r,s, P.nd t arc as 

a e i=l 1 
given in (5), derived fron 

(Al4) by multiplying by a2 and using (A7) Pnd c • 
e Also, the varia~e of this 

cGtir-;rctor, derived frorr. (A6) using (Al5) <[or Q and (A7) for D redl:ce.s to 

~AlB) 

The BQUE of a2 is derived exactly as is that of cr 2 save for ~inir'lizing 
a e 

2tr(~) 2 subject to 
'; N 

a = tr(~~) ;:;: a I nk-q,_k + z q ;:;: 1 
-l~l,. 

k=l .. h. k=l i\.;. 

The effect of this is to interchange the 0 r~nd l on the right-h::md ;c;ides of 

the equations in (All).· Consequently -:he right-hand sides o:t. (Al3) get inter-

changed so that solutions of the resulting cque,tions are 

('1 = ii,/6 - ., 
..L. 

end .. 2 = -u/ t~ 

Com.pared to (Al5) this r'!.e.<ms replacing -v by '.1 and "' by -v , or equivalently 

- s by t and t by - r, in the nu:nerato.r sf CJ~~ to obtccln a2: • Hence the BQUE 
B e B a 

and its ve..ri<~nce 1s 

A I 

(' 
n. 

l ( ' 

\L ;::_y~--. 
i=l j=l lJ 

var( a2 ) = 2ra~/(rs-t 2). B a e 

1.: Y~ / n. ')·,] 1 (Al9) 
• 1 l. l 
l=..c. 

(A20) 
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Figure 1 

Relationship Between Variance of ANOVA Estimator and 

Variance of Approximate BQ.UE of cr~ 
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Relationship Between Variance of ANOVA Estimator and 

Variance of Approximate BQUE of cr~ 
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Figure 2 

Relationship Between Variance of ANOVA Estimator and 

Variance of Approximate BQUE of cr~ 
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Pa = [Var(o~) - var(a~)J /Var(cr~) 
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Relationship Between Variance of ANOVA Estimator and 
Variance of Approximate BQUE of a~ 
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Figure 3 

Relationship Between Variance of ANOVA Estimator and 
Variance of Approximate BQUE of a~ 
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Figure 4 

Relationship Bet1reen Variance of ANOVA Estimator and 
Variance of Approximate BQUE of cr~ 
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Figure 5 

Relationship Between Variance of ANOVA Estimator and 
Variance of Approximate BQ.UE of a~ 
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Figure 6 

Relationship Between Variance of ANOVA Estimator and 
Variance of Suggested Estimator of a~ 
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Figure 7 

Relationship Bet-v;een Variance of AJ.KJIJA Estimator and 
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Figure 8 
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