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Multiple Imputation After 18+ Years

Donald B. RUBIN

Multiple imputation was designed to handle the problem of missing data in public-use data bases where the data-base constructor
and the ultimate user are distinct entities. The objective is valid frequency inference for ultimate users who in general have access
only to complete-data software and possess limited knowledge of specific reasons and models for nonresponse. For this situation
and objective, I believe that multiple imputation by the data-base constructor is the method of choice. This article first provides a
description of the assumed context and objectives, and second, reviews the multiple imputation framework and its standard results.
These preliminary discussions are especially important because some recent commentaries on multiple imputation have reflected
either misunderstandings of the practical objectives of multiple imputation or misunderstandings of fundamental theoretical results.
Then, criticisms of multiple imputation are considered, and, finally, comparisons are made to alternative strategies.

KEY WORDS: Confidence validity; Missing data; Nonresponse in surveys; Public-use files; Sample surveys; Superefficient

procedures.

1. THE PROBLEM MULTIPLE IMPUTATION WAS
DESIGNED TO ADDRESS

Missing values are a problem in many data sets and
seem especially common in the medical and social sciences.
For nearly two decades I have been advocating and devel-
oping the use of multiple imputation to address aspects
of this problem; early documents include Rubin (1977a,
1977b, 1978, 1980, 1983), Herzog and Rubin (1983), Ru-
bin and Schenker (1986), and the basic reference Rubin
(1987). There are situations where multiple imputation is
appropriate, and, as with any statistical tool, there are oth-
ers where its application is more questionable. Originally it
was viewed as being most appropriate in complex surveys
that are used to create public-use data sets to be shared by
many ultimate users, although over the years, it has proven
valuable in other settings as well.

For the context for which it was envisioned, with data-
base constructors and ultimate users as distinct entities, I
firmly believe that multiple imputation is the method of
choice for addressing problems due to missing values: alter-
native methods either require special knowledge and tech-
niques not available to typical users or produce answers that
are generally not statistically valid for scientific estimands.
This is a strong statement, and it is clear that its accuracy
must depend on the class of problems to which it is applied.
Consequently this article begins with a description of the
assumed statistical computing environment for the ultimate
users of shared data-bases and of our objectives for handling
missing data in this environment. It is especially important
to provide this background to emphasize that the goal of
multiple imputation is to provide statistically valid infer-
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ence (in the traditional complex survey sense of Neyman,
Cochran, and Hansen) in the difficult real-world situation
where (1) ultimate users and data-base constructors are dis-
tinct entities with different analyses, models, and capabil-
ities, and (2) there typically is no one accepted reason for
the missing data. N

In Section 2 multiple imputation is reviewed, with par-
ticular emphasis given to how it was designed to satisfy
the stated objectives in the assumed environment for ulti-
mate users. This review of critical points of the theory and
intended practice of multiple imputation minimizes techni-
cal details so that essential statistical points will be more
transparent than in the theoretical material in Rubin (1987),
which requires substantial familiarity with, and acceptance
of the relevance of, both randomization-based and Bayesian
inference. Then, in Section 3, current concerns about mul-
tiple imputation are discussed with the benefit of the sim-
plified theory. Finally, competing techniques are evaluated
for their utility in the assumed context and are found to be
less effective than multiple imputation.

1.1 Assumed Environment for Ultimate Users

Public-use (shared) data bases are analyzed by many ul-
timate users with varying degrees of statistical expertise
and computing power, and with different scientific ques-
tions and objectives. Typically such users have available
to them a number. of standard complete-data techniques.
These include various stand-alone routines such as ones for
ordinary least-squares regression, logistic regression, factor
analysis, variance components estimation, proportional haz-
ards models, etc., and various packages of programs such as
SAS, BMDP, SPSS, etc. Also, there may be available rou-
tines for inference in the presence of missing data under
particular models (e.g., Schafer 1995), complete-data man-
agement routines for merging files, subsetting data, deleting
cases and variables, applying transformations, and creating
new variables, or various resampling programs to create
simulated replicate data, principally jackknife and bootstrap
routines.
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Essentially all public-use data sets have missing values,
typically not of any nice neat type. In general, ultimate users
have neither the knowledge nor the tools to address miss-
ing data problems satisfactorily. Even if some ultimate users
do have adequate resources for modeling and computation,
data-base constructors typically know more about reasons
for nonresponse and have better access to confidential and
detailed information not released for public use (e.g., ex-
act addresses and neighborhood relationships, hourly blood
pressure readings and doctor indicators), information that
can be useful for modeling missing data. Moreover, ulti-
mate users should be focused on their substantive scientific
analyses and for these, missing data are generally simply
a nuisance. My conclusion is that “correctly” modeling the
missing data must be, in general, the data constructor’s re-
sponsibility.

We, that is, data-base constructors and statistical software
designers, have no direct control over what ultimate users
will do with their arsenal of tools. We cannot stop users
from doing bad science, but if possible we should facilitate
their ability to do good science with their available tools,
even when data sets suffer from missing values.

1.2 Achievable Basic Objective

One achievable basic objective in such a setting is the
following: Each tool in the ultimate users’ existing arsenals
can be applied to any data set with missing values using the
same command structure and output standards as if there
were no missing data. The only additional software that is
allowed to be required comprises entirely general macros
that can be applied to any complete-data analysis and in-
complete data set. Certain ad hoc methods of handling miss-
ing data, such as “complete-case analysis,” “available-case
analysis,” and “fill-in with means” (e.g., see Little and Ru-
bin 1987, part I), satisfy this basic objective and so have a
certain appeal. The problem with such methods is that they
typically yield statistically invalid answers for scientific es-
timands; “scientific estimands” and “statistically valid” re-
quire definition.

1.3 Scientific Estimands

By a scientific estimand I mean a quantity of scientific
interest that can be calculated in the population and does
not change its value depending on the data collection de-
sign used to measure it (i.e., it does not vary with sample
size and survey design, or the number of nonrespondents,
or follow-up efforts). Letting X be the array of all back-
ground (e.g., stratification) information fully observed in a
population and Y be the array of outcome information in the
population that is to be sampled in the survey, a scientific
estimand is a function of X and Y, say @ = Q(X,Y’). Sci-
entific estimands include population means, variances, cor-
relations, factor loadings, regression coefficients, and these
quantities within strata or domains, but exclude the sam-
pling variance of a sample mean under a particular sampling
plan and the expectation of the complete-data sample mean
when missing values are filled in with zero or the observed
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sample mean. These latter quantities can be important for
inference and design, but they are not scientific estimands
in my definition because they are functions of sample size,
sample design, response rates for a particular survey, meth-
ods for handling missing values, and scientific estimands
such as population means and variances.

The distinction between estimates of scientific estimands
and measures of their uncertainty is an old one in statis-
tics; see, for example, Fisher (1925, p. 724) where a mea-
sure of uncertainty associated with an estimate is called an
“ancillary” statistic, that is, a subordinate or supplemental
statistic. In Fisher’s context, the estimate was the maximum
likelihood estimate and the ancillary statistic was the sec-
ond derivative of the log-likelihood, but the distinction is
relevant to more general estimates and associated measures
of uncertainty, as we see in the next section.

1.4 What is Meant by Statistically Valid?

In the context of shared data bases supporting analyses by
many users, I believe that statistically valid must be a fre-
quency concept, averaging over randomization distributions
generated by known sampling mechanisms (used to collect
data) and posited distributions for the response mechanisms
(the processes underlying nonresponse). In standard scien-
tific surveys, the sampling mechanism is known but the non-
response mechanisms is rarely fully known and so typically
must be posited, either implicitly or explicitly.

Bayesian validity is also important, but is far more diffi-
cult to achieve in this context because it requires far more
compatibility between the data-base constructor and the an-
alyst. In fact, in general I do not believe it can be achieved
in any real sense in the context of the basic objective to use
existing complete-data tools with shared data bases. In any
case, no Bayesian should object to achieving frequentist va-
lidity; effectively, Bayesians want and promise much more:
calibration conditional on the data in addition to uncondi-
tional calibration (e.g., in Rubin 1984, I call such frequency
calculations “Bayesianly relevant and justifiable”).

First and foremost, for statistical validity for scientific
estimands, point estimation must be approximately unbi-
ased for the scientific estimands, averaging over the sam-
pling and the posited nonresponse mechanisms (e.g., filling
in zeros or means is not generally acceptable). Second, in-
terval estimation and hypothesis testing must be valid in
the sense that nominal levels describe operating character-
istics over sampling and posited response mechanisms. Two
versions of such frequentist validity for nominal levels are
especially important to distinguish when assessing multiple
imputation.

Using terminology from Rubin (1987, pp. 117-118),
“randomization validity” means that, for interval estimates,
“actual interval coverage = nominal interval coverage,” and
for tests of hypotheses, “actual rejection rate = nominal re-
jection rate.” Randomization validity is the natural objective
in most survey contexts. In standard asymptotic situations,
a complete-data estimate @ of an estimand @ has a normal
sampling distribution centered at () with sampling variance
(or more generally, variance—covariance) consistently esti-
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mated by the statistic U, where the randomization distribu-
tion is that generated by the sampling indicator I given fixed
(X,Y)—the sampling mechanism. In this case we have

EQIX,Y)=Q 1.1)
and

E(U|X,Y) = var(Q|X,Y), (12)

and then randomization validity is not only desirable but
theoretically achievable. The precision of Q is measured
by U™, which plays the role of the ancillary statistic and
can be used as a “true weight” (Fisher 1925, p. 724) for
combining estimates.

A more generally achievable objective, however, is “con-
fidence validity,” meaning that for interval estimates, “ac-
tual interval coverage > nominal interval coverage,” and for
tests of hypotheses, “actual rejection rate < nominal rejec-
tion rate.” For confidence validity with complete data, we
replace (1.2) with

E(U|X,Y) > var(Q|X,Y). (1.3)

If (1.3) is satisfied but (1.2) is not, then U~! is only an
“approximate weight for the value of the estimate” (Fisher
1925, p. 724).

The distinction between randomization validity and con-
fidence validity can be quite important when dealing with
approximate procedures, which necessarily arise with non-
response in public-use surveys, and this distinction appears
in Neyman (1934), which is the foundation for statisticians’
current view of frequentist validity in surveys. Here Ney-
man (1934, pp. 562-563) defined confidence intervals, con-
fidence coefficients, and confidence limits, and these defini-
tions remain the accepted mathematical definitions of these
terms (e.g., Lehmann 1959). In particular, confidence limits
are statistics defining an interval such that, in repeated ex-
perience, the estimand lies in the confidence interval with
probability greater than or equal to the confidence coeffi-
- cient; the shorter the interval satisfying this constraint, the
better.

A simple example illustrates the wisdom implicit in Ney-
man’s definition. Consider a particular situation with two
different confidence-valid procedures for creating confi-
dence intervals with confidence coefficient 95%. Procedure
1 produces intervals that are always shorter than the inter-
vals produced by Procedure 2, and moreover, Procedure 1
has actually probability > 95% of covering the estimand,
whereas Procedure 2 has only the nominal 95% probabil-
ity of covering the estimand. Clearly, Procedure 1 is sci-
entifically and statistically superior to Procedure 2 because
it provides tighter inferences with greater confidence, and
Neyman’s definition and desiderata agree with this fact. Re-
quiring exact agreement between nominal and actual levels
as a desideratum for validity would lead one to reject Proce-
dure 1 as invalid and choose Procedure 2, clearly a mistake.
It is for this reason that confidence validity is more funda-
mental than randomization validity for interval estimation.

Of course, if we have a procedure that is confidence valid
but not randomization valid, there is the hope that a bet-
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ter confidence-valid procedure exists (i.e., one with shorter
intervals), which is also randomization valid, but in gen-
eral this is not achievable. An attendant advantage, when
the best confidence interval is randomization valid, is that
the associated measure of precision can be thought of as
a true rather than approximate weight (again, in the sense
of Fisher 1925, p. 724—also see Fisher 1934, criticizing
Neyman 1934, on this point).

1.5 Supplemental Objective Concerning
Statistical Validity

We are now prepared to supplement the Achievable Ba-
sic Objective when faced with missing values, regarding
the ability to apply standard complete-data statistical tools,
with an objective concerning statistically valid inference for
scientific estimands. It is easy to ask for more than is possi-
ble and then do something misguided when attempting the
impossible. We first consider a hopeless objective, which is
commonly sought, and then state an achievable one.

Hopeless Supplemental Objective. Each complete-data
statistical tool can be applied to each incomplete data set to
obtain the same inference as if the data set had no missing
values.

This objective is clearly impossible because of the lost in-
formation, but nevertheless, it guides some thinking about
how to handle missing data. It is analogous to saying that
the objective of a survey is to obtain the same answer as a
complete census, and it can lead to an “operations research”
objective of creating imputations for missing values that are
as close as possible to the truth (i.e., fill in missing values to
minimize some objective function). Our actual objective is
valid statistical inference not optimal point prediction un-
der some loss function, and replacing the former with the
latter can lead one badly astray. For example, suppose we
have a coin that, in truth, is biased .6 heads and .4 tails.
This known truth is model A, whereas model B asserts that
the coin has two heads. Using model A for creating im-
putations (i.e., future predictions) yields a hit rate (agree-
ments between predictions and outcomes) of .6 x .6+ .4 x .4
= .52, whereas using model B for predictions yields a hit
rate of .6. This doés not mean that model B is better than
model A for handling missing values. Filling in missing
values using model B yields the invalid statistical inference
that in the future all coin tosses will be heads, clearly in-
consistent for the estimand Q = fraction of tosses that are
heads, whereas using model A yields consistent estimates
for all such scientific estimands. The lesson is simple: Judg-
ing the quality of missing data procedures by their ability to
recreate the individual missing values (according to hit-rate,
mean square error, etc.) does not lead to choosing proce-
dures that result in valid inference, which is our objective.

Statistical validity in our context is difficult because the
answer that results from applying a complete-data analy-
sis to an incomplete data set is generally invalid unless the
complete-data analysis in the absence of missing data is
valid—the ultimate user’s responsibility, and the reasons
for missing data are correctly modelled—the data-base con-
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structor’s responsibility. We can essentially never be sure
that the data-base constructor’s model is appropriate, but
assuming it is, and assuming that the ultimate user is per-
forming an analysis that would be valid if there were no
missing data, we can expect that the ultimate user will ob-
tain a valid inference.

Achievable Supplemental Objective. Assuming that the
ultimate user’s complete-data analysis is statistically valid
for a scientific estimand, the answer that results from ap-
plying the same analysis method to an incomplete-data set
remains statistically valid for the same scientific estimand
assuming the truth of the data-base constructor’s posited
model for missing data.

I doubt that there is a much stronger objective regard-
ing validity that we can achieve in this context where the
ultimate user and the data-base constructor are distinct en-
tities. Multiple imputation was designed to satisfy both
achievable objectives by using the Bayesian and frequentist
paradigms in complementary ways: the Bayesian model-
based approach to create procedures, and the frequentist
(randomization-based approach) to evaluate procedures.

2. REVIEW OF MULTIPLE IMPUTATION
FRAMEWORK AND RESULTS

Multiple imputations for the set of missing values are
multiple sets of plausible values; these can reflect uncer-
tainty under one model for nonresponse and across sev-
eral models. Each set of imputations is used to create a
completed data set, each of which is to be analyzed using
standard complete-data software to yield “completed-data”
statistics, which are typically complete-data estimates, Q,
associated variance—covariance matrices, U, and p values.
The complete-data statistics Q and U are general; for exam-
ple, U may be obtained by mathematical analysis, lineariza-
tion methods, balanced-repeated replication, the jackknife
(see, e.g., Krewski and Rao 1981), the bootstrap (see, e.g.,
Efron 1994), or special routines for complex surveys such
as SUDAAN or VPLX (see, e.g., Fay 1990). But no matter
how Q and U are calculated with complete data, once miss-
ing data are filled in by imputation, they can be calculated
as if the data set were complete.

2.1 Repeated Imputations

A theoretically fundamental form of multiple imputa-
tion is repeated imputation (Rubin 1987, pp. 75-76). Re-
peated imputations are draws from the posterior predictive
distribution of the missing values under a specific model,
that is, a particular Bayesian model for both the data and
the missing-data mechanism. The m complete-data analyses
corresponding to the m imputations under one model result
in m repeated completed-data statistics, and these are com-
bined to form one repeated-imputation inference that ap-
propriately adjusts for nonresponse under the model used to
create the repeated imputations. The values of the complete-
data statistics Q and U calculated on the m completed data
set are Qu1,...,Quwm and Ui, ..., Usm. The basic proce-
dures for combining the m estimates {Q*l, .. .,Q*m}, as-
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sociated variance—covariance matrices {U,1, . .. U.n },and p
values, that is, the final repeated-imputation inferences, are
derived in chapter 3 in Rubin (1987) under the Bayesian
paradigm for survey inference (introduced in chap. 2 of
Rubin 1987), assuming that the multiple imputations are
repeated imputations.

The key Bayesian motivation for multiple imputation is
given by result 3.1 in Rubin (1987). Ignoring both tech-
nical details and indicator variables for sampling and re-
sponse, the results and its consequences can be easily stated
using the simplified notation that the complete-data are
Y = (Yobs, Ymis), Where Yo, is observed and Yy, is miss-
ing. Specifically, the basic result is

P(Q|Yops) = / P(QIYobs: Yini) P (Yinie| Yons) dVimis,

or in words,

actual posterior
distribution of @

_ complete-data posterior
= AVE [( distribution of @ )] ’

where AVE[ | refers to the average over the repeated im-
putations, which are draws from p(Ymis'D’obs), which is the
posterior predictive distribution of missing data given the
observed data. Two simple consequences follow (Rubin
1987, result 3.2). The first concerns the final estimate of

Q:
E(Q|Yobs) = E[E(anobm Ymis)lK)bs];
or in words,

Posterior mean repeated complete-data
= AVE . .
of Q posterior means of ()

The second concerns the final variance of Q:

V(thobs) = E[V(Qlyobsa Ymis)D@bs]
+ V[E(Qlyvobs, Ymis)lyz)bs]y
or in words,

< Posterior

' _ AVE Repeated complete-data
variance of @

variances of Q)

LV AR[ repeated complete-data ]

posterior means of @

where VAR refers to the variance over the repeated im-
putations. These simple relationships, which follow from
standard probability calculations, underlie the repeated-
imputation inferences recommended for practice.

2.2 Repeated-Imputation Inferences

The essential features of the repeated-imputation infer-
ence are the following. The repeated-imputation estimate
is

Qm =Y Qu/m, @1
=1
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and the associated variance—covariance of Q,, is

-~ m+1
:Um+_—Bm,
m

(2.2)

where

U.i/m = within-imputation variability, (2.3)

Z Q*l —Qm Q*l _Qm) /(m_ 1)
=1

= between-imputation variability. (2.4)
The large m repeated-imputation inference treats (Q — Q)
as a normal random variable with variance—covariance ma-
trix T,,,; notationally, letting m = oo we have

(Q—Qoo) ~

where To, = U + Boo, and the eigenvalues of B, rela-
tive to T, measure the fractions of information missing
about ) due to nonresponse.

The derivation of these expressions follows from the
Bayesian perspective treating Q and  as unobserved ran-
dom variables with normal conditional distributions given
the observed values {Q*l, ,Q*m} and {U.1,...Uwm}
For details, including specific small-m adJustments, see
chapter 3 in Rubin (1987), and for more extensive results
on p values, see Li, Raghunathan, and Rubin (1991), Li,
Meng, Raghunathan, and Rubin (1991), and Meng and Ru-
bin (1993).

N(O,Tx), 2.5)

2.3 Evaluating Repeated-Imputation Procedures Under
the Randomization-Based Paradigm

The Bayesian paradigm, which is used to derive repeated-

imputation inferences, is formally predicated on the cor-

rectness of all the model specifications. Although this
paradigm is ideal for creating procedures, especially in
complicated situations, its results cannot be unequivocally
endorsed for routine practice because, in practice, we can
never be sure any model assumptions are correct. Conse-
quently, the Bayesianly-derived repeated-imputation proce-
dures were evaluated in chapter 4 in Rubin (1987) under
the randomization-based frequentist paradigm to investigate
their sensitivity and robustness to model deviations and fi-
nite m. This paradigm extends that of Neyman (1934) to
include a mechanism for nonresponse Pr(R|X,Y, I) in ad-
dition to the sampling mechanism Pr(I|X,Y), where I is
the array of fully observed sampling indicators for which
values of Y were included in the survey for observation,
and R is the array of fully observed indicators for response
(i.e., for which components of Y that were intended to be
observed were observed). A component, Y;;, is observed
if both associated indicators, I;; and R;; are one, and is
not observed if either is zero. This perspective is called the
random-response randomization-based perspective.
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2.4 Proper Multiple Imputation

A key concept underlying these randomization-based
evaluations is that of proper multiple imputation, whose
mathematical definition is purely frequentist, since it in-
volves expectations given that the population values (X,Y)
are fixed. The crucial result is that when (1) the multiple
imputations are proper for (Q,U), and (2) the complete-
data inference based on (Q,U) is randomization-valid for
Q, then the large-m repeated-imputation inference given
by (2.5) is randomization-valid for the scientific estimand
Q, no matter how complex the survey design. Whether a
multiple imputation procedure is proper depends, in gen-
eral, on which complete-data estimates, (), and associated
variance-covariance matrices, U, are being considered. The
full definition is given in Rubin (1987, pp. 118-119); it is
summarized here ignoring the more technical conditions in
order to focus attention on three essential conditions.

The definition of a proper multiple imputation procedure
treats (X,Y) and the intended sample (as indicated by I)
as fixed [except for a minor technical condition—eq. (4.2.9)
in Rubin 1987], and deals with the fixed but unknown val-
ues of the complete-data statistics (Q, U) in the sample as
if they were estimands. That is, the randomization distri-
bution critically involved in the definition of proper multi-
ple imputation is generated by the response mechanism, in
which XY, and I are fixed, and R is the random variable.
Because the conditions for proper imputation involve large
m, the simplified definition only involves expectations with
respect to the response mechanism.

For proper imputation, the values of the complete-data
statistics () and U created by filling in the missing Y values,
that is Q,; and U,;, must be approximately unbiased for
their complete-data analog Q and U;; that is, in terms of the
large-m averages of Q,; and U,;:

E(Qw|X,Y,I) = Q (2.6)

and
E(Ux|X,Y,I) =U. 2.7)

Moreover, B, which is the variance—covariance of the Q.
across the m imputations, must be approximately unbiased
for the randomization variance of Q. :

E(Boo|X,Y,I) = var(Quo| X, Y, I). (2.8)

Equation (2.6) for proper imputation is analogous to (1.1)
for randomization validity: both require approximate unbi-
asedness of the estimate (Qoo or Q) for its estimated (Q or
Q) over its randomization distribution (induced by the re-
sponse mechanism or the sampling mechanism). Equation
(2.8) for proper imputation is analogous to (1.2) for ran-
domization validity: both require approximately unbiased
estimation by the ancillary statistic (B, or U) for the vari-
ance of the estimate (Qo, or Q) over its randomization dis-
tribution (induced by the response or sampling mechanism).
Also, just as (1.1) and (1.2) together imply (at least in large-
sample surveys) that randomization-valid inferences for Q
can be based on the approximation

(QIX,Y) ~ N(Q,U),
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(2.6) and (2.8) together imply that randomization-valid in-
ferences for the complete-data statistics () can be based on
the approximation

where the randomization distributions are induced by the
sampling and response mechanisms, respectively. The re-
maining condition for proper imputation has no direct ana-
log in complete-data randomization validity: expression
(2.7) implies that the complete-data ancillary statistic U,
being treated as an ancillary complete-data estimand for
the definition of proper imputation, is approximately unbi-
asedly estimated after imputation.

2.5 Conclusion Regarding Randomization Validity With
Proper Multiple Imputation

The crucial result regarding the randomization validity of
the large-m repeated-imputation inference, given by (2.5),
averages over both the actual sampling mechanism and the
posited response mechanism; it is simple and holds no mat-
ter how complex the survey design:

Result 4.1: If the complete-data inference is randomization-valid and the
multiple-imputation procedure is proper, then the infinite-m repeated-
imputation inference is randomization-valid under the posited response
mechanism. (Rubin 1987, p. 119).

This result follows from combining the formal versions of
(1.1), (1.2), (2.6), (2.7), and (2.8). Essentially, (1.1) and (2.6)
imply that

E(QwlX,Y) = B[E(Qw|X,Y,])|X,Y] = E(QIX.Y) = Q,
and (1.2), (2.7), and (2.8) imply that
E(To|X,Y) = E([Ux|X,Y)+ E(Bwo|X,Y)
= E[E[Ux|X,Y,I)|X,Y]

+ E|E(Bs|X,Y,I)|X,Y]
= E(U|X,Y)+ E[var(Qu|X,Y, I)|X,Y]
= var(Q|X,Y) + E[var(Qu| X, Y, I)|X,Y]
= var[E(Quw| X, Y, I)| X, Y]

+ Evar(Qu| X, Y, I)|X,Y]
= var(Qwo| X, Y).

Thus approximately (2.5) follows, which is the conclusion
of Result 4.1.

Rubin (1987, chap. 4) presented analytic results, simu-
lation evaluations, and many examples of proper and im-
proper multiple imputation methods, where the evaluations
were all from the random-response randomization-based
frequentist perspective. The trick in many of the exam-
ples of proper imputation was to get the variance condition
(2.8) correct, and it was shown that when drawing imputa-
tions to approximate repetitions from a sensible Bayesian
model, conditions (2.6)—(2.8) typically followed automati-
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cally. The more straightforward conditions, (2.6) and (2.7),
typically were simple properties of any intelligent imputa-
tion scheme that tried to track the data. An example of a
method that does not track the data is “fill in the mean,”
which although it may satisfy (2.6) for Q = 7, fails to do
so for Q = s2 or for Q = 25th percentile, or to satisfy
(2.7) for U = s2/n, etc. Hot-deck (Bootstrap) and random-
draw regression methods tend to satisfy (2.6) and (2.7) but
fail to satisfy (2.8) until a Bayesian, systematic between-
imputation component of variability is added (e.g., via the
Bayesian Bootstrap, Rubin 1981), to reflect uncertainty in
the estimation of population parameters.

The view in 1987, which I still hold today, was summa-
rized as follows.

Conclusion 4.1: If imputations are drawn to approximate repetitions from a
Bayesian posterior distribution of Yp,is under the posited response mech-
anism and an appropriate model for the data, then in large samples the
imputation method is proper. ... There is little doubt that if this conclu-
sion were formalized in a particular way, exceptions to it could be found.
Its usefulness is not as a general mathematical result, but rather as a guide
to practice. Nevertheless, in order to understand why it may be expected
to hold relatively generally, it is important to provide a general heuristic
argument for it (Rubin 1987, pp. 125-126).

This heuristic argument treated the sample as the popula-
tion with estimand @ (and U), where the resulting posterior
distribution of Q was centered at Q, with variance Boo;
assuming the Bayesian model appropriate [in the sense of
satisfying (2.6) and (2.7)] and the samples large, standard ar-
guments presented in chapter 2 of Rubin (1987) suggested

that typically (Q — QOO)B;U ? will have a sampling dis-
tribution (over the response mechanism) that is standard
normal, thereby satisfying the basic conditions for proper

multiple imputation.

2.6 Include All Variables in a Multiple Imputation Model
To Make It Proper in General

The definition of proper concerns the situation where:
“population” = complete-data sample, “estimands” = com-
plete-data statistics (Q,U), “survey design” = the posited
response mechanism, the criterion is valid frequency infer-
ence, and the method for creating inferences is Bayesian
predictive inference using simulated values (i.e., multiple
imputations). As with any finite population survey where
valid frequency inference is desired from predictive proce-
dures: (1) variables involved in the definition of estimands
(i.e., Q,U) should be predicted, and (2) variables involved
in the survey design (i.e., the response mechanism) should
be used as predictors. More explicitly, when Q or U in-
volves some variable X, then leaving X out of the imputa-
tion scheme is improper and generally leads to biased esti-
mation and invalid survey inference. For example, if X is
correlated with Y but not used to multiply-impute Y, then
the multiply-imputed data set will yield estimates of the
XY correlation biased towards zero. In a complex survey,
@, and especially U, depend on stratification and clustering
indicators; consequently, in general these indicators need
to be included as predictor variables in imputation models
for the multiple imputation scheme to be proper. Minimally,
major clustering and stratification indicators and sample de-
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sign weights (or estimated propensity scores of being in the
sample) should be included in imputation models. Ezzati-
Rice, Johnson, Khare, Little, Rubin, and Schafer (1995) il-
lustrates such efforts and the resulting valid inferences.

Since with public-use data sets it is always unclear what
analyses the ultimate users will conduct, the range of statis-
tics (Q, U) that might be used involves essentially any vari-
able or combination of variables available in the data set,
at least up to some level of interactions. Thus, the danger
with an imputer’s model is generally in leaving out pre-
dictors rather than including too many, and the advice has
always been to include as many variables as possible when
doing multiple imputation. The press to include all possi-
bly relevant predictors is demanding in practice, but it is
generally a worthy goal. For example, in the original pre-
scription for the industry and occupation recoding project
(Rubin 1983), thousands of logistic regressions were done,
each with nearly 20 variables, and some with far fewer than
20 observations (e.g., 4), in order to preserve this theme of
trying to include all variables that might be used to de-
fine statistics Q or U; this effort required the development
of specialized but computationally efficient Bayesian logis-
tic regression procedures for sparse data (Clogg, Rubin,
Schenker, Schultz, and Weidman 1991). The possible lost
precision when including unimportant predictors is usually
viewed as a relatively small price to pay for the general
validity of analyses of the resultant multiply-imputed data
base.

2.7 Some Experience With Useful But Improper
Multiple Imputation

In some cases, improper multiple imputations can still
lead to confidence-valid repeated-imputation inferences.
This issue will be discussed in more detail in Sections 3.5-
3.8 in reply to a recent criticism of multiple imputation,
but the issue has been previously considered. Rubin and
Schenker (1987, sec. 7) explicitly consider the situation in
the early industry and occupation example where some in-
formation used by the imputer (the original double-coded
sample) is not available to the data analyst, and demon-
strate the resulting potential conservative coverage. Also,
the evaluations of the results of this project include cases
where the data analyst uses variables not used by the im-
puter and, for this data set and practical analyses, find no
deleterious consequences (Schenker, Treiman, and Weid-
man 1993; Treiman, Bielby, and Cheng 1989; Weld 1987).
Careful and extensive evaluations of this general situation,
involving variables omitted by the imputer, are also in-
cluded in work conducted at ETS in the context of NAEP,
which for a decade has created multiply-imputed public-use
data bases (e.g., Mislevy, Johnson, and Muraki 1992).

Substantial empirical work, some given in the Appendix,
supports the conclusion that, even if mildly important pre-
dictors are left out of the multiple imputation scheme, the
repeated-imputation inferences are confidence-valid: with
fractions of missing information typical in careful surveys,
m = 3 or 5 works very well, with the complete-data pro-
cedure for small n typically breaking down before multiple
imputation does. A heuristic reason for this robustness is
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that lack of model fit goes into residual variance, which in
a Bayesian model inflates the between-imputation variance
of draws (e.g., of regression coefficients), thereby leading
to a large enough B,, to compensate for an omitted co-
efficient. Of course, this is an observation based on some
experience, not a theorem, but a related theoretical result
(Meng 1994, lem. 2) lends support to this observation.

Nevertheless, because problems can occur when the im-
puter’s model leaves out important predictor variables, the
data-base constructor must include a description of the im-
putation model with the multiply-imputed data base, so that
ultimate users know which relationships among variables
have been implicitly set to zero.

3. CURRENT ISSUES CONCERNING
MULTIPLE IMPUTATION

There appear to be two distinct kinds of concerns about
multiple imputation. The first type focuses on its implemen-
tation: operational difficulties for the data-base constructor
and the ultimate user, as well as the acceptability of an-
swers obtained partially through the use of simulation. The
second type concerns the frequentist validity of repeated-
imputation inferences when the multiple imputations are
not proper, but appear “reasonable” in some sense.

3.1 Is Multiple Imputation Unprincipled or Unacceptable
Because it Uses Simulation?

An early criticism, not much heard anymore but wor-
thy of response, is that multiple imputation is theoretically
unsatisfactory and practically unacceptable because it adds
random noise to the data.-In this context, it is critical to re-
member that multiple imputation does not pretend to create
information through simulated values but simply to repre-
sent the observed information this way so as to make it
amenable to valid analysis using complete-data tools. The
extra noise created when using a finite number of imputa-
tions is the price to be paid for this luxury.

In response to this criticism, first appreciate that simula-
tion methods are becoming more and more common and ac-
cepted in statistics. Consider jackknife and bootstrap meth-
ods for complete-data frequentist inference (e.g., Miller
1974; Efron and Tibsharani 1993), or data augmentation
(Tanner and Wong 1987), the Gibbs sampler (e.g., Gelfand
and Smith 1990; Gelman and Rubin 1992), and sampling
importance resampling methods (Rubin 1983, 1987, 1988;
Gelfand and Smith 1992) for complete-data Bayesian infer-
ence. These methods have now become accepted complete-
data tools worthy of theoretical investigation and routine
practical application.

Second, multiple imputation has a distinct advantage over
such methods in principle, because with multiple imputa-
tion, the simulation is only being used to handle the miss-
ing information, with reliance for handling the rest of the
information left to the complete-data method, be it analytic
or simulation-based. Thus, the acceptable number of im-
putations can be much less than the acceptable number of
simulations for a complete-data inference, at least assum-
ing that the fraction of missing information, -, is modest
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Table 1. Approximate Factor for Inflating Normal Standard Errors in
(2.5) to Reflect Finite Number of Imputations, m: \/v/({v — 2),
Where v = (m — 1)[1 + (1 + m~")By/ Un]?

.
m 10% 20% 30% 50% 70%
3 1.01 1.03 1.07 1.22 1.53
5 1.00 1.01 1.03 1.08 117
10 1.00 1.01 1.01 1.03 1.06
20 1.00 1.00 1.01 1.01 1.03

(e.g., <30%) as commonly occurs in public-use surveys.
More explicitly, few would recommend basing standard er-
rors on fewer than 100 bootstrap or jackknife simulations,
hundreds or thousands being more typical. In contrast, typ-
ically as few as five multiple imputations (or even three
in some cases) is adequate under each model for nonre-
sponse. Two simple calculations help to illustrate why only
a few imputations can be adequate. First, the asymptotic
efficiency of the repeated-imputation finite-m estimate rel-
ative to the infinite m estimate is [1 + (v/m)]~'/2 in units
of standard deviations, which is close to one with realis-
tic fractions of missing information and modest m (Rubin
1987, table 4.1). Second, Table 1 displays an approximate
factor for expanding standard errors in the infinite-m nor-
mal distribution (2.5) to reflect finite m. The table shows
that the expansion of width of a confidence interval due to
finite m is modest for most practical cases.

Finally, even when a particular multiple implementation

method has deficiencies, it can only distort part of the in- .

ference in contrast to an incorrect complete-data analysis,
which can distort the entire inference. For example, results
in Heitjan and Rubin (1990) in a particular example sug-
gest that doing some kind of multiple imputation, even if
under a naive model, is far better inferentially than stan-
dard or sophisticated approaches with single imputation.
In some vague sense, if a multiple imputation method is
20% deficient (80% okay) with 30% missing information,
its total distortion is 20% of 30%, or 6%, implying that the
repeated-imputation inference is 94% okay.

3.2 Is Multiple Imputation Too Much Work

For The User?

My primary response to this question is: “Too much work
relative to doing what?” Multiple imputation is intellectu-
ally trivial for the user. Running the identical complete-data
software m times (e.g., 3, 5, or 10 times) and combining the
results “by hand” is admittedly a burden, but is computa-
tionally trivial given appropriate macros (which are easy
to write, e.g., in S-Plus; see Schafer 1995, or SAS, Freed-
man 1990). I believe it is substantially easier for the user,
even without appropriate macros, than any other method
that can validly address nonresponse in any generality. As
repeatedly emphasized by many workers in this area, meth-
ods such as “fill in the mean and ignore,” “available cases,”
“treat the data set as a two-way additive model and singly
impute with zero interaction,” etc., are not statistically valid
in any generality, even for point estimation of a variety of
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estimands, such as means, variances, correlations, and are
therefore not appropriate for public-use data bases.

3.3 Does a Multiply-Imputed Data Set Take
Too Much Storage?

A multiply-imputed data set, in terms of needed storage
locations, is [1 + m - (% missing values overall)] times as
big as the original data set, typically a factor of two or less.
For example, suppose the data set has 10,000 units; 20 back-
ground variables fully recorded; 20 “easy” survey questions,
5% missing; 30 “moderate” survey questions, 10% miss-
ing; 30 “difficult” survey questions, 30% missing: then the
complete-data set = 1,000,000 items with 130,000 items
missing. The associated multiply-imputed (m = 5) data set
consists of the complete-data set of 870,000 data values and
130,000 pointers to the rows of the supplemental 130,000
x 5 matrix of imputations, for a total of 1,000,000
+ 650,000 locations. Given the appropriate macros, we can
unpack the multiple imputations to create five completed
data sets only at the time of each of the five comiplete-data
analyses, sequentially, in a manner transparent to the ulti-
mate user, and using less than twice the storage needed for

the original data set. Even with more missing values and

more imputations per missing value, this issue should be
easily handled with today’s storage devices and simple and
general macros, although it can be a burden without appro-
priate software. In situations with nonresponse confined to
a few variables, an effective device can be to create a rect-
angular data set with m versions of these variables but one
version of the fully observed variables.

3.4 Does It Take Too Much Work to Create Proper or
Approximately Proper Multiple Imputations?

Again, my response to this question is “too much rel-
ative to what?” It certainly takes much more work than
some methods that have no general validity. But multiple
imputation takes little more work than other methods that
attempt to address nonresponse validly and with some gen-
erality. Moreover, essentially all the extra work is needed
from the data-base constructor, who may have the resources
to do the job well, rather than the world of ultimate users
with their varied and limited resources. In fact, some experi-
ence suggests that in practice it may be substantially easier
to do model-based multiple imputation than to use previ-
ous approaches because we can apply powerful methods of
direct and indirect simulation under full probability mod-
els (e.g., data augmentation, the Gibbs sampler) and let the
computer do much of the work previously done by expen-
sive and exhausting human iteration; consider, for example,
the recent project dealing with nonmonotone missing data
patterns in NHANES (Fahimi and Judkins 1993; Schafer et
al., 1993; Ezzati-Rice et al. 1993; Johnson et al. 1993; and
Little and Rubin 1993). For other examples dealing with the
creation of multiple imputations and related issues, consider
Kennickell (1991); Chand and Alexander (1994); Paulin and
Ferraro (1994); and Eltinge, Yansaneh and Paulin (1994).
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3.5 Can Repeated Imputations Under An Appropriate
Bayesian Model Lead to Invalid Inferences?

Fay (1991, 1992, 1993; also see Kott 1992) claims that
even when the model used to create repeated imputations
is “appropriate” in some sense, the resulting repeated in-
ferences can be invalid. I believe that this criticism is mis-
guided for a variety of reasons, many of which have been
exposed in the work and discussion of Meng (1994). Nev-
ertheless, I will also briefly address the issue here because
it has received attention, and because I believe my results,
although less extensive and detailed than those of Meng
(1994), will be more transparent to many readers.

The kernel of this criticism arises when an irrelevant pre-
dictor X of outcome Y is not used by the Bayesian multiple
imputer to create repeated imputations, but is used by the
ultimate analyst to define estimands (a case already intro-
duced here in Sec. 2.7 because of historical discussion of
it). More specifically, suppose X is dichotomous, (a, b), and
Y is normal (0, 1) and independent of X in a population
in which X = a units and X = b units are equally rep-
resented. Suppose a stratified random sample of size 2n
is taken where there are n units with X = a and n units
with X = b, and further suppose that nonresponse is sim-
ply like another level of stratified random sampling that
results in n; respondents and no nonrespondents in both
the X = a sample and in the X = b sample. The esti-
mands are: Y = (Y, + ¥;)/2, the population mean value
of Y;and D = (Y, - V), the population difference of
means, which equals zero. The obvious complete-data esti-
mators are § = (Ja + J5)/2 for Y and d = (§o — §s) for D,
with associated standard complete-data variance estimates
Uy and Uy, respectively, which result in randomization-valid
complete-data inferences, at least for large n.

Now suppose repeated imputations for the 2no nonre-
spondents are generated using a fully exchangeable nor-
mal model based on the 2n; respondents. That is, the im-
putations for both the X = a and X = b units will be
centered at the observed grand mean §ons rather than at
the separate observed sample means Jobs,a and Fobs,b- It is
easy to show that the multiple imputation method is proper
for (7,Uy), but it is improper for (d,Uy): (1), the expec-
tation of de = (n1/n)(Fobs,a — Fobs, ») over the response
mechanism, that is given (X,Y,I), does not equal d, but
(n1/n)d, thereby not satisfying (2.6) [nor (4.2.5) in Rubin
1987]; and (2) B, the variance of the repeated values of d,;
across repeated imputations with fixed no, is greater than
the variance of d., over the response mechanism by the
factor n/n1, thereby not satisfying (2.8) [nor (4.2.6)—(4.2.7)
in Rubin 1987].

3.6 Superefficient Imputations

In this example, the imputations are “superefficient” from
the perspective of the data analyst interested in estimating
D because the imputations use “extra” information, specifi-
cally the knowledge that the distribution of Y given X = a
is identical to the distribution of Y given X = b. For a more
familiar example of superefficiency, if the data are normal
with mean zero, then half the sample mean is a supereffi-
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cient estimate of the population mean. The situation involv-
ing superefficient imputations is more subtle, however. Sup-
pose that we have a multiply-imputed data set, but subse-
quently the data collector brings forth values of the missing
data, thereby allowing us to calculate @ and U. Presumably,
we would then be inclined to base our inferences for ¢) on
(Q,U) and discard the imputations. If the imputations are
superefficient, however, the standard complete-data proce-
dure can be improved by using information in the imputa-
tions about @ beyond that in @, information supplied by
the imputer (e.g., in the canonical example, the knowledge
that X = a units and X = b units have the same population
distribution of Y). The imputations are “strongly superef-
ficient” if Qo is at least as good an estimate as Q despite
the existence of missing data, that is, despite the fact that
Qo is not identical to Q in the formal sense that

var(Qoo — Q|X,Y) >0,

where with vector @, “>" means at least one eigenvalue
> 0.

More precisely, a multiple imputation procedure is
strongly superefficient for the complete-data statistic Q if,
first, Qoo and Q) estimate the same estimand, that is, the
procedure is “first-moment proper” for Q,

E(QwlX,Y) = E(Q|X,Y),

and second, Q.. has no larger variance than the complete-
data estimate itself:

var(Quo| X, Y) < var(Q|X,Y),

(3.1)

(3.2)

(3.3)

where with vector Q, (3.3) compares the generalized eigen-
values of the left side with respect to the right side. In
the canonical example of Section 3.5, the imputations are
strongly superefficient for Q = d because Qoo = doo Satis-
fies both (3.2) and (3.3).

The general definition of superefficiency concerns the ex-
istence of imputations that make Q.. informative about Q
even with knowledge of Q. Bayesian models can be su-
perefficient when they incorporate appropriate smoothing
information in their distributional assumptions. The resul-
tant draws of Y;,;s cannot be sharper than those from the
parent distribution and still lead to valid inferences for a
variety of estimands, but multiple imputations of Yy,;s can
be more efficient than the one true value of Yy,;s because of
their multiplicity. For instance, in the canonical example,
suppose that the multiple imputation procedure drew the
group difference effect from a normal distribution centered

(yobs a — Yobs, b) rather than at Yobs,a — Yobs,b (as when
th1s effect is directly estimated from the data) or at zero
(as with the strongly superefficient imputations of sec. 3.5).
These imputations would effectively be additional data val-
ues, which could contribute to a better estimate of D, even
if the actual missing values were found. The general deﬁnl-
tion of superefficient imputations for Q@ replaces (3.3) with

cov(Quo, Q| X,Y) < var(Q|X,Y); (3.4)

strong superefficiency implies superefficiency because (3.1)
and (3.3) imply (3.4).
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Table 2. Analysis of Results from Fay (1992)—Nominal 95% Intervals

Multiple imputation (m = 10) Rao and Shao

Estimated Estimated

Statistics ~ Width coverage Width coverage
Fay Table 1 Y .24 95% .26 95%
Ya .33 97% .33 95%
Fay Table 2 Y .24 95% .26 95%
Ya .33 97% .33 95%
Ys .33 95% .37 95%

NOTE: Y represents the sample mean; Y,, sample mean for class a, not used in imputation;
Ys, sample mean in class s, used in imputation.

3.7 Confidence-Proper Multiple Imputation

We are now ready to provide an extended definition of
proper imputation and state an extended result concern-
ing frequency validity. Although the conditions and conclu-
sion are similar to the major conclusions of Meng (1994),
they are more direct and not as extensive since they avoid
the issues of the ultimate user’s incomplete-data procedure
and congeniality between the imputer’s and analyst’s mod-
els. The definition of “confidence-proper” multiple imputa-
tion is still in terms of the complete-data statistics (Q, U),
but involves averaging over both the response mechanism
and the sampling mechanism and allows overestimation of
between-imputation variability.

A multiple imputation procedure is confidence-proper for
the complete-data statistics (Q,U) if the imputations are
“first-moment proper” for (Q,U) in the sense of (3.2) and
(3.5),

E(UwlX,Y) = EUIX,Y), (3.5)

and if B, conservatively estimates the “excess variance”
of Qo over Q:

E(Boo|X,Y) > var(Quo|X,Y) — var(Q|X,Y). (3.6)

If a multiple imputation procedure is proper for (Q,U) it
is confidence proper for (Q,U ); (2.6) implies (3.2), (2.7)
implies (3.5), and (2.6) with (2.8) implies (3.6) with equality.
If a multiple imputation procedure is strongly superefficient
for @ and first-moment proper for U, then it is confidence
proper for (Q, U); (3.2) and (3.5) hold, and (3.3) implies that
(3.6) holds for any B... A superefficient multiple imputation
procedure for Q is confidence proper for (Q, U) if it is first-
moment proper for U, and if

E(Bwo|X,Y) > var(Qeo — Q|X,Y); (3.7)

(3.2) and (3.5) hold, and (3.40 implies that the right side of
(3.7) is greater than the right side of (3.6), thereby satis-
fying (3.6). A “second-moment proper” imputation method
(Meng 1995, p. 548) is defined by (3.2), (3.5), and equality
in (3.7).

Analogous to Result 4.1 we have the following result:

Result on Confidence Validity. If the complete-data in-
ference based on (Q, U) is confidence valid and the multiple
imputation procedure is confidence proper for (Q,U), then
the repeated-imputation inference is confidence valid with

B(QwlX,Y)=Q

Journal of the American Statistical Association, June 1996

and
E(Tw|X,Y) > var(Qwo| X,Y).

The result follows because (3.2) and (1.1) imply that Q. is
approximately unbiased for @, and (1.2), (3.5), and (3.6)
together imply that U, + B conservatively estimates
var(Quol X, Y).

In the canonical example, the strong superefficiency in
the imputer’s model for D implies that the data analyst’s
resultant repeated-imputation interval for D will have at
least nominal coverage and hence will be confidence-valid,
whether it is superior or inferior to other valid procedures
depends on its interval length and the lengths of intervals
from other confidence-valid procedures.

The conclusion, however is as before: try to impute us-
ing a Bayesian or approximate Bayesian model that tracks
the data and the posited response mechanism—if you do
this and your complete-data inference is confidence-valid,
the result will be confidence-valid repeated-imputation in-
ferences no matter how complex the survey design.

3.8 Confidence Validity Versus Randomization Validity
in Canonical Example

Fay (1991, 1992) effectively claims that (a) wider 95%
confidence intervals with exact 95% (asymptotic) cover-
age are superior to (b) narrower 95% confidence intervals
with at least 95% coverage. Specifically, in the discussion
of tables 1 and 2 of Fay (1992), summarized here in Ta-
ble 2 after a bit of analysis to produce approximate cover-
age, the claim is made that the Rao and Shao (1992) (RS)
procedure, using single-imputation hot deck, which results
in uniformly wider intervals but with asymptotic coverage
equal to the confidence coefficient, is inferentially superior
to the multiple-imputation version of the same procedure
(MI), which results in uniformly narrower intervals with
asymptotic coverage at least as great as the confidence co-
efficient. Both procedures as reported are confidence valid,
and I believe many statisticians and scientists would agree
with Neyman’s criteria and prefer sharper intervals with at
least 95% coverage rather than wider intervals with exact
95% coverage.

Fay (1993) repeats the same criticism as Fay (1992)
in more extreme examples (e.g., with up to 80% nonre-
sponse) and labels the confidence coverage of the repeated-
imputation inference as “punishingly conservative” But
from the analyst’s perspective, punishingly conservative rel-
ative to what alternative procedure? Presumably relative to
what would have happened if the imputer had done what
the analyst expected, that is, had used the analyst’s model
for imputation rather than be superefficient. But that would
have led to wider intervals with exactly nominal coverage—
a valid procedure, but less preferred according to the Ney-
man definition and scientific criteria, than narrower inter-
vals with greater coverage.

Of course, the confidence validity of the repeated-
imputation inference does not mean it yields the best
confidence-valid interval. By our mathematical analysis in
this simple example we know that a shorter 95% confidence
interval can be found with exact 95% coverage. Also, be-
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cause the procedure is confidence valid but not random-
ization valid, inefficiencies can arise when combining vari-
ous estimates using the assigned precisions as weights. But
finding a randomization-valid procedure in general requires
extra work beyond the use of standard complete-data meth-
ods, and is generally impossible for the ultimate user unless
extra information is conveyed by the data-base constructor.
Furthermore, this whole issue seems relatively unlikely to
arise in practice because knowledge of population parame-
ters by the data-base constructor must be unusual.

3.9 Reaching Correct Conclusions When Evaluating
Multiple Imputation

Several points are critical in reaching correct conclusions
concerning multiple imputation.

First, when evaluating repeated-imputation inferences by
analysis or simulation, we need to monitor whether the
complete-data inference with no missing data is valid: mul-
tiple imputation for missing data cannot fix problems with
complete-data analyses (e.g., poor coverage properties of
the normal approximation for the sample mean with rare
binomial trials, where, for example, logit transforms can
lead to more accurate complete-data inferences); Rubin and
Schenker (1986) and Ezzati-Rice et al. (1995) provide ex-
amples of such evaluations. Also note when evaluating these
procedures with the number of respondents fixed (e.g., as
in sec. 4.3 and prob. 4-18, in Rubin, 1987) that the resultant
answers are conditional on these quantities, which in prac-
tice are random. Moreover, when doing evaluations treating
the number of respondents as random, the theoretical vari-
ances of unbiased estimators can be undefined, since, for
any finite sample size, with positive probability, all units
will be nonrespondents; in such cases, it makes more sense
to report coverage properties of interval estimates, which
are defined (no respondents implies zero coverage) and the
objects of statistical inference anyway.

Also important in reaching correct conclusions about
multiple imputation is the treatment of estimated sampling
variances as ancillary statistics rather than as estimates of
scientific estimands. For example, Fay (1992) treated the
ratio of repeated-sampling covariances as an estimand, and
thereby was led to misunderstand the effect of superefficient
imputation on inference. This illustrates why it is important
not to confuse scientific estimands and ancillaries. In partic-
ular, Fay (1992, sec. 3) states, in the context of the canonical
example of Section 3.5:

... the design-based approach gives 19 times the covariance of multiple
imputation . .. such a limitation, if general, imposes severe restrictions on
the validity of the multiple imputation inferences for complex applications,
such as Clogg et al. (1991).

Consider the true sampling variance—covariance ellipsoid

for (§eo,doo) under the exchangeable normal repeated-
imputation scheme and the sampling ellipsoid for (Feo, doo)
assigned to it by the repeated-imputation inference; both
have zero correlation because Jooa = (2900 + doo) and
Toop = (2Joo — doo) have equal variance. The repeated-
imputation—assigned ellipsoid is outside because it touches
the correct one at the two points along the 7., axis but is
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wider along the d., axis. Using Fay’s ratio of sampling co-
variances of ¥, and Joo s is equivalent to describing the
difference between these two ellipsoids by the ratio of dif-
ferences of variances (i.e., of eigenvalues) of 27, and d
in the two ellipsoids. The ratio of eigenvalues, or of vari-
ances in any direction, is relevant to inference, but the ratio
of differences between eigenvalues, Fay’s measure, is by
itself, irrelevant.

4. COMPETING METHODS

If multiple imputations are proper (confidence proper)
under the posited model for nonresponse, then using
the repeated-imputation rules for combining complete-data
statistics (Q,U) yields a randomization-valid (confidence-
valid) final inference under the posited response mecha-
nism, assuming that the complete-data inference was valid
in the absence of nonresponse. And this holds no matter
how complex the survey design. Moreover, the combining
rules can be implemented using completely general soft-
ware that is the same for all data sets and all complete-
data analyses. Thus multiple imputation and the repeated-
imputation combining rules satisfy both the basic objective
and the supplemental achievable objective.

Are there competing methods that, in some cases at least,
also satisfy these objectives? Yes, but such competitors ap-
pear to me in general to have substantially greater deficien-
cies for the intended situation with ultimate users distinct
entities from database constructors. These competitors are
single imputation, multiple imputation with some analysis
for the ultimate user other than the repeated-imputation in-
ference, and weighting methods.

4.1 Desiderata for Creating Imputations,

Single or Multiple

If imputations are to be used, then the estimate will be the
value of Q calculated on the imputed data, or the average
of multiple values Q.,l = 1,2,.... In broad generality,
consistent estimation requires that the imputation method
must be first-moment proper, in the sense of (3.2), for a
variety of statistics Q, for example ) = sample mean,
sample variance, median, 25th percentile, factor loadings,
and these quantities within strata, domains, subdomains, etc.
For this to hold for each @ in such a range, the imputation
method, single or multiple, must in general not only track
the posited response mechanism but also must be a random
draw method; otherwise, it cannot be first-moment proper
for Q = 7,Q = s2,Q = 25th percentile, etc.

Consequently, any imputation method that satisfies the
validity objective in generality must not only reflect the
underlying response mechanism but must also be a random
draw method. Nonrandom draw methods can be applied in
special cases but require special analysis techniques. The
most careful work on this topic of deterministic imputation
of which I am aware concerns imputing probabilities for
missing dichotomous variables (Schenker 1989; Schafer and
Schenker 1991), and this work reveals the substantial extra
effort that is needed, even in a special situation.
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When an imputation method is a random-draw method,
then multiple draws will automatically provide the basis
for improved efficiency of estimation and more accurate
inference, and are no more difficult to obtain than a single
random-draw imputation. Thus multiple imputation is more
attractive than single imputation, and the larger m the bet-
ter, no matter how variances are to be calculated from the
multiply-imputed data set. Little (1988) provides additional
discussion of desiderata for creating imputations, which is
consistent with this position.

4.2 Imputation in Random Independent

Replicates—An Alternative

Suppose the sampling mechanism is such that the pri-
mary sampling units can be randomly divided into K repli-
cate groups, each with the same sample design. Then with
complete data, Q can be calculated in each replicate, and
a valid (K — 1) df estimate of the variance of the average
of the K independent estimates, Q = $Q/K, can be found
from their sample variance divided by K. This can be called
the “random group estimator” (Wolter 1985).

This approach has been used with single imputation for
missing data; I believe the method is appropriately at-
tributed to Morris Hansen, but I cannot find the appropriate
early reference (a relatively recent reference is Kalton 1983,
pp. 112-123). Random-draw imputations are made in the K
independent random replicates of the survey units, so that
the variance of K values of Q on the imputed data is a
K — 1 df estimated variance of Q (or Q calculated on the
full imputed data); this estimate reflects not only sampling
variability but also increased variance due to imputation.
In personal communications, Hansen realized the propriety
of the use of multiple imputations within each independent
replicate to reduce variance due to imputation, and real-
ized the potential tremendous loss of efficiency by doing
the imputations independently in each independent repli-
cate. In Rubin (1990), when discussing a related approach
with energy data (Burns 1990), I called the resulting esti-
mate of uncertainty an estimate of “evaluation variance” in
contrast to “inferential variance” because it evaluates the
variability of the estimation procedure, perhaps including
excessive variability due to an efficient procedure used to
handle missing data.

Assuming the requisite richness of survey data to allow
the independent replicate procedure to be applied and as-
suming that the imputation method is first-moment proper,
Hansen’s method almost satisfies the basic and validity ob-
jectives, without needing the second-moment conditions in-
volved in proper or confidence-proper imputations; I say
“almost” because the ultimate user must be willing to forgo
variance estimation aspects of the complete-data analysis
programs, and rely on the potentially far less efficient vari-
ance estimation via the replicates, which does not fully sat-
isfy the basic objective. Nevertheless, the lack of need for
second-moment conditions for valid variance estimation is
a potential advantage relative to relying on the repeated-
imputation inference. Some experience suggests, however,
that these potential benefits often cannot be realized because
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two kinds of inefficiencies arise. First, because imputations
are required to be independent within each of K replicates,
there is 1/Kth the amount of data used for modeling impu-
tations as actually available. Second, small K implies very
poor variance estimation, and often the largest possible K
is truly 1, so that actual independent replicates cannot be
used when trying to apply the method.

I believe that Hansen agreed that the independent repli-
cate approach was generally inadequate and that the
Bayesian multiple imputation approach is necessary to han-
dle missing data in surveys:

Olkin: Have you become involved with Bayesian statis-
tics or other techniques developed within the last ten years?

Hansen: Not really. I guess I endorse and approve the
kind of thinking that Don Rubin has been doing.

Olkin: With respect to missing observations?

Hansen: Yes, in missing observations. Sometimes it’s
necessary to do modeling in sample surveys, where prob-
ability sampling methods aren’t applicable as in the case
of the imputation for nonresponse. We certainly have been
involved in such methods. In general, I can’t say that we
have been working in that area very much. However we are
interested in the potential in that setting.

Olkin: Now, Morris to switch topics somewhat ...
(Hansen 1987, p. 171)

4.3 Imputations in Hypothetical Independent
Replicates—Another Alternative

One way to try to get around these inefficiencies is to try
to do first-moment proper (multiple) imputation in K non-
independent samples, i.e:; jackknife or bootstrap replicates
(e.g., Burns 1990; Efron 1994). This is an interesting and
useful idea, but it has limitations in our context. If the data-
base constructor is to provide the imputations for the ulti-
mate user, there must be a set of imputations for each of the
K jackknife or bootstrap samples chosen by the data-base
constructor, where K should be substantial for stable vari-
ance estimation (e.g., 100 or more). Moreover, if K = 100
replicate data sets are considered too many to provide, then
the data-base constructor must include with the data base
the software to be applied by the ultimate user to create
the imputations on each of the ultimate user’s jackknife or
bootstrapped samples—in this case, superior imputations
based on confidential or detailed information must be for-
gone. Also, as with independent replication, the basic ob-
jective is not fully satisfied for point or variance estimation,
and more work is required of the ultimate user than with
a multiply-imputed data set. Moreover, the variance esti-
mation can be inaccurate inferentially, reflecting excessive
procedural variance (see, e.g., Rao and Shao 1992, p. 813,
and Burns 1990; incidentally, subsequently Burns found
that multiple imputation worked well relative to replicate
imputation, Burns 1991, 1993).

If neither the data-base constructor’s bootstrap/jackknife
imputations nor the data-base constructor’s imputation soft-
ware is delivered to the ultimate user, this approach effec-
tively throws the entire problem into the ultimate user’s
lap, who may well do some sort of misguided imputation,
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which is not even first-moment proper, take bootstrap or
jackknife replicates and assume inferential validity despite
badly biased estimates of scientific estimands (see, e.g.,
Rubin 1994, and Efron 1994, for differing views concerning
the acceptability of such answers).

4.4 Other Imputation-Based Procedures

Rao and Shao (1992) provide a careful analysis of how to
use the jackknife to adjust analyses whén missing data have
been singly imputed by a particular hot-deck procedure.
This addresses an important problem because in current
practice many public-use files have been singly imputed by
the hot deck. But the ultimate user bears the burden of sub-
stantial extra work, because “special computations have to
be performed to adjust the imputed values for each pseudo-
replicate before applying the standard jackknife variance
formula” (Rao and Shao 1992, p. 813), and new mathemat-
ical analysis and new software apparently must be devel-
oped for each new distinct situation (estimator x missing
data pattern x survey design x imputation method). Conse-
quently, this approach, at least at present, fails to satisfy the
basic objective of relying only on complete-data analyses
and general routines.

Fay’s work is something of a moving target, with a va-
riety of older and newer suggestions, which are described
with little generality and under special assumptions (e.g.,
missing completely at random). For example, Fay (1996)
seems now to accept multiple imputation as being superior
to single imputation (and perhaps to standard weighting ad-
justments) but advocates creating “improper” multiple im-
putations and recommends analysis by weighting the data
from the completed units in one analysis rather than us-
ing the repeated-imputed inference. Recommending creat-
ing “improper” multiple imputations is suggesting what we
should ot do, but it is not a prescription for doing anything
in particular. Presumably, it refers to first-moment proper
multiple imputation (because without this even point esti-
mation can be badly biased) but without concern for the
second-moment conditions (e.g., fixing parameters at point
estimates rather than drawing them from their posterior dis-
tributions, as in Rubin 1987, ex. 4.1, prob. 13 in chap. 1,
and prob. 46 in chap. 5). But this is not even defined in
multistage complex surveys with clusters where valid im-
putation models need to be hierarchical, typically with lev-
els of parametric structure: I know what it means to try
to be proper in complex surveys by following a Bayesian
analysis with variables for the survey structure included in
the modelling, but I do not know what the advice to “not
do this” means. Also consider the example in Rubin (1983,
sec. 2.8, also described in Gelman, Carlin, Stern and Rubin
1995, chap. 15), which stimulated the methods in Clogg et
al. (1991) and illustrates the need to be Bayesian and in-
clude variability in parameter estimation in order to obtain
valid frequency inference.

Finally, consider the suggestion in Fay (1996) that the
analysis of a multiply-imputed data set should proceed by
replacing each incomplete unit with multiply-imputed ver-
sions of that unit’s data with split weights. I considered and
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discarded this idea in Rubin (1977b; also see Rubin 1987,
prob. 4-29, and the rejoinder in Meng 1994), because it
seemed to have merit as a method of analysis only in simple
cases (see, e.g., Little 1979). For valid analysis in general, I
believe that such an approach requires extra routines for dif-
ferent complete-data analyses, and so fails to satisfy the ba-
sic objective. As a method for storing the multiply-imputed
data sets, it can take substantially more memory than the
standard form because all the observed data for units with
some missing data are stored many times instead of just
once. Nevertheless, I would certainly be interested in seeing
any work that suggests I rejected this idea prematurely, and
that in fact, it can be made to work for any posited response
mechanism, complex survey, and complete-data analysis,
with only the addition of completely general macros.

4.5 Conclusions Regarding Alternative
Imputation Strategies

Given a situation with a single imputation method that
is first-moment proper for many statistics, it is almost cer-
tainly a random-draw method, and then multiple imputa-
tions are easily created, and these are the basis of more
accurate inference. Then the only reason not to create them
and recommend to the ultimate user that the multiply-
imputed data be analyzed using repeated-imputation com-
bining rules is fear that the imputation method, although
first-moment proper, is not fully proper for some analy-
ses. If it is not proper but is confidence proper, the only
legitimate fear is lost power and overcoverage, as due to
superefficiency. But then another method is needed for the
ultimate user to recover such superefficiency—I believe spe-
cial methods for different situations. Are such special efforts
needed? All realistic examples I know suggest that in prac-
tice the overcoverage is slight and a minor issue relative to
omitted variables that can lead all methods astray because
of biased estimation and undercoverage. General theory
and examples suggest that second-moment properness of
Bayesianly-motivated multiple imputation procedures typ-
ically follows automatically if the method is first-moment
proper (see, e.g., Huber 1976, and results referenced in Ru-
bin 1987, sec. 2.10). Nevertheless, more work on this issue
is desirable and could make general theoretical contribu-
tions to understanding the robustness of Bayesian inference.

My conclusion when doing imputation is to do multi-
ple imputation under carefully chosen models and use the
repeated-imputation inference for analysis. Of course, more
theoretical development is still desirable on such issues as:
implicit imputation models that reflect both the uncertainty
of parameter estimation and the uncertainty of the values
to impute given a specific predictive fit (van Buuren, van
Rijckevorsel, and Rubin 1993); models for sequential impu-
tation (Kong, Liu, and Wong 1994; Liu and Chen 1995); the
use of importance weights (Meng 1994); improved small m
combining rules in especially difficult cases (Barnard 1995);
and the development of realistic nonignorable models for
particular settings.
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4.6 Weighting Adjustments

Finally, consider weighting adjustments for nonresponse,
which in principle, can be a very effective class of meth-
ods for obtaining approximately unbiased estimates. Each
unit’s weight is the inverse probability of observing that
unit’s pattern of missing data given (X,Y") information. If
the patterns of missing data for the units are created by de-
sign, as with matrix sampling, these probabilities and thus
the weights are known. When these patterns of missing data
are affected by nonresponse, the nonresponse probabilities
need to be estimated. Although this estimation can be un-
dertaken by the data-base constructor, typically it is only
done assuming the simplest case of nonresponse where the
units are either respondents (with all of Y observed) or non-
respondents (with all of Y missing); in this case, the nonre-
spondents can be discarded, and (approximately) unbiased
estimates can be obtained from the respondents and their
weights, assuming they accurately reflect both the sampling
and nonresponse mechanisms.

Several issues arise with the use of weighting adjust-
ments. First, even in the simplest case of unit nonresponse,
where the shared data base of respondents is fully ob-
served, many ultimate users’ complete-data analyses do not
allow for sampling weights. Second, even with complete-
data analyses that can deal with sampling weights, the con-
struction of intervals and p-values that validly account for
the fact that nonresponse adjustments in the weights are
estimated from data are not immediate from complete-data
analyses. Third, with general patterns of nonresponse, spe-
cial analysis methods need to be developed and special soft-
ware needs to be written—see Little 1988, sec. 5.1 for the
case of monotone missing data, but attempting to do this in
amanner that allows the use of standard complete-data soft-
ware leads to ad hoc approaches such as “complete cases”
and “available cases,” which we have already rejected as un-
acceptable general solutions. These three issues imply that
in general, weighting adjustments do not satisfy the objec-
tives of allowing ultimate users to apply standard complete-
data software to shared data bases to obtain valid inference.

A fourth issue with such weighting adjustments is that
they are focused on unbiased estimation and are essentially
blind to efficiency concerns. In most well-designed surveys,
the planned pattern of missing data is such that efficient es-
timates are expected to result from standard weighted esti-
mates. But nonrespondents do not necessarily create miss-
ing data in such a benign way, and so standard weighted
estimates, even when approximately unbiased, can have ex-
cessive variability. Consider dealing with censored data by
weighting—data beyond or approaching the censoring point
have zero or very small probabilities of being observed, and
so either cannot be dealt with by weighting or imply a few
observations with dominant weights. Weighting by inverse
probabilities cannot create estimates outside the convex hull
of the observed data, and estimates involving weights near
the boundary have extremely large variance.

For these reasons, weighting, although theoretically at-
tractive in an asymptotic sense, has never really been
claimed to be a complete practical solution to the prob-
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lem of missing data in shared data bases; recall Hansen’s
(1987) comments reported in Section 4.2.

4.7 Concluding Comparative Comments

Multiple imputation is doing well, perhaps even flourish-
ing, as documented by recent sessions at the annual meet-
ings of the American Statistical Association and other pro-
fessional associations (e.g., the International Statistical In-
stitute, American Medical Informatics Association) and by
the variety of recent publications documenting its appli-
cability and extending its theory. It is even becoming so
popular that the words “multiple imputation” can appear in
the title of an article with no reference to a publication by
me or any of my coauthors (e.g., James 1995). This change
is occurring for two basic reasons. First multiple imputa-
tion is substantially easier for the ultimate user than any
other current method that can satisfy the dual objectives
of reliance only on complete-data methods and general va-
lidity of inference. And second, it is becoming relatively
easy for the data collector to create multiply-imputed files
using modern computing hardware and accompanying algo-
rithmic developments for Bayesian models. Of course, the
development of simply-used appropriate software for cre-
ating multiple imputations and analyzing multiply-imputed
data is still badly needed, but fortunately progress is taking
place in many places (e.g., Schafer 1996; Liu 1995; and van
Buuren, van Mulligen, and Brand 1995). I expect that with
the availability of this software, multiple imputation will
become the standard method for handling missing data in
public-use data sets.

As an anonymous referee of this paper wrote: “Multiple
imputation is more flexible than replication and reweight-
ing for the analysis of survey data when there are complex
patterns of nonresponse. Case closed.”

[Received August 1993. Revised June 1995.]
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