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1. Introduction

Greybill [1961] has shewm that the usual analysis of* vartance procedures

produce best quadratic unbiased estimators (BQUE's) of variance components

when data are balenced, i.e., have the same number of observations in each
subclass. Choosing among unbiased estimators when data are unbalanced is more
difficult, Several estimators have been suggested but there is relatively
little information upon which to base a decision to use one rather than another.
This paper attempts to alleviate this situation by developing BQUE's of variance
components for the l-way classification random model, with unbalanced data. Two
cases are considered: when the overall mean in the model is assumed zero, and

when it is assumed non-zero.

Although the practical value of the BQUE's is limited by the fact that
they are functions of the unknown variance components, investigation of their
behavior as various limits are approached permits evaluation of different
procedures. In addition, if an experimenter has some prior knowledge, or even
a reasonable guess, about the relative magnitudes of the unknown components,
approximate BQUE procedures may be useful in yielding estimators that have
smaller variances than the usual analysis of variance (ANOVA) estimators.

Evidence of this is available from numerical studies.

2. Zero Mean Model

The simplest variance component model for deta in & one-way classification

is where the linear model for en observation, yij’ is
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with i = 1,2,...,c and j = l,2,...,ni . The ai and eij are assumed to be
independent random semples from two normal populations with zero means and
variances oz and o: , respectively. It is also assumed that no relationship
exists between the number of observations in a subclass (ni) and the subclass

effects (ai), a form of the model considered by Harville [1967].

Suppese the vector of observations is written as

' = e o0 e o0 o oe e s LI ) .
y' = (g Yy ylnl Vi1 yin.l Ye1 ycnc)

Then E(y) = O , where E denotes expectation over repeated sampling with the
same values of the n, . The variance-covariance matrix of y shall be denoted
by V. It is a diagonal matrix of submatrices Ki , of order ni , and can be
written as

c
V = diag{Vv, V¥ ...KC} = .z

- 2

(2)

where =¥ denotes the operation of taking the direct sum of matrices. The form

of V., is
-i

. .2 2
¥i = %ads * %t (3)

with Ii being an identity matrix of order ni and gi being a matrix of order

n, X o, with every element unity.
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2a; Estimators of o? and 05
a :

A best quédratic unbiased estimator (BQUE)'of a variance o is defined as
that quadratic form of the obsérvétions which- is an unbiased estimator of oZ ,.

which from among all such gquadratic forms has minimum variance. Consider
0% = y' Ay (&)

where, without loss of generality, A is symmetric. It can be shown (e.g.,
Graybill [1961, problems 17.6 anﬁilY{TD?§h§p.the‘mean and variance of v'Ay

are respectively tr(VA) and 2tr(Y§)2 . Thé estimator in (&) ﬁill therefore

be a BQUE of o2 provided A is chosen so thet 2tr(y§)2 is minimized subject to

0% = tr(VA) . Derivation in this menner, of the BQUE's (and their variances) of
the varience components ci and ai of the model (1), based on V given in (2)

and (3), is shown in the Appendix. On defining

2/ .2
= a. N = = n
c ca/oe nd W =n_ )y

and

Mo

r =

1

. L/(l+nip)2 + N~c , s =

n%/(1+n.p)% and t
1 i=] T +

1 i=1

™Mo
il
Mo

[}

~ o=l c o , C ni c \
2 oN & - 2 o ~ 2 2 -
02 = (rs-t%) S (s-tn ) (+n.p) " “(y*/n.) +s Z £ ¥y .- y?/n Y,(6)
Be i=1 oo oo Vi=log=1 Mog=p B0V
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with wvariance

~ L
2y o 42
var(Boe) 2806/(rs t3) (1)
and the BQUE of o: is
n,
o2 271 3 (m-t)(1om,0) 22 /n) -t (£ = y2- 22 /n)) (8)
02 = (rs-t Z (rn.-t +n,.p ys/n,) - ( Y X yo.- Ly n.)
B a i=1 i i i/ i i=1 j=1 1§ 71 1
with wvariance .
~ i
2y - _+2
var(,o7) 2ro€/(rs t%) . (9)

Tt should be noted that (7) and (9) can be shown equal to the equivalent
expressions given by Crump [1951] and Searle [1956] for the large sample
variances of maximum likelihood estimators of ag and ci when a general mean

4 is included in the model.

2b. Comparisons of BQUE's with other estimators

A

The BQUE of c: is first compared to the ANOVA estimator c§ , where

n
(¢

~ i ¢

2 2 2

o2=(2 £y - =y /n.> /(N-c) . (10)
MRS I A S

The most obvious relationship is that

~ c ~
2 - (pa_t2)-1 _ -2, 2 Y2
505 (rs-t2) .il(s tni)(l+nip) <yi./ni) + s(N-c)oZ » .

~
Therefore, in some sense it can be said that the first term of Boé provides
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information about cg which is not utilized in the ANOVA estimatore. When this .

w, % A

- o . V. . . . - L T - :‘ . . . . pel
additional information is important, and to what extent its inclusion in _0°
P ? B e

affects the variance of the estimator cen be partially ansvered by noting that

A

A

L -
lin (_0%) = g%

2%) = % ’

pme T
~. A
zs shown in Townsend [1968]. Hence the difference between Ug and B j diminishes
as oi becones large compared to c: .
~ .vA,- ..
Further comparison of Boi and'a: is made by looking at their variances.
. .
Thet for BU: is given in (7) and
Aol L’_
var(o?}a= 20@/(N-c) (11)
in the usual way. To facilitate discussion we define
~ N
2 L
var(c®) - ver{zo®) —= -
-~ c Be o
- P, = S . (12)
ver(_o%)
B

This is ‘@ mecasure of the extent to which the veriance of an estinetor of cg
ic increased by using the ANOVA estimator rather tﬁén the BQUE, this increease
in varience being measured as 2 fraction of the minimum variance, namely thet
of the BQUE. 1 therefore represents the penalty incurfed, in this variance

sense, by using the ANOVA estimator rather than the BQUE .

Since the BQUE tends to the ANOVA estimeator when p —«.uye look at the other

extreme, ramely when ¢ = 0 . 1In this case, putting ¢ = 0 in (5) gives r = N ,
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c
s = I nf = 82 and t = N, thus allowing (&) to be reuritten as
i=1
~ c ni ) C "
Bdg‘p =0)=(s, £ I v2, - N & yi_)/N(sg-N} (13)

i=1 j=1 Y i=]

with its variance, from (7), being

~ L
2 — — N
var(Boe le =0) = 25,0, / N(S2~N) . (1+)
Since o2 is unaffected by differing values of ¢ its variance is as in (11).

Using that and (1k) in (12) gives

2
c82 N

Pe(o=0) = Tﬁ?37§;' . (15)

For given c and N, (15)is maximum when S, is maximum vhich, it can be proved

2
(using integer algebra), is maximum when all groups except one have only one
observation, i.e., when the ni's are (1,1,e00,1,N-c+l) i This maximum value

of S, is (c=1) + (N-c+1)% = {(§ec)2 + 2§-c , in which cesc the exirun value of

P reduces to

max pe(p=0) - {e-1)(i-c) . (16)

ng (N-c)® + (2N-c)

For given N, it can be readily shown thet (1€) is marisized over ¢ waen

c= N+1- Vﬁ? , which makes

mex p_(p=0) v nE (17)

pr———
~

c,n, a/N-1
i
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A

It should be emphasized that Bcj of (6) is a function of p, which is

A

unknown in most practical cases. Therefore Ba: cannot be used directly but
only approximated, by using a value for p which is somehow felt to be reason-
able. Of course this increases the variance of the procedure because it is
nb longer best. Since in practice p is neither zero nor known, and because

sets of n -values as extreme as used in (16) and (17) rarely occur, the usual

ANOVA procedure would seem to be a fairly good choice for estimating c: .

"There is no page 9."
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‘ Returning to the case when p = O it can be noted from (13) that (BU: | ¢ =0)
is the same as an estimator suggested by Koch [1967]. The same is true for o§ .

Putting p = 0 in (8) gives
2 S 2 yma "2
(502 1 0 =0) = [ii}_(ni-ni)yi- - (Wc)oZ|/ (W) . (18)

which vill be found identical to the estimator of a: put forward by Koch [1967]

for the zero mean model.

The usuel ANOVA estimator of a: for the one-way classification does not
utilize the zero mean assumption being used here. When this assumption is

made, the ANOVA estimator of aj is

o C ~
2 =2 2
0 = <2n.y. -ccx)/N (19)
o Rt Sl S
with varience
~ L‘. 2
var(ai) = 20 _[p™S, + 20N + clN/(N-c)}/N® . (20)

Although,as noted previously, the limit of the BQUE of ai as p— is the
ANOVA estimator of a:, the same kind of limiting result does not hold for the
BQUE of oi . Indeed

~ c c ~

2 2 - 2 n-l -3

ln 02 =( £§2 - zn'e?)/ c (21)
oo =1 i=1

as shown in Townsend [1968]. Furthermore, because the terms (l+nip)2 occur in

~ ~N A
demonimators of summations in BU: , and because both var(oi) and var(Boz l o =0)
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bear no simple relation to one another as they do in the case of cj fsee (15), .
~

for example], it is difficult to examine the behaviour of Boi for ¢ varying

between zero and infinity. However,(Bo:]p = 0) of (18), og of (19) and the

limit of Bci as p~» of (21) can be compared to some extent, by considering the

terms in yi in each - i.,e., the terms in §§ over and above their occurrence
. .
~

in 05 in each case.

The weight given tc §§. when ¢ is zero is seen in (18) to be proportional
to (ni-ni) and as p approaches infinity, in (21), equal weights are given. The
ANOVA estimator (19) always gives weights proportional to subclass size. There-
fore, gj gives too much weight to small groups and not enough to large groups
when o 1s small whereas the converse is true when p is large. These results

correspond closely to the conclusions drawn by Robertson [1962] for small p

and Tukey [1957] for lerge p .

~ ~

Because the largest difference between the variance of o: and Bc: oecurred

at o = 0 , it was readily established that in most practical situations the

~

2

~
difference is rather small. This type of comparison between oy and Ba: is more

difficult because the maximum difference does not occur at the same value of

p for all sets of ni-values. Therefore the practical value of using the

~

estimator BU: on actual data has yet to be considered. However, in order to

”~

use Baf , @ numerical value is needed for ¢ . Since p is unknown, an estimate

15

is required, implying that any practical procedure based on 02 will not

B
actually be a BQUE of oi » Hence one asks how accurate must the estinate of
¢ be to give an estimator whose variance is less than that of the ANOVA pro-

cedure and how ruch less will it be? Some empirical answers to these questions

follow.
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2c. An approximate BQUE of °§

~

A prior estimete of p , say p_, is substituted into Baf of (8) and the

resulting estimator designated as , with variance

32
B a

P T 2 2 b 21 g,
-t%) 9, [‘Z (roni-to) (l+nip) (l+nipo) +(m-c)toj, (22)

w2
var( a%) = 2(r
B a Lim1

n

(o6

where ro s sO and t0 are r,s and t of (5) computed using Py * Thus the variance
of the approximate BQUE is a function of both the true ¢ and the prior estimate,
o The intractability of (22) forces numerical comparisons between var(o:)

and var(Bgi) .

Analogous to p_ of (12) the ratio

0 = [var(,c;:)-var(gc;z)} / ver(5?) (23)

a

is defined to aid the comparisons. It represents the extent to which the
A

variance of ci differs from that of B;2

5 relstive to the variance of 22 .

When p. = 0 , both estimators have the same variance, and vhen p_ is positive,
a a

~
ij is better-than o: where "better" means smaller variance. The converse is
: —~ A
true yhen'pa is negative, because P, negative means an is pcorer than og .

Comparisons made over a range of p and N for selected n-patterns (sets of
ni-values) are surmarized in Figures 1-5 . Figures 1, 2, and 4 are for cases
of N =25 and ¢ = 5, Figures la and 2a being extensions of Figures 1 and 2 .
Figure 3 has ni's that are double those of figures 1 and 2, Figure LI has

N = 25 and ¢ = 10, and Figure 5 is a case of N = 380 and ¢ = 50 . Each figure
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‘s for a particular n-pattern with the abscissa showing values of = 02/05
and the ordinates giving values of Py 2 the prior value.of ¢ . Each curve is

for a given value of P,» €:8-, & curve labeled P, = O connects those poilnts

(Q,po) at which D, = O . These points were determined by solving

var(GE) - (pa -l)var(BS:) =0 (24)

for ¢, given the n-pattern and p . As the expression for var(Baz) in (22)
is particularly intractable, (24) was solved numerically for 0 using the method

of reguli falsi (Conte, 1965).

In each figure, two curves for P, = O are given, since for a given n-pattern

and o , two values of p  satisfy (24). In general, one of the p, = O curves

lies above the line P, =P and the other below it. This is because B;: is BQUE

when £o =P and, as o deviates from p in either direction, the variance of

B;i increases until it equals that of 0: » at which time p_ =0 . Thus the

upper p. 0 boundary indicetes hew much o, can be larger than p without meking

~
Rci poorer than c: « Similarly the lower P, = 0 boundary shows how much P, can

~

~

pe smaller than p without making Boi poorer than c: + For example, in Figure 1,
with ¢ = 0.4t we may overestimate p by as rwuch as 0.349 (po = 0.749) or under-
estimate it by as much as 0.167 (po = 0.233) without ceusing the approximate

BQUE to be poorer (have a larger variance) than the ANOVA estimator.

The region between the two pa = 0 curves in any figure is the set of points

Bai is better than ci . {(Remsining parts of the quadrant

~ ~
are where BO: is poorer then OZ « In all cases this region has approximately

vhe same form. Its lower boundary first rises sharply, until it reaches a €

£ .. ) for which
n
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corresponding to the value of p at which the ANOVA estimator cories nearest to
being the BQUE of o;, at which point Fhégigwer boundary levels off. Conversely,
as p increases from zero, the uppér boun&a;y_of the region remains nearly con-
stand, at epproximately the same value of'pz as the level 'po;tion of the lower
boundery, until that wvealue of p at which the lower boundary levels off is reached.
The upper boundary then climbs sharp}y. Although these two boundaries (the
pa = 0 curves) do not touch in Figﬁ;é‘ﬁ, they"do so. in some situations (for

other n-patterns) as is discusséd éubsequently.

The region between the two p, = 0.curves in Figure 1 is very large. This
ghabuh- TR
means that when p is larger than approximately 0.7 a very inaccurate Py (so far

as being close to p is concerned) used in E: gives an estimator whose variance

B
is smaller than that of ;: . -For’?xgmple, with p > Of6, any p_ > 0.24 makes

the variance of Bgz less than that of the ANOVA estimator. It is not much less,
however, as can be seen in ‘Figure la which is an exteﬁéion of Figure 1 for p and
°q extending (on & different scale} up to 10 and 13, wéll beyond their limits

of 1.0 and 1.3 on Figure 1. And in Figure la the presen?g.of the P, = 0.05

curve when p 2 2 indicates that the penalty incurred ﬁykgéing the ANOVA estimato;
rather than the approximate BQUE can be only 5% or a little greater for large
values of p , o and - the line P, = 0.10 does ﬁot éppear. In
many instances, for data as moderately unbalanced as is the n-pattern of Figures
1 and 1ls, this?%enalty does not seem sufficiently large to warrant using BE:

~

rather than a: .

Figure 1 also illustrates situations in which P, < 0 , reaning that the
variance of ci is less than that of an approximate BQUE. For example, at

(p,po) = (0.4, 0.065), p, = -0.05, indicating that the ANOVA estimator has a
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variance equal to 95% of the approximete BQUE at that point.

Figures 2 and 2a are for an n-pattern more unbalanced (ni =1,1,1,11,11)
than is that of Figures 1 and la (ni = 3,4,5,6,7). A noticeable difference
between these two pairs of figures is that in Figures 2 and 2a the two P, = 9]
curves appear to cross instead of just approaching one another as in Figures 1
end la. The point at which the curves appear to cross is (p,po) = (0.337, 0.337).
At this point, the approximate BQUE is the exact BQUE (because Py = o) and for
this n-pattern has variance equal to that of the ANOVA estimator when p = 0.337.
Therefore, for p = 0.337, there are no values of Py for which the approximate
BQUE is better than the ANOVA estimator. Hence, the two boundaries of the region
in which B;i is better than ;i , touch at the point (p,po) = (0.337, 0.337).
Although in Figures 2 and 2a the boundaries appear to be crossing at this point
they are, in effect, just touching. Their behaviour can be envisaged by think-
ing of the two P, = O curves in Figures 1 and la as being moved toward each
other until they have a point in common, This occurrs for some n-patterns and

not.for others.

Additional to the tangential property just discussed, Figures 2 and 2a
display considerably larger differences between the variances of ﬁai end gi
than are to be found in PFigures 1 and la. This is evidenced by the curves
P, = 0.25 and p, = 0.50 in Figure 2a. The P, = 0.25 curve of Figure 2a is
considerably closer to the p, = O curves than is the P, = 0.05 curve of Figure
la, indicating that the penalty incurred by using the ANOVA estimator rather
than the approximate BQUE is not only greater but is more quickly encountered
as one moves away from the p, = O boundaries. For example, at the point
(p,po).= (2.25, 1.0) the penalty in Figure la is approximately 5% but in Figure

2a it exceeds 25%. Also, in Figure 2a, when p is large,k,5 say, and Pq is chosen

-
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as 1.5, the penalty for using the ANOVA estimator rather than the approximate ‘
BQUE is more than 50%. {This is not to be confused with the upper limit of
50% indicated in (17). That is for estimating 02 and perteins to using the

mxact BQUE and not an approximate BQUE as is beiﬁg discussed here for oi o]

An example of the effect on 198 of increésing'the nunber of observations in
the data while leaving the relative values of @he n, undisturbed is illustrated
in the comparison of Figures 2 and 3. The n-pattern in Figure 3 is that of
Figufe 2 but with every n, doubled, s ] Fiéure S.fhe p, curves have shifted down
and to the left compared to those in Figure 2.‘ Consequently the region in which
the approximate BQUE is better than the ANOVA‘éstimétor nov extends over a wider
range of (p,po) values. Also, the penalty for nét:using it is larger for any
given point in the region. For ekample, at‘(p,po) = (0.9, 0.6) the penalty is

10% in Figure 2 but it exceeds 25% in Figure 3.

In contrast to Figure 3{<the p,_-curves of Figure 4 are shifted up and to
the right, compared to Figure 2. The change in the n-pattern has been one of
holding N constant, N = 25 and increasing the number of classes, to have n, -
values = 1,1,1,1,1,&,&,4,u,u . The p, = O curves nov touch at (p,po) = (0.6, 0.64)
approximately, compared to (0.16, 0.16) in Figure 3 and (0.337, 0.337) in Figure
2. This means that the lower left portion of the region bounded by the p, = 0]
curves is iarger in Figure 4 than in Figures 2 or 3, whereas the upper right
portion is smaller. Consequently, for small values of p, & less accurate Pe
can be used without causing r, to be negative, but for large values of p a
more accurate o is needed if the approximate BQUE is to be better than the

ANOVA estimator.
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An n-pattern considerably larger than those of Figures 1-4 is used in
Figure 5; it is for N = 380 and ¢ = 50. The principal consequence is that

2

~ N
greater gains and losses can occur when using a2 rather than oa « For ex-

Ba
ample, the penalty incurred through using gs can be as much as 100%, as evidenced
by the presence of a p, = 1.00 curve. Conversely, the presence of P, = -0.50
curves indicates that the variance of the ANOVA estimator can be 50% smaller
that that of the approximate BQUE. However, the P, > O region is very large
when p is greater than .3 or .4t indicating that gquite inaccurate values of P, may

~

be used’in Bci with its variance still being less than the variance of
c: « In view of the substantial reduction which may be obtained when p is
moderately large and the fact that Po need not be very accurate to obtain these
reductions, BE: would seem to be useful as a practical procedure for this type

of n-pattern if p is moderately large.

Interesting conclusions regarding the practicality of Ei may be drawn

B

from Figures 1-5. Despite the fact that U: requires a prior estimate of

B
p = 02705 , it is clear that in many situations its use can provide estimates
of p having smaller variance than the ANOVA estimator, even when the prior
estimate, Py? is not close to p . This is especially true when p is very
small or very large, and the n-pattern is badly unbalanced. Under these
conditions the variances of BB? can not only be less, but substéntially less,
than the variance of ;: + Furthermore, the presence of the P, = 1.0 curve

in Figure 5 shows that having many groups and a large total number of observa-

tions does not automatically imply that the choice of an estimator is unimportant.

Although we have not specifically investigated iterative techniques using
successive approximate BQUE's, some inference about this class of procedures

can also be made from figures 1-5. Figure 2, for example, clearly indicates
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that when ;» = .337 an iterative procedure cannot be as good =s the AKOVA procedure,
This is so true because ng is the BQUE of af when po has this value and there-
(=9

fore has the smallest variance possible for unbiased quadratic estinators. On
the other hand, when p is very small or very large, it seens likely that iterative
procedures might lead to estimators whose variances would be snaller than the

ANOVA estimator.

3. Non-zero mean

The ::ean and variance of y'Ay when is normelly distributed with vector
Jay Yy N

of means p and veriance-covariance matrix V are

E(y'fy) = tr(AV) +u'ay (25)

- -

Utilization of these results in the procedure for deriving B"UE's of 02 and

cg have so far proven intractable in the case of the non-zero wnean model yij
=p +a + €5 This is so despite the fact that p of (25) takes the slightly
simpler form u} . Nevertheless, the preceding study of the zero rean model
provides information which can be applied to the general class of unbiased
estimators suggested by Tukey [1957] to investigate an approximate BQUE of 05

along the lines of that for the zero mean case.

Comparison of B°§ in (6) to Tukey's [1957] cless of estiiators of o§ indicates

that the laetter is not sufficiently general to include Bcg . However, since for
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the zero mean case we have seen that little reduction in the variance of an
estimator of ai can be anticipated by using B;: rather than ;i , it is not
unreasonable to conjecture that the gain may be even less in the non~zero mean
case, We therefore accept the ANOVA estimator ;g in the non-zero rmean case and

raS
proceed to inwestigate an estimator alternative to oi for G: .

3a. An alternative estimator for ai

The general class of estimators for az given by Tukey [1957] is

~ [ [o] A C C

2 _ - 3 )2 _ 42 - - 2

7% ~ [.2 wi(yi. 2z Wiyi.> ag Ew, (1 wi)/ni] /(- £ w)) (26)
i=] i=l i=1l i=1

where the W, are a set of weights which can be assumed, without loss of general-
ity, to sum to unity. Recalling cg of (10) we now notice that the BQUE of c:

given in (8) can be rewritten as

l\2 C
B’a © [‘E

2 (f - ) (ame) 52 - b(n-e)o) / (et (1)

In comparing (26) and (27) we see that, except for subtracting a mean in (26),
the first term of both estimators is a weighted sum of squared group means.
Also, the second term in each is a multiple ;5, whose purpose is to remove
o: from the expectation of the first term; and a denominator occurs in both
expressions to meke the estimators unbiaesed with respect to c: o Therefore

Tukey's estimator with
w, = (rn2%-tn )(rs-ta)°l(l+n p)-g (28)
i i i i ?

is considered as an estimator of a: .
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Further inspeetion of the first term of (26) reveals that the mean sub-
tracted from each group mean is a weighted mean, §w say. This is effectively
an estimator of the mean p and as such can be improved upon, i.e., values W,
can be found such that the variance of &w is smaller than vhen (28) is used
for Voo There appears to be no reason, other than simplicity, for using the
same weighting when estimating the mean as 1s used when summing the squared
deviations of the group means from that estimated mean. Therefore in the place

of §w we use

3_/' = _Z U.Y. ) (29)

c
with % w, =1, and define the u,'s so as to rminimize var(&u) . Since
i=1
- . 2
var(y. ) = (i+n.p)/n.o
(v;.) = (1+n,0)/n 0]
we take

var(y. ) n
- - - 1 : 1 (A
ul c l4n.p / i 1+n.p (39
v var(y. ) N
i=1 -

in (29) and use that value of §u in place of = wii_ in (26). The resulting

estimator we suggest is therefore

™Mo
=
—
o
t
g
o
-
n
}
«
N
Q
V]
—
~
(@]
P_—J
—N
(W8]
P.J
e

AN

where Cl and CQ

is not difficult to show that

~
are yet to be chosen, to make 02 an unbiased estimator. It
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C &
_ 2 - 2 o an2
E E Z W, (y y ) ] o Zl(w 2u, v, +ug ) + ce 1il(wi 2uiwi+ui)/ni

so that Cl and C, are taken as

2
c - c
C, = E(w,~2uw +u ) end C, = I (w~2uw +ul)/n: . (32)
1 41 % 2 TP T S S i

The estimator we suggest is therefore (31) using w, of (28), §u of (29),

u; of (30) and C, and C, of (32). With “hese substitutions its variance can,

1
efter a little algebraic simplification (as im Townsend [1968]), be written as

follows. Define

= - 2y/.2
8, = (wi 2u.w, + ui)/ni ’
kij = (uiu;j - uiwb - 141._j1fzi)/:'1i1'1'j for ifj = k,2,...,c,
and y = Cf (F-c) .

Then

A C
var(c?) = 20" ( Z n, 92 + Z Z n2n2k2 )
a i=1 3 i i

c c

3,2 2
20262 | 2
+ 202 [ Z n 205+ 1§l Jilnlnj(nl+n k3 ] (33)
L 2 ¢ T
+ 20, z ng 9 + (N-c)vZ + z: L n,n k%, |
i=1 * i=1 jAi T EEtE

It seems clear that (33) is intractsble for enalytic study for comparison
with the ANOVA estimator, which in this case of the non-zero mean jg the

familiar
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~ - C

% = [ Kiilniyf. - N&f.> /(e-1) - gjj /IN-8,/1)/ (e-1)] .

Its variance is

| v b 1
~ 20 (N-1) boZg3(N3-5,) 2g (N3, + 82 - 2NS.)
Var(dj) = .G.%W_CT + cs 2 + a < 2 3 /f2
- N(c-1)2 N3(c-1)2

¢
S. = 2&, =
where Sy z ni s before, S3

i=1 i

3. -
n; and f = (N—SE/NZ/(C~1) as, for example,

™Mo

1

in Searle [1956].

3b. Comparisons with the ANOVA estimator

The suggested estimator (31), through its dependence on w, and u, of (28) and
(30), depends on p = o:/oi which is unknown. Therefore, to assess its value we

~N
use a prior estimate for g, Py say, in place of ¢ in Gi , calling the resulting

~

= A

. ~2 . ~2 .
estimator o7 . Numeric comparison of o, with the ANOVA estimator ¢2 is made
&
by meahs of variances of the estimators, using
T2 =2
var(oS) - var(o
(02) - ver(a?)

p = oy .
& =2
var(ca)

in the same manner as previously. Figures 6-8 show some results of these

comparisons, portrayed in exactly the same menner as Figures 1-5 .

The n-patterns of Figures 6,7,8 are identical to those of figures 1,2 and

5 respectively. Gross comparison between the two sets of figures indicates

~

great similarity, suggesting that E: is near the true BQUE of a: when Py =€ -



%
One
/ salient difference, illustrated by a comparison of Figures 2 and 7, is that
the two p, = O curves never touch. This means that the ANOVA estinator is never
as good as the suggested procedure when P, =P and thus is never the BQUE of os .
Maybe this is true generally. In the zero mean case when the ANOVA procedure was
BQUE, it occurred only for some value of p other than p = 0 «. Yet in the non-
zero mean case, the estimator of the mean used in the ANOVA procedure is
y = 'g nigi./N’ which is the minimum variance unbiased best estimator of u

; 0 . DNow, when 02 and oi are known, the best estimator of p is
E'Y’lz/é'Y"lé , equal to §u of (29) and (30), and equal to §.. when p = O .
Furthermore, the best estimator of p when simultaneously estimating o: and 05
is unknown, but whatever it is it seems reasonable to conclude that it is not
y as used in the ANOVA estimator. If so, it follows that the ANOVA estimator

LI

of o: for the non-zero mean case is never the BQUE.

4. Conclusions

Figures 1-7 and the preceding discussions thereof lead one to
tender the following conclusions.
For the zero mean case:

(a) The BQUE of 02 has little practical adventage over the ANOVA estimator,
except for very unbalanced datae and very small (close to zero) values of p .
[Equation (16)]

(b) The ANOVA estimator of 02 approaches the BOWUE for some value of p and

actually is BQUE for some designs n-patterns. [Figures 1 and 2.]

(c) When o is moderately large a rather inaccurate pre-determined Py MeY
be used in an approximate BQUE of oi to yield an estimator with smaller variance

than the ANOVA estimator. [Figures 1-5.]
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(d) Data which are not badly unbalanced offer little opportunity for
reducing the variance ‘'of the approximate BQUE of o§~below that of the ANOVA

estimator. [Figure 1.]

(e) Increesing the number of observations, while holding the number of
groups constant, extends the region in which the approximate B UE of Gz is

better than the ANOVA estimator. [Figures 2-and 3.]

Pol

(f) Increasing the number of groups whilgwpolding the total number of

observations constant curtails the region in which the approximate BQUE of

cj is better than the ANOVA estimator. [Figures 2 and h,]

.

(g) An increese in both total number of observations and number of groups
does not guarantee that the ANOVA estimator will compare favorably with the ‘

BQUE. [Figure 5.

For the non-zero mean

(h) The suggested estimator of oi , whilst not a BQUE nor even a direct
approximation,thereto appears close to it for Py = P; and it is better than

the ANOVA estimator over a wide range of velues. [Figures 6-8.]
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5. APPENDIX

The equation of the model, (1), can be written as y = Z& + e  vhere Q@ is the

cX1l vector of ai's and Z is the corresponding incidence matrix, a diagonal

natrix of vectors .. , for ii

- -

being a vector of n, ones. Thus

i; =(111... 1), of n, elements

and
e C
z = diag{gl s .,?.;c}_= Tl (A1)
o Co 1=l

Consequently V , the variance-covariance matrix of y is
c¥
"+el = (. +el.) (A2)
Toi=1 TH *

v=o0z

[ENN]

as in (2) and (3), except for writing

o= o2 and e = ¢°
a e

for notational convenience.

BOUE's of e and O are derived by obtaining A such thet 2tr(VA)® is minimized
subject to % = tr(VA) for 02 = e and 0% = @ in turn. This vould be easily
aschieved if V were diagonal. To attain this form we make the transformation

x = P'y where P is an orthogonal matrix such that P'VP

fl

P'VP D, the diagonal matrix

A

of latent roots of V . 02 of (4) is then 02 = "P'APx

it

§'9§ for 2 = P'AP and

we have to minimizc

2tr(VA)® = 2tr(PDP'A)® = 2tr(P'APD)? = 2tr(7D)? (A3)




-27-
subject to

0% = tr(VA) = tr(QD) . (AL)

Having found Q to achieve this, the BQUE of ¢ is

~ ) § - N
0% =X =yRpy | (5)

with variance : , . : : |
vérYB&Qy = 2tr(@)? . . (A6)

This is done in turn for o2 = e and 62 =a . We first find the laﬁent roots
Je

and vectors of V ahd”uSé‘themit6*dérivéﬁﬁwzrﬁﬁf'”énd P.

-

ba. Latent roots of V LB mngnoT

From (A2), the latent roots of"V'dre the Solutions for A to

PN
Y

c o c n,-1l
lV-21| = n joJ, + (e-n)1, | = . (e-)) 1"(nf2 +e-A) =0 ,
- i=1 "t =1

using, for example, Searle (1966, p. 198) for the expension of the determinants.
Hence

-

N-c ©
(e-2) m (nfj +e-A) =0
i=1 . -

and the latent roots of V are e with multiplicity N-c ’, and nf: + e for

i=l,.ee,c » We denote these by '

= B0 + e for k=1,2,...,c and A, = e for k = c+l,.00,N , (A7)

and have

D= diag{kk} for k = 1,2,s005¢,Ctl 000, N {A8)
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4p, Latent vectors of V %

Let ' §
. \
- (91

U,; = {(u
be the matrix of N latent vectors correspending-to the latent rcots in (A7). We

L]
U, ,see,Ui o U u .
=2/ o1 =22 e Lo+l —e2’” 7’-N)

seek & value for U such that its columns are pair-wise orthogonal; column

normalization of U then yields P ,'requg}éd?in-(ﬁi)vapd (K6).

Note first that Z is a satlsfactorjvvalua for U ise., that columns of

he? ;

are latent vectors of v correspondlng'to the latent roots x ngz + e for

1N

k = 1,2,¢ee,C « This is so because from (Al) and (A2)

(‘“ ﬁri + ek)—-i >

which, on comparison with (A2) is Z with ite i'th colunn muftiplied by on, +e .

Furtherrmore, frowm (A2), it s clear thet 2'Z = diag{ni} for i = 1,2,.4.,C ;

[}

hence columns of Z are pailr-wise orthogonal. Thus we take‘Ui Z and write
= (2 U2) . For the columns of J to be pair-wise orthogonal we want ULU,
diagonal and g'gg = 0 ; and for them to also be latent vectors of V correspond-

ing to the N-c lateat roots e of (A7) we must have VU, = eU, . Using (A2) for

=2
V this means 2z gg = 0 , which is satisfied when Z'U2 0 « Hence it is-
sufficient that U'2U2 be diagonal and Z'U, = 0 . We shoﬁ that
' 7]

1 1 1 .00 1
-1 1 1 .ee 1
1

1

c
U.= Z E, withE. 5 0 -2 1 ... , of order n_ x(n.-1)
-2 1=l -3 - i i

O “3 o0 0

.

L) . .

» ) » .

o 3 .
.

0 vees —(ni-l)




-29-

. satisfies these conditions. We have, by the nature of E, ,
<, Cor
ULy, = .21535‘ = 'zl Ldiag{j(j+l)} for § = 1,2,...,n,-1]
i= i= A -

which is diagonal; and from (Al)

C
720, = I4'E. =0 .
=2 i=l-l~l -
Hence
C S+
1 v g
U=z Up) =| 2%, ZBy
Li=1"t 4=

is a matrix of latent roots of V . Normalizing the colunns of U yields P as

SV R S (29)

where
-1

¢, = £, [diagl /2 /B ... /TFD) ... /(DY) (A10)

a~

1//2 h@ﬁ'...]//hihg-l)
SYVER VYIRS VI W YN

=l 0 -2//6 ... l/fh{(ni-i) 1 .
0 o .
0 0

oo (o D//ETET)
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Ve may note thet a rearrangement of the coluwwms of P gives a atrix
e . 1 » )
z L n, o, G.|, where (jn. 1t GY | is a Helmert matrix in the "strict
i=l N1 =1 -1 L 1-1 -1

sense," as given by Lancaster [1965] .

BQUE of ci

Using P of (A9), the BAUE of 02 comes from (A3) and (Ak) by choosing © so

as to iminimize, for D of (48),

Io) 2_2 2
er(QD) e e G
)
subject to
N ¢ N
e = tr(QD) NG, =0 Ing, +e g .
Sy EURK g K oy Kk
This last equation implies
¢ N
= 0 a ) = 1
Zna nd E Qg 1, (A1)
=1 k=1
so that we have to mininmize
N 5 I C
8 =2 T N\ ., , +hkm (2 - 1) +bn, Tnc. ,
ORLS Yex 1 k=lqkk 2 2 ke

where 4m. end bm_ are Legrange multipliers. Equating to zero the derivatives
[

s

of & with respect to R for k £ k' gives 8 lkkk'qkk’ = 0 . Since none of the
e are zero [see (AT)] this means Gt = 0 for all k # k' . Hence % is
diagonal. Equating to zero the derivatives of § with respect to ny and m.

yields (All); and with respect to Ay Yields
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2 . L _ -
L )\.qul{ + 4 ;"ll + & '.21'1‘{ =0 for X< ¢ )

and (A12)

L X;qkk + & my o= 0 for k > ¢ .

Substituting for q from thege equations into (A11) then gives

un., + wm, = -1

1 2
and (A13)
wml + vm2 = 0
where
N 2 S opna ¢ 2
u= 12, v= % A and v = % Ao (ALk)
k=1 & k=lnk/ k k:lnk/ X
with

(A13) have solutions

m o= -v/a and m, = W/A . (A15)

Hence fron (Al2)

]
il

1,2,...,cC

(v-wn )/ (8)7)  for k

and (A16)

v/{e=a) for kK = c+l,ee.,N .

Substituting these values for the elements of the (diagonal) matrix Q in
(A5) it can be shown, after a little algebraic simplification, that the BQUE

of g2 is
e
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/\2 > -1 ,A @ > ¢ nl C N

= 5 PN r"2 / 5 b “r‘? - 2 ‘ ’
e (rs-t=)"~ i S- tni)(l+nip) (3il/n ) + sz T i yi./ni. (A1T7)

i=1 j=1 1 ’
Cc
2 = . . .
where p = o;/og s N= L n:.L and‘13s, and t are as given in (5), derived from
’ i=1

(Al%) by multiplying by 05 end using (A7) end ¢ . Also, the variance of this

cstimator, derived from (A6) using (Al5) for o and (A7) for D reduces to
~ L
var(Bag) = 2sce/(rs-t2) . ¢A18)

BQUE of o2
(9
The BQUE of Uf is derived exactly as is that of o: save for inimizing
(8 :

2tr(@?)2 subject to

2 N
a=tr(QD) =a Zngq  + g =1 .
- k=l 28 z\.k K=l N

The effect of this is to interchange the O and 1 on the rignt-nand sides of
the equations in (All).- Consequently the right-hand sides of (A1l3) get inter-

changed so that solutions of the resulting cgquations eare

m = ."T/A ana “"3 = —u./f\. .

Compared to (Al)) this means replacing -v by w and w by -u , or equivalently

A ~

-s by t and t by -r, in the numerator o BU; to obtein Bcf . Hence the BQUE
of 0% is
n.
~g4 . c . ¢ i S N
g (I‘S.— <—) 1 v (rn t)(l'H’l p) (v‘:' /n')—t ( o = Er“"g- b yc /n. | , (Alo)
B 1=1 i1 =1 j=1 13 oy i i/

and its variaznce icg

)
°”( 0“) = Jraé/(rs-tz). (A20)



approximate p

DO =

Figure 1

Relationship Between Variance of ANOVA Estimator and
Variance of Approximate BQUE of 02

=0
ny = 5’4:5:6:7
b = [Var(s3) - Var(33)] /var (32)




approximate p

Po =

Figure la

Relationship Between Variance of ANOVA Estimator and
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approximate p

DO=

Figure 2

Relationship Between Variance of ANOVA Estimator and
Variance of Approximate BQUE of o2

u=20
n; = 1,1,1,11,11
p, = [Var(s3) - var(s3)] /var(s3)




Figure 2a

Relationship Between Variance of ANOVA Estimator and
Variance of Approximate BQUE of o

M=0
n; =1,1,1,11,11
p, = [Var(52) - Var(s2)] /var(52)

Py = approximate p
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Figure 3%

Relationship Between Variance of ANOVA Estimator and

Variance of Approximate BQUE of ¢2
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approximate p

Figure 4

Relationship Between Variance of ANOVA Estimator and
Variance of Approximate BQUE of o%

u=20
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Figure 5

Relationship Between Variance of ANOVA Estimator and
Variance of Approximate BQUE of o2
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approximate p
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approximate p

Figure 6

Relationship Between Variance of ANOVA Estimator and
Variance of Suggested Estimator of o2
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approximate p

Figure 7

Relationship Between Variance of ANOVA Estimator
Variance of Suggested Estimator of o3
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approximate p

QO =
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Figure 8

Relationship Between Variance of ANOVA Estimator and
Variance of Suggested Estimator of o2
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