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Introduction

The limit theorems in this book belong to the theory of weak convergence of
probability measures on metric spaces.

More precisely, our main aim is to give a systematic exposition of the theory
of convergence in law for those stochastic processes that are semimartingales.

The choice of the class of semimartingales as our chief object of study has
two reasons. One is that this class is broad enough to accomodate most com-
mon processes: discrete-time processes, diffusions, many Markov processes,
point processes, solutions of stochastic differential equations, ... Our second
reason is that we have in our hands a very powerful tool for studying these
processes, namely the stochastic calculus. Since the theory of semimartingales,
and related topics as random measures, are not usually associated with limit
theorems, we decided to write a rather complete account of that theory,
which is covered in the first two chapters. In particular, we devote much
space to a careful and detailed exposition of the notion of characteristics
of a semimartingale, which extends the well-known “Lévy-Khintchine triplet”
for processes with independent increments (drift term, variance of the Gaussian
part, Lévy measure), and which plays a particularly important réle in limit
theorems.

The meaning of X" Lx (that is, the sequence (X") of processes converges
in law to the process X) is not completely straightforward. The first idea
would be to use “finite-dimensional convergence”, which says that for any
choice t,, ..., t, of times, then (X,"l,...,X,"p) goes in law to (X,l,...,X,p). This
is usually unsatisfactory because it does not ensure convergence in law of
such simple functionals as inf(t: X} > a) or sup,., X7, etc... In fact, since the
famous paper [199] of Prokhorov, the traditional mode of convergence is
weak convergence of the laws of the processes, considered as random ele-
ments of some functional space. Because semimartingales are right-continuous
and have left-hand limits, here the fundamental functional space will always
be the “Skorokhod space” D introduced by Skorokhod in [223]: this
space can be endowed with a complete separable metric topology, and
x4 x wil always mean weak convergence of the laws, relative to that
topology.

How does one prove that X* Lx 7, and in which terms is it suitable to express
the conditions? The method proposed by Prokhorov goes as follows:
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) (i1)
Tightness of the Convergence of finite-

sequence (X") dimensional distributions

(iii)
Characterization of (X) by

:X”%X

finite-dimensional distributions

(as a matter of fact, this is even an equivalence; and of course (iii) is essentially
trivial). Sometimes, we will make use of this method. However, it should be
emphazised that very often step (ii) is a very difficult (or simply impossible) task
to accomplish (with a notable exception concerning the case where the limiting
process has independent increments). This fact has led to the development
of other strategies; let us mention, for example, the method based upon the
“embedding theorem” of Skorokhod, or the “approximation and o-topological
spaces methods” of Borovkov, which allows one to prove weak convergence for
large classes of functionals and which are partly based upon (ii). Here we expound
the strategy called “martingale method”, initiated by Stroock and Varadhan, and
which goes as follows:

(') (iii")
Convergence of triplets Characterization of (X) by the

: o =x"Zx.
triplet of characteristics

@ +

of characteristics

Here the difficult step is (iii’): we devote a large part of Chapter III to the
explicit statement of the problem (called “martingale problem”) and to some
partial answers.

In both cases, we need step (i): in Chapter VI we develop several tightness
criteria especially suited to semimartingales, we also use this opportunity to
expose elementary—and less elementary—facts about the Skorokhod topology,
in particular for processes indexed by the entire half-line R, .

The limit theorems themselves are presented in Chapters VII, VIII and IX
(the reader can consult [166] for slightly different aspects of the same theory).
Conditions insuring convergence always have a similar form, for simple situa-
tions (as convergence of processes with independent increments) as well as for
more complicated ones (convergence of semimartingales to a semimartingale).
Roughly speaking, they say that the triplets of characteristics of X" converge
to the triplet of characteristics of X. As a matter of fact, these conditions are
more extensions of two sets of results that are apparently very far apart: those
concerning convergence of rowwise independent triangular arrays, as in the
book [65] of Gnedenko and Kolmogorov; and those concerning convergence
of Markov processes (and especially of diffusion processes, in terms of their
coefficients), as in the book [233] of Stroock and Varadhan.

Beside limit theorems, the reader will find apparently disconnected resuits,
which concern absolute continuity for a pair of measures given on a filtered space,
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and contiguity of sequences of such pairs. In fact, one of our motivations for
including such material is that we wanted to give some statistically-oriented
applications of our limit theorems (a second motivation is that we indeed find
this subject interesting on its own): that is done in Chapter X, where we study
convergence of likelihood ratio processes (in particular asymptotic normality)
and the so-called “statistical invariance principle” which gives limit theorems
under contiguous alternatives.

In order to prepare for these results, we need a rather deep study of contiguity:
this is done in Chapter V, in which Hellinger integrals and what we call Hellinger
processes are widely used. Hellinger processes are introduced in Chapter 1V,
which also contains necessary and sufficient conditions for absolute continuity
and singularity in terms of the behaviour of those Hellinger processes. Finally,
let us mention that some material about convergence in variation is also included
in Chapter V.

Within each chapter, the numbering is as follows: 3.4 means statement
number 4 in Section 3. When referring to a statement in a previous chapter, say
Chapter II, we write I1.3.4.

In addition to the usual indexes (Index of Symbols; Index of Terminology),
the reader will find in the Index of Topics a reference to all the places in this
book where we write about a specific subject: for example, a reader interested
only in point processes should consult the Index of Topics first. Finally, all the
conditions on the triplets of characteristics which appear in our limit theorems
are listed in the Index of Conditions for Limit Theorems.

Parts of this work were performed while one or other author was enjoying
the hospitality of the Steklov Mathematical Institute or the Université Pierre et
Marie Curie, Paris VI. We are grateful for having had these opportunities.

Paris and Moscow, Jean Jacod
June 1987 Albert N. Shiryaev



Basic Notation

R = (—o0, +00) = the set of real numbers, R, = [0, 00), R = [ —00, +00]
R, = [0, 0]

Q = the set of rational numbers, @, = QN R,

N = {0,1,2,...} = the set of integers, N* = {1,2,3,...}
C = the set of complex numbers

R? = the Euclidian d-dimensional space

|x| = the Euclidian norm of x € R%, or the modulus of xe C
x-y = the scalar product of x € R? with ye R?

a v b =sup(a,b),a A b =inf(a,b)

xt=xv0,x =(—x)vOforxeR

1, = the indicator function of the set A

A¢ = the complement of the set 4

g, = the Dirac measure sitting at point a

a.s. = almost surely

lim,y, = lim,, <., limggq, = limg,, .,

limgy, = limg,, ;>,, limgy, = limg,, o,

® = tensor product (of spaces, of g-fields)

[x] = the integer part of xe R,

Re(x), Im(x) = real and imaginary parts of xeC

« absolute continuity between measures

~ equivalence between measures

1 singularity between measures

{---} denotes a set
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