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MONEY AND INTEREST IN A CASH-IN-ADVANCE ECONOMY

Abstract

In this paper we analyze an aggregative general equilibrium model in
which the use of money is motivated by a cash—-in-advance constraint, applied
to purchases of a subset of consumption goods. The system is subject to both
real and monetary shocks, which are economy-wide and observed by all. We

develop methods for verifying the existence of, characterizing, and explicitly

calculating equilibria.



1. Introduction

Macroeconomics has traditionally been concerned with the study of a
limited set of aggregate variables—-GNP, the general price level, "the"
interest rate, and so forth——designed to provide a summary description of the
economy as a whole. In part this study has involved the statistical
description of co-movements in these series, and in part it has involved the
analysis of general equilibrium models that are simple enough to permit the
construction and characterization of solutions under various assumptions about
the way monetary and other policies are conducted. The general idea, of
course, is that structural models capable of approximately replicating the
actual behavior of these aggregate variables, given policies similar to those
actually observed, may be useful in predicting how the behavior of the
aggregates would be changed if various alternative policies were to be
implemented.

Recently, a number of studies have used the vector autoregression (VAR)
methods pioneered by Sims [1972] as a means of summarizing the entire
empirical joint distribution of the standard aggregates, under the hypothesis
that these series (or suitable transforms of them) form a stationary
stochastic process. This method has the advantage of providing a compact
summary of the observations in a way that seems theoretically "neutral.” Sims
[1980], Litterman and Weiss [1985], and others have suggested, beyond this,
that these methods are useful as diagnostics in determining which classes of
structural models may be consistent with observation: certain features of the
estimated VARs are described as "Keynesian" (or as inconsistent with Keynesian
models), others as "classical,” and so on. Thus, Sims' [1972] finding that
money “causes” real output (in Granger's sense), was interpreted as

“"classical"” or "monetarist", while his [1980] conclusion that nominal interest



rates "cause" output was interpreted as "Keynesian.”

If it were in fact the case that VAR (or other purely statistical)
methods could perform this diagnostic function, this would obviously be most
useful in narrowing the theoretical search for good structural models. The
difficulty is that traditional theoretical models, whether Keynesian or
classical, typically take the form of deterministic systems that cannot be
meaningfully compared to the estimated distribution. Thus, in deciding
whether an estimated VAR is or is not consistent with the predictions of, say,
an IS/tM model, one is obliged to imagine a stochastic version of the IS/LM
model and work out its predictions, all in one's head! It seems clear enough
that to interpret empirical distributions of macroeconomic aggregates one
needs an explicitly stochastic theoretical model, a model that permits the
calculation of a predicted theoretical joint distribution of shocks and
endogenously determined variables that can be compared to the observed
distribution. For comparison with VAR's, stationary models are called for.

Such theories have been developed by Lucas [1982] and Svensson [19831,
using recursive models, but in these two papers the equilibrium resource
allocations were determined entirely by the exogenously given goods
endowments, so the analysis involved determining the behavior of prices given
quantities. Townsend [1984], on the other hand, has developed a monetary
equilibrium model with both production and capital accumulation, so that
quantities and prices are simultaneously determined and monetary shocks have
the capacity to affect the allocation of resources. The analysis there is
directly in terms of sequences, however, so that stationarity (recursivity) is
not exploited.

The model presented here is intermediate to these. Agents have

possibilities for substituting against money that are not present in Lucas



[1982] or Svensson [1983], so that equilibrium quantities and prices must be
determined simultaneously. On the other hand, the present model excludes
capital formation, and assumes a recursive structure that is much more
specific than the one in Townsend [1984]}. These simplifications permit an
existence proof that can be specialized to yield constructive methods for
calculating and characterizing equilibrium behavior under alternative
assumptions about policy.

In the model, the use of money is motivated by a Clower [1967] type cash-
in—advance constraint, applied to purchases of a subset of consumption
goods. There are both real and monetary shocks, which are economy wide and
observed by all. Agents are infinitely lived and identical in all respects.
As we will show later on, under these assumptions equilibrium quantities and
goods prices behave as if agents were restricted to hold no securities other
than currency. Accordingly, we begin by studying recursive equilibria in a
simple cash-only model.

In section 2 we analyze the problem faced by the representative consumer,
and in section 3, we show that solving for the equilibrium is equivalent to
finding a solution to a particular functional equation. In section 4, we use
the Schauder fixed point theorem to prove that under certain (not entirely
standard) assumptions on preferences, solutions to this functional equation
exist. We also show how further restrictions on consumer preferences yield
additional information about the multiplicity of equilibria and/or algorithms
for constructing them.

In section 5 we incorporate securities trading into the model. We show
that equilibrium consumption allocations in these more general economies
coincide with those determined in sections 2-4, and develop a formula for the

equilibrium prices of arbitrary securities. Three examples are then provided



to illustrate the predictions of the model for the relationship between

interest rates and monetary policy. Section 6 concludes the paper.

2. The Model

The modell is formulated in discrete time with an infinite horizon.
Shocks to the system in any period, denoted by s € S € R®, form a first—order
Markov process with a stationary transition function. Specifically, let S
denote the family of Borel sets of S, and let m: § x § + [0,1] denote the

transition function. S and ©n satisfy

Assumption I: S is compact. For each s € S, 7n(s,*): S » [0, 1] is a

probability measure, and for each A € S, w(*,A): S » [0, 1] is S -
measurable. Moreover, ® is continuous in the weak topology, i.e., for any

L L
bounded, continuous function f: S » IR, the function Tf(s) = ff(s Yu(s, ds ),

is also continuous in s.

There are two consumption goods available each period: “cash goods,’

which are subject to a Clower (cash-in—advance) constraint, and "credit

goods,” which are not.2 There is a single, infinitely-lived "representative
consumer.” His consumption of cash and credit goods are cjp and Coy
respectively, and his preferences are

B{ ] 8l

0

il ~1 8

t

where 0 < B < 1, ¢t = (cj¢scpp), and the expectation is over realizations of

the shocks.

Assumption II: U: H@+ + IR is bounded, continuously differentiable, strictly

increasing, and strictly concave, and for all y > O,



U (C,y -c) U (c,y - )
lim A = o and lim D = 0
- s - .

030 Uz(c,y c) o>y Uz(c,y c)

The two Inada conditions in Assumption II are to ensure that the agent will
not wish to specialize in either cash or credit goods as long as both have
positive prices.

Goods are not storable, and the technology each period is simply
C1+C2<y,

where y(s), the endowment, is a function of the current shock. For sellers,
cash goods sales result in currency receipts that simply accumulate during the
period and are carried as overnight balances, while credit goods sales result
in invoices that are settled in cash at the beginning of the next day. Both
overnight balances and invoices become cash available for spending at the same
time on the following day. Hence it is clear that in each period cash and
credit goods will sell at the same nominal price.

The only activity of the government in this economy is to supply money,
injected as lump—sum transfers, and the money growth factor in any period t is
a fixed function g(s) of the shock.3 Therefore, if Qt-l is per capita money
in circulation in t - 1, an agent who carries overnight balances plus invoices

of my_; will have post-transfer balances in t of

mo=m + [g(st) - l]mt—l'

Throughout the paper, we will normalize per capita money balances to be

unity: my_; = 1.



Assumption III: y: S » IR, and g: S » R, are continuous functions, and both

are bounded away from zero.

Note that under Assumptions I and III, g(s) and y(s) take values in
closed intervals [g,é] and [X,§], with g > 0 and y > 0. ©Note too that since s
is a vector of arbitrary (but finite) length, the specification of the
endowment process and monetary "policy"” is extremely flexible. In particular,
s may include lagged values of the endowment and the rate of money growth,
signals about future values of these variables, and pure "noise” components
that serve as randomizing devices.

We will motivate a definition of a stationary equilibrium, in which
prices and quantities are fixed functions of the state of the system. To do
so, we begin with the decision problem facing a single agent, for whom the
functions p, g and y are all fixed and known. Suppose that his cash assets,
after the current tax or transfer, are m relative to the economy—-wide average,
winich we normalize to unity. His knowledge about the system consists of the
current state, s. He purchases goods (xj,X;) at a price p(s) (expressed as a

ratio to the current period's money supply) subject to the cash constraint
(2.1) p(s)x1 - m € Q.

These purchases together with the sale of his endowment y(s), also determine
his cash position, x3, before the tax or transfer next period, so that his

budget constraint in the goods market is:

(2.2) x3- m - p(s)[y(s) - x1 - XZ] < 0.

Given x4, the agent's post-transfer cash position next period (remormalized by



. |
next period's money supply) will be (x3 + g(s') - 1)/g(s ), Finally, since

his consumption and money balances must be nonnegative, we have
(2.3) Xl’ Xz, X3 2 00

For each (m,s) €R xS, let ¢(m,s) < E9+ denote the set of x—values
satisfying (2.1)-(2.3). Note that if p(s) is strictly positive the
correspondence ¢ is compact—- and convex-valued, and is continuous in m. If p
is continuous, then under Assumption III, ¢ is also continuous in s. Finally,
for each fixed s € S, ¢(m,s) is convex in m, i.e., if x € ¢(m,s) and -
¢»(m',s), then ax + (l—cr)x' € ¢(am + (l—a)x', s), for all a« € [0,1].

Let F(m,s) be the value of the maximized objective function for a
consumer beginning the period with assets m, when the economy is in state s.
Then F must satisfy

X +g(s')—l ' ]
3 , S )n(s,ds )}.

(2.4) F(m,s) = sup {U(x;,x,) + Bfg F( ;
x€¢(m,s) g(s )

Let ¥ be the space of bounded, continuous, real-valued functions f(m,s)

on IR, X §, with the norm Ifl = sup lf(m,s)l. We are now ready to prove
m,s

Lemma 1: Under Assumptions I - III, given any continuous, strictly positive
price function p: S » IR,, there exists a unique value function F € ¥
satisfying (2.4). F is strictly increasing, strictly concave, and
continuously differentiable in its first argument. For each (m,s), the
maximum in (2.4) is attained by a unique value ¢(m,s), and the policy function

¢ is continuous.



Proof: To prove the existence and uniqueness of F € ¥, it is sufficient to

show that the operator T on ¥ defined by

x, + g(s') -1 , ,
3 , S )n(s,ds )},

(2.5) Tf(m,s) = sup {U(xl,xz) + st f( .
x€¢(m,s) g(s )
maps # into itself, and is a contraction. Under Assumption I, clearly Tf is
bounded. Under Assumption III the integrand in (2.5) is a continuous function
of s', so that under Assumption I the integral is a continuous function of s.
Clearly the right side of (2.5) is also continuous in x. Then since ¢ is
compact-valued and continuous, it follows that Tf is continuous and the
correspondence ¢: IRy X S *> E& consisting of the maximizing x-values is
nonempty and upper hemicontinuous [Hildenbrand, 1974, p. 30]. Hence
T: § » F. It then follows directly from a theorem of Blackwell [1965,
Theorem 5] that T is a contraction, and so has a unique fixed point F € 4,
Since U is strictly increasing and strictly concave, and ¢ is convex in
m, T maps functions that are increasing and concave in m into functions that
are strictly increasing and strictly concave in m. Hence F is strictly
increasing and strictly concave in m. Hence for each (m,s), the maximizing
value ¢(m,s) is unique, so that ¢ is a continuous policy function.

Finally, the theorem of Benveniste and Scheinkman [1979] applies, so that

F is continuously differentiable in m. a

Lemma 1 summarizes the needed information about the consumer's problem.

With that, we can proceed to the study of equilibrium.

Definition: A stationary equilibrium for this system consists of a

continuous, strictly positive, price function p, a value function F € 4, and a

policy function ¢(m,s), such that: (i) the functions F,p satisfy (2.4) and ¢



is the associated policy function; (ii) for m = 1, the policy function has
the form ¢(1,s) = (c(s), 1), for all s € 8; and (iii) the function c(s)

satisfies

(2.6) cl(s) + CZ(S) = y(s), all s.

These conditions are standard: at the equilibrium prices, (c(s),l) must be
the demands of a "representative consumer” (that is, one with relative assets
equal to unity), and with these demands the goods market must clear.

We turn now to proving the existence of equilibrium. Under Assumption I,

the consumer's problem has an interior solution, characterized by the first-

order conditions for (2.4). With the equilibrium conditions m = x3 =1
imposed, these are:

(2.7) Ul(c(s)) - p(s)[v(s) + w(s)] =0, all s;

(2.8) Uz(c(s)) - p(s)v(s) =0, all s;

(2.9) p(s)cl(s) -1 <€ 0, with equality if w(s) > O, all s;

) 1 )
(2.10) sfs F (1,s) - n(s,ds ) - v(s) =0, all s;
gls )

where w(s) and v(s) are the multipliers associated with (2.1) and (2.2),

respectively. In addition, the envelope condition for (2.4) is

(2.11) Fm(l,s) = v(s) + w(s).
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Then it follows immediately from (2.10) and (2.11) that

1 1
(2.12) v(s) = st [v(s ) +'W(S )] n(s,ds‘).
gls )

Equation (2.12), together with conditions (2.6)-(2.9) form a system of
five equations in the five unknown functions, v(s), w(s), p(s), cl(s) and
cz(s). Continuous, nonnegative solutions to this system, with p strictly
positive, are equilibria of the model. In the next two sections we turn our

attention to the existence and uniqueness of functions satisfying this system.

3. Existence of Equilibrium: Preliminaries

Our strategy for proving the existence of equilibrium is first to use
(2.6)-(2.9) to eliminate w(s') from (2.12), as described in Lemmas 2 and 3.
Then (2.12) becomes a functional equation in the single function v, equation
(3.7). The latter is then analyzed in section 4.

For fixed v 2 0 and y » 0, equations (2.6)-(2.9) are simply four
equations in ¢y, ¢p, w and p: the values of the equilibrium functions c(s),
w(s), and p(s) when v = v(s) and y = y(s). Use (2.8) to eliminate p and (2.6)
to eliminate cy, so that for each s € S, (y, v, w, c;) must satisfy

U (c,, vy - c,)
(3.1) w=uv | 11 1

- 1] 2 0
UZ(Cl’ y - cl) ] ’

(3.2) cjUy(ey, ¥y - ¢p) € v, with equality if w > O.

Therefore, an equilibrium is characterized by continuous functions v(s), w(s),
and cj(s) satisfying (3.1), (3.2) and (2.12).
To further simplify this system we need to make some additional

assumptions on preferences.
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Assumption IV: For all y » 0, cUy(c,y = c) is strictly increasing in c, with

lim cUz(c,y - c¢) =0, and lim CUZ(C’ y —c) ==
c>0 cry

and for some A < «,

clUi(e, y — c) <A, all 0 € c €y, all y » 0.

Define the function c*: R; > R, by

* *
U, (e (), y - c (¥))

(3.3) 1.

* *
Uy(e (35 ¥y = c (¥))

Thus, (c*(y), y - c*(y)) is the consumption vector that the consumer chooses
if his income is y and the cash constraint is slack (w = 0). Under Assumption

II, ¢* is well defined and continuous. Next, define v by
v(y) = DU, v - TN

Finally, for all y > 0 and v > 0, define c: R » IR, by

(3.4) (v, ((v,y), ¥ = e(v,y)) = v.

Under Assumptions II and IV, E is well defined, continuous, and strictly



v*(y)

<y

-12 -

cUy(c,y-c)

| cvp(e,y-0)

Figure 2

0 c*(y)
Figure 1
A A
C(V,Y)
|
B
| I |
| | |
| | |
| | |/
| l l >
0 vog v¥(y) h(vp,y) A v
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increasing in v and y. In Figure 1, the curves ¢ U; and ¢ U, are shown for
fixed y. In Figure 2, the axes are reversed and E(v,y) is shown.

We are now ready to prove
Lemma 2: Under Assumptions II and IV, for any y » O and v » 0, the unique

pair of values (w, c;) satisfying (3.1)-(3.2) is given by

(3.5a) ) E(v,y), if 0 < v < v*(y),

(), if v > v¥(y),

(3.5b) Cl

and w given by (3.1).

Proof: First note that the requirement w > 0 in (3.1) implies that U,/0y > 1,
which in turn implies that ¢ < c*(y).

Fix (v,y), and suppose that 0 < v < v*(y). Then ¢ = c*(y) is not a
solution, since (3.2) would be violated. Hence cj < c*(y), so that
Ul/U2 > 1. Then (3.1) implies w > 0, so that (3.2) must hold with equality.
Hence the only solution is ¢; = E(v,y). Alternatively, suppose that
v > v*(y). Since c € c*(y) is required, (3.2) must hold with inequality.
Hence it must be that w = 0, so that U;/Uy = 1 and ¢ = c*(y). Finally, it is

clear that if v = v*(y), then c*(y) is the only solution. 0

Next, define h: E&,X R, by

(3.6a) h(v,y) = c(v,y)U;(c(v,¥y), ¥ = c(v,y)) 1f 0 < v < vi(y)

|
<

(3.6b) h(v,y) = if v > v (y).
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To determine h for 0 < v < v*, refer to Figure 2, Note that h is continuous,
and for v < v*, h lies between O and A, where A is defined in Assumption IV.

Using Lemma 2, we can now write (2.12) in terms of the single function v.

Lemma 3: Under Assumptions I - IV, the functions v, w and c; satisfy (2.12),
(3.1) and (3.2) if and only if the following hold: v is a continuous function

satisfying

(3.7) W(s) = [ —B— n(v(s'), y(s )) w(s, ds ),
g(s )

cy; is given by (3.5), and w is given by (3.1).

Proof: From Lemma 2 it follows that we can replace (3.2) with (3.5), and from

(3.1) we see that

Uy (e (s), y(s) = ¢,(s))
UZ(CI(S), Y(S) = Cl(s))

(3.8) v(s) + w(s) = v(s)

From (3.5a) and (3.4) it follows that

0 < v(s) < v*(y(s))

c(v(s), y(s))

== Cl(s)

==> v(s) cl(S)Uz(cl(S), y(s) - cl(S))

It then follows from (3.8) and (3.6a) that

v(s) + w(s) = c1(s)U1(c1(s), y(s) = c;1(s))

h(v(s), y(s)).
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Similarly, we see from (3.5b) and (3.3) that
v(s) » v¥(y(s))
==> c¢(s) = < (y(s))
==> U (e (s), y(s) = ¢,(s))/U,(c,(s), y(s) = ¢, (s)) =1,
so that (3.8) and (3.6b) imply
v(s) + w(s) = v(s) = h(v(s), y(s)).
Hence (2.12) can be written as (3.7). ad

Given a function v satisfying (3.7), we can use (3.5) and (2.6) to
find ¢, (3.1) to find w, and (2.8) to find p. If p is well-defined (finite),
continuous, and strictly positive, we can then use Lemma 1 to find F and ¢,
and (p,c,F,¢) is an equilibrium. Under what conditions will the price
function have the required properties? If v > 0, then we see from (3.4),
(3.5) and Assumption IV that c] > 0 and hence U2 > 0; and if v is bounded,
then (2.8) implies that p > 0. Thus, if v is bounded, continuous and strictly
positive, there is a unique corresponding equilibrium. In the next section,

we turn to methods for studying (3.7).

4, Existence of Equilibrium: Continued

In this section, we develop a series of results on solutions to (3.7).
A1l of these additional require restrictions on the distribution of the
shocks, Assumptions V and VI. 1In Theorem 1 we use Schauder's theorem to
establish existence of a solution to (3.7). Theorems 2-5 then impose
successively stronger assumptions on preferences to obtain additional

results. In Theorem 2, the trivial solution v(s) = 0 is ruled out. In
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Theorem 3 a method for constructing solutions and an operational test for
uniqueness are presented. Theorem 4 establishes the existence of a nontrivial
(i.e., strictly positive) solution. Finally, Theorem 5 provides a uniqueness
result based on the contraction mapping theorem.

To establish existence of a solution to (3.7), two additional assumptions

on the distribution of the shocks are needed.

T
Assumption V: For each s € §, 0 < st 1, n(s,ds ) € 1.

g(s )

Assumptich VI: = has the following property: for any € > O there exists some

8(e) > 0 such that
1 t !
Is = s I < 8(e) = [g |ags,s ,ds )| < e,

where A: § x § x § + [~1,1] is defined by

A(s,s',A) = n(s,A) - n(s ,A).

Assumption V requires that the money supply will never be expected to contract
at a rate exceeding the subjective rate of time preferénce, B—l - 1. Roughly
speaking, this guarantees that nominal interest rates cannot be negative.

Assumption VI is a strengthening of the continuity requirement of
Assumption I. Assumption I states that for each continuous, bounded function
f: S+ R, s € S and € > 0, there exists & > 0 such that - S and

Is - s'l € & implies
1 1t T 1] t1
|[£(s Im(s,ds ) - [f(s In(s ,ds )| < eNfl.

Assumption VI implies that 6 can be chosen independently of f and s (so it is

a kind of uniform continuity requirement).
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We are now ready to prove

Theorem 1: Under Assumptions I - VI, there exists a bounded, continuous

function v satisfying (3.7), where h is defined in (3.6). Moreover, v

satisfies 0 € v € A, where A is defined in Assumption IV.

Proof:* Let 7 be the space of bounded, continuous functions f: S + IR, with

the norm Ifl = sup If(s)]. Let D © & be the subset of functions f that have
sS€S

0 < v(s) € A, all s € S, where A is as in Assumption IV. Define the operator

T on D by

(T£)(s) = fq B n(f(s ), y(s ))n(s,ds ).
g(s )

Since 0 < h(f(s’),y(s')) < A, all £ € ¥, and s' € S, it follows from
Assumption V that O < Tf(s) < A, all s € S; and since f, g and h are all
continuous, Assumption I implies that Tf is continuous. Hence T: D - D.
Moreover, Assumption VI implies something even stronger. Since the
integrand Bh/g is bounded and m satisfies Assumption VI, it follows that for

any € > 0, there exists 6(g) > 0 such that for all £ € D and all s € S,
\]
[s - s | <6(e) =

|£¢s) - TE(s)| < f

B n(g(s),s ) |]aCs,s ds )|
)

5 ‘g(s

< gﬁ IS |A(s,s',ds“)| < €.

Since 6 does not depend on f or s, this establishes that the family TD is

equicontinuous. Clearly this family is also bounded. Then by the Arzela-
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Ascoli theorem, TD is relatively compact, and consequently every subset of TD
is relatively compact.

Finally, T is a continuous operator. To see this note that

ITE = TfE | = max |[Tf(s) - Tf (s)
n s€&S I n l
< max [P |n(e(s),y(s ) = h(E_(s),5(s M| nCs, ds )
S€S g(s )

< £ nax [n(e(s),y(s ) - B(E (s )uy(s D).
s'€S
Since h is continuous, f, > f implies Tf, > Tf.

Summing up, D is a nonempty, closed, bounded, convex subset of the Banach
space #, and T: D > ¥ maps D into itself. Moreover, T is continuous and maps
every subset of D into a relatively compact set. Hence, T is a compact
operator and, by the Schauder theorem, has a fixed point v in D. Clearly, v

satisfies (3.7). [

The gist of the proof is to find an appropriate set D, show that T:

D > D, with T continuous, and show that TD is equicontinuous. The bound A in
Assumption IV allows us to choose D; Assumption V is needed to ensure that
T: D > D; and Assumption VI implies that TD is equicontinuous.

One property of the equilibrium real allocation follows directly from
(3.7): current money growth affects the current allocation only insofar as it
affects expectations about future states, i.e., only through its value as a
signal. For example, suppose there are two states, s and s', with equal
endowments, y(s) = y(s'), and the same transition probabilities,

n(s,A) = n(s :A), all A € S, but different rates of money growth,

g(s) # g(s'). Then it is clear from (3.7) that v(s) = v(s'), so that the real
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allocation will be the same in both states, c(s) = c(s'). Alternatively,
suppose that income and money are equal in the two states, y(s) = y(s') and
g(s) = g(s'), but that they have different implications for the future,
n(s,*) # n(s',°). Then it is clear from (3.7) that in general v(s) # v(s'),
so that the real allocations will also differ, c(s) # c(s'). Thus, the
current rate of money growth plays no direct role in determining the current
allocation-—only expectations about money growth (and income) matter.

As noted above, a function v satisfying (3.7) corresponds to an
equilibrium only if it is strictly positive. Theorem 1 does not rule out the
possibility of the solution v(s) = 0 to (3.7), nor does it insure that any
nontrivial solutions exist. A zero solution, which is consistent with
Assumptions I-VI, has an economic interpretation as a "barter” equilibrium.

It occurs if

lim cUl(c, y~-¢) =0,
c>0

O.5 The next result is a

in which case G(O,y) = 0, all y, and hence h(0,y)

sufficient condition to rule this solution out.
Theorem 2: Let Assumptions I-VI hold, and assume in addition that for all

y > 0,

(4.1) lim cUl(c, y - c) > 0.
c>0

Then every solution to (3.7) has v > 0.

Proof: Under (4.1), h(v,y) is bounded away from zero, so for any v € D,

Tv > 0. 0
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Theorem 1 guarantees the existence of a solution to (3.7), but says
nothing about the number of solutions and/or how to compute them. These
questions can be answered, at least in part, by exploiting the fact that
under additional hypotheses the operator T defined in the proof of Theorem 1
is monotone. In particular, T is monotone if h(v,y) is weakly increasing

in v. To insure this, we add

Assumption VII: For each y € [X,§], cUj(c,y - c) is weakly increasing in c.

Since under Assumption IV, c(v,y) is strictly increasing in v, the

addition of Assumption VII implies that h(v,y) is weakly increasing in v.
Theorem 3: Let Assumptions I-VII hold and define the sequences {Xn} and {;n}

in D by

0 and !n+1 T Cn

y_O(s)

|
-
=]
]
o
-
—
-
3]
-
.
.
.

Hl

vO(s) A and Vel S Tvn, n=0,1,2,...

Then {Xn} and {;n} converge pointwise to solutions to (3.7) in D, call them v

and v, and for any solution v to (3.7),

v<v<v,
Proof: Under Assumptions IV and VII, the function h is weakly increasing in
v, so that the operator T is monotone: wu,v € D and u ?» v imply Tu > Tv.

Moreover, for all s € S

=Tv 20 =
4Ty 20 EY
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and

v1 = Tvo < A= vo.

Hence, by induction, v > v and ;n

+1 € ;n all n, and since both sequences

n+1
take values in [0,A], both converge. As shown in the proof of Theorem 1, both
{gn} and {;n} are equicontinuous families, so that the limit functions v and v

are both continuous; hence both are in D.

Finally, if v is any fixed point of T it must satisfy

Then the monotonicity of T implies

v, = Ty, L Tv=v<¢« Tv0 = Vs

and hence, by induction,

N
s
=

1<

=limv <v<limv
-n n
n>o nro
Theorem 3 is useful computationally because it provides a way of
constructing two solutions, v and v, of (3.7) and, if v and Vv should coincide,
of verifying that their common value is the only solution.
Our next theorem shows that Assumptions I-VII are also a sufficient to

ensure that (3.7) has a nontrivial solution.

Theorem 4. Let Assumptions I-VII hold. Then (3.7) has a solution with

v(s) > 0, all s € S,
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]
Proof: By Assumption I, f n(s, ds ) is continuous in s and since S is

-
S g(s")
compact it attains a minimum value, call it T', on S. By Assumptions III and

IV, we have 0 < T and BI' € 1, and by Assumption II there exists 0 C c < y

satisfying
U,(e,y = )/U,(c,y - ¢) = PT.

*
Since 0 < Br < 1, it follow that 0 < ¢ < ¢ (y) and

~

v

*
SUZ(E’X -c)<v (¥ Then from (3.6a) and Assumption IV,

h(v,y) = gUl(g, y - ¢) < A. Note too that

BFh(;,y) PreU; (e, ¥ - ) = cly(e, ¥ -~ ¢) = v.

We show that the function v = lim v defined in Theorem 3 is bounded
below by v. For each n, let

a = min ;n(s).
s€S

Hence, a4 2 BFh(an,y), all n. Since h is increasing in v and y, it follows

that for all n,s,

h(v_(s ),y(s )) :

;n+1(s) = st - n(s,ds )
g(s )
h(a_,y) '
? BIS - TC(S,dS )
g(s )

v

BFh(an,Z).



A

A > v, using again the fact that h

it

Hence a, ;| > ﬁPh(an,Z), all n. Since a

is increasing in v, it follows by induction that

a > BPh(an,z) > BFh(;,z) = v, all n,

n+1l

and hence v(s) » - > 0, all s. 1

Theorems 2 and 4 still allow the coexistence of both zero and strictly

positive solutions, as the following example shows. Let

_ 172 1/2
Uleysey) = ¢’ " + ey e
Then
1 1/2
lim cU,(c, y = ¢} = lim 5 ¢ / = 0,
1 2
c+0 c»0

so that v(s) = 0 is a solution. But

Uz(c, y - c) 1/2

T = =
P U,(c, y - c) (y -c
has a solution c for any fI'yso that a positive solution also exists.

Our final result gives sufficient conditions for the operator T defined
in the proof of Theorem 1 to be a contraction. This will insure the
uniqueness of the solution to (3.7). It requires strengthening Assumption V

to

Assumption V': For each s € S,
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0<BJ 1, n(s,ds') < 1.

g(s )

It also requires adding an assumption on preferences that guarantees that the
slope of h(v,y) in the v direction is less than unity, i.e., that h(v,y) — v

is weakly decreasing in v.

Assumption VIII: For each y € [X,§],

(4.2) c[Ul(c,y -c) - UZ(C,y - c)l

is a weakly decreasing function of c.

From (3.4) and (3.6) we see that (4.2), evaluated at E(v,y) is just h(v,y) -
v. Since under Assumptions II and IV, g(v,y) is strictly increasing in v, the

addition of Assumption VIII insures that h(v,y) ~ v is weakly decreasing in v.

Theorem 5: Let Assumptions I-IV, V' and VI-VIII hold. Then (3.7) has a

unique solution v € D and for all vg € D, lim HTnvO - vl = 0.
n e

Proof. We will show that under these additional hypotheses, the operator T
defined in the proof of Theorem 1 satisfies Blackwell's [1965, Theorem 5],
sufficient conditions for a contraction. As observed in the proof of Theorem
3, under Assumptions I-VII, h is nondecreasing in v, so that T is monotone.
We need only to verify that for some & € [0,1), T(v + k) € Tv + &k, for any

v € 4 and constant k > O.

From Assumptions I, III, and V', it follows that

B fS ‘_lT“ W(S,dS') < 5, for all s € S,
g(s )
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for some 6§ < 1. Under Assumption VIII, h(v,y) — v is weakly decreasing in v:

for any v € ¥ and k > 0,

h(v + k,y) = (v + k) € h(v,y) - v
or

h(v + k,y) < h(st) + k.

Then

1

T(v + K)(8) = Bf h(v(s ) + k, y(s )) —— n(s,ds )
gls )
< Bfg [a(v(s ),3(s ) + kl——r n(s,ds )
gls )
< Tv(s) + &k,

so that T is a contraction with modulus 6. The conclusion then follows from

the contraction mapping theorem. {

This completes our analysis of (3.7).6 In the next section we
incorporate securities trading into the economy just studied, and show how

arbitrary securities can be priced.

5. Securities Pricing

In section 2, we developed a definition of a stationary equilibrium for
an economy in which currency is the only security held by the consumer, and
all trade involves either goods for currency or goods for promises to pay
currency one period hence. It is not difficult to extend this definition and

the subsequent analysis to situations involving trading in a rich variety of
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securities: The assumption that agents are identical means that in
equilibrium, the quantities of securities traded are zero, and consumption
levels and goods prices are exactly as in the cash-only economy we have just
analyzed. But this extension is interesting because it yields formulas for
securities prices, and in particular for the nominal interest rates that play
such an important role in monetary theory.

The timing of securities trading and the information available to traders
at this time are crucial. We adopt the following conventions. Securities
trading at time t occurs at the beginning of period t, before St is known, but
after some signal z, is announced and after monetary injections take place.
The signals are generated as follows.

There is a space of possible values for the signal, and for each s € S,
there is a conditional probability measure on the signal space. The
information available to agents at the time of securities trading in period t
is the previous period’'s shock, s;_j, and the signal about the current shock,
zZye It is then straightforward7 to use the transition function m, together
with the family of conditional probability measures on the signal space, to
develop the conditional expectation of any function of sy, given s,.j and
Zy Rather than do this explicitly, however, which requires a considerable
investment in notation, we will from this point on simply indicate expected
values. But note that since monetary injections occur prior to securities
trading, the conditional distribution of g(st), given z;, is always
degenerate. Therefore, we may write the monetary injection as é(z).

Consider an economy in which only one asset is traded. The single asset
may be quite complicated, however. Specifically, we allow an arbitrary, one-

8

period, dollar denominated security,” one unit of which pays b(s,z') dollars

at the beginning of next period if today's shock is s; = s, and tomorrow's
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T
signal is z 4 = 2z « Thus, the return is a contingent claim that may depend
on the current—-period state, St» and the information about next period's state

that is known at the time the security matures, 2z 4;. In this notation, then,

1.

an ordinary (non-contingent) one-period nominal bond is one with b(s,z')
Let q(s,z) be the price of such a security when the last period's state
was s and the current signal is z, and consider the decision problem of a
consumer who holds cash balances m (after all money transfers and securities
redemptions), when available information is (s,z). Let F(m,s,z) denote his
maximized objective function. His objects of choice are contingency plans
(measurable functions on $) for goods purchases x1(s) and xz(s) and end-of-
period cash holdings x3(s), and quantities for bond purchases x; € R and

money holdings x5 € IR,. These choices must satisfy the constraints:

(5.1) q(g,z)x4 + X - m <0
(5.2) p(s)xl(s) - x5 <0, all s €S8
(5.3) p(s)[xl(x) + xz(s)] + x3(s) - % - p(s)y(s) € 0, all s € S,

To rule out "Ponzi schemes,” we also require:

(5.4) X, € A £ [-a,a] for some 0 < a { =,

4
Let ¢(m,s,z) < (B(s))3 x A x R, be the set of functions x;,X,,x3 and values
x4, and xg satisfying these constraints. Then the value function F must

satisfy:
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F(m,;,z) = max {E [U(xl(s),xz(s))
x€6(m,s,z) S
(5.5) ' ~ 1
x,(s) + x,b(s,z ) + g(z ) -1 ' -
+ B Ez|[F( 3 4 , Sy Z )I s] ' s,z]}.

A 1
g(z )
As in section 2, the equilibrium conditions include the market clearing
conditions (2.5) and X3 = Xg = l. 1In addition, net securities trades must be
zero: x4 = 0. Associating the multipliers w(s) and v(s) with the constraints
(5.2) and (5.3), as in section 2, the necessary conditions for the maximum

problem (5.5), evaluated at these market—clearing quantities, include

(2.7)-(2.9). The other first-~order conditions are:

(5.6) BEZ,[Fm(l,s,z') = 1, I s] - v(s) =0, all s €8,
glz )
(5.7) BES z,[Fm(l,s,z')-héglé—z-l E,z] - Kq(g,z) =40,
? glz )
(5.8) A = E_[w(s) + v(s) | s,2] = 0,

where A is the multiplier associated with (5.1). 1Its value in turn is given

by the envelope condition
(5.9) Fm(l,E,z) = X.

Now, substituting for A and Fm(l,s,z') from (5.9) and (5.8), (5.6)

becomes

(5.10) v(s) = BEZ,[ES,[W(S') + v(s') l s,z'] = 1, I s]

g(z )
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= BE_, [(w(s ) + v(s )) — | sl
g(s )
This reproduces equation (2.12). Hence the system (2.6)-(2.9) plus (2.12)
also describes the equilibrium behavior of c(s), p(s), w(s) and v(s) for the
economy with securities trading. It follows that the analysis of sections 2-4
applies to this economy as well.
To obtain the equilibrium securities price q(s,z), substitute from (5.9)

and (5.8) into (5.7) to obtain:

(5.11) BEs,s' z'[(w(s') + v(s'))-hgﬁlé—l | s,2z]
’ g(z )

= q(g,Z)ES[W(S) + v(s) | s,z

With v(s) and w(s) "solved for" as in sections 2-4, (5.11) prices an
arbitrary, one-period security. It is clear that if many securities are
traded, (5.11) can be used to find the equilibrium price of each, and the
equilibrium quantity traded will be zero for each.

If the security is an ordinary one—period bond, then b(s,z’) =1, and
(5.11) reduces to

_ BE_[Gw(s ) * v(s )/E(s) | 5,2]
(5.12) q(s,z)

ES[W(S) + v(s) | ;,z]

E_[v(s) | s,2]

E_[w(s) + v(s) | s,2]

E_[U,(c(s))/p(s) | s,2]

E_[0,(c(s))/p(s) | 5,21

where the second line uses (5.10) and the third uses (2.7)-(2.8). If in
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addition the signal z, is a perfect indicator of the state s, then (5.12)

implies

U, (c(s))
- B v(s) -2
(5.13) q(S,Z) - V(S) + w(s) N Ul(C(S))’

so that the price of a one period nominal bond is equal to the marginal rate
of substitution between credit and cash goods.

It is clear from (5.12) that the stochastic behavior of the interest rate
(1/q(s,z) - 1), will depend critically on the nature of the information
available when securities are traded. But from the point of view of resource
allocation and welfare, the accuracy of that information is immaterial. Two
economies with the same preferences and the same joint stochastic process for
income and money growth will allocate resources in the same way, even if their
information structures differ.

We next turn to three examples that illustrate the behavior of bond

prices (interest rates) under very specific assumptions.

Example l: A Deterministic Case
Let the real goods endowment and the rate of money growfh be constant,
call them y and g, respectively, with g » f. Then (3.7) becomes

v = = h(v,y)

0 ™

1f g = B, (3.6) implies that any constant v » v*(y) is a solution to this
equation, and Lemma 2 then implies w = 0 and ¢y = c*(y). This is the
efficient equilibrium in which money is withdrawn from circulation at exactly
the rate of time preference.

If g > B, (3.6) implies that v < v*(y). In this case, the equilibrium



_31_

allocation is the unique solution to

Upleps v = ep) _ B
Upey, vy —ep) 8

If we let B=1/(1 + p) and g = 1 + %, then (5.13) implies

_B_ 1
17" T+pad+m

so that the price of a one-period nominal bond is the product of the real
factor, 1/(1 + p), and the inflation factor, 1/(1 + =®). It is this price to
which the marginal rate of substitution between credit and cash goods is
equated. As the rate of money growth m rises, this price falls, and agents
substitute against cash goods, which is to say, they economize on the use of

money.

Example 2: Serially Uncorrelated and Mutually Independent Shocks

Let n(s,A) = w(A), so that s; is serially uncorrelated and let y(sy) and
g(sy) be mutually independent. Then (3.7) becomes

v(s) = BE[——]E[h(v(s ),y(s ))I.

g(s )

Since the right side of this equation does not depend on s, the solution is a
constant function, v(s) = v.

Note that the expected value E[1/g(s)] will affect v, and hence

equilibrium consumption, but all other features of this distribution of g(s)
are irrelevant. The variability of the rate of money growth is of no
allocative importance. This example illustrates a very general feature of the

model, which is that many different monetary policies will lead to exactly the
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same allocation of real resources. Suppose that for a given stochastic
process s, and given functions g and y, we find v satisfying (3.7). Suppose
we then change monetary policy by choosing a new function é # g, but choose é
in such a way that v, y and é satisfy (3.7). Then clearly the equilibrium
real allocation remains unchanged. If bond trading takes place with perfect
information about the current state, then (5.13) implies that bond prices

(interest rates) will also show the same behavior under two regimes.

Example 3: Logarithmic Utility

Let U(cy,cp) = afn(ep) + (1 - a)&n(ep). Then ¢jUj(ey, ¥ = ¢}) = a,
c*(y) = ay, and v*(y) = @, Therefore h(v,y) = a if v € V*(y) = @, and

h(v,y) = v if v > v*(y) = a, so that equation (3.7) becomes

v(s) = Bf max[a,Y(s )] n(s,ds').
g(s )

Hence, under Assumption V,

v(s) = aBE] 1, Is] < a,

g(s )

is a solution, since v(s) + w(s) = max{a,v(s)] = a, for all s.

Then Lemma 2 and 3.4 imply that the equilibrium goods allocation is

(cy(s), cp(s)) = y(s)( vis) ~ 8 )s

1l —a+ v(s)? 1 -a+ v(s)
and (5.13) implies that the price of a one-period nominal bond is

v(s)

a

a(s) = = BE[1/g(s ) | sl.

In this simple example, then, any type of correlation between current money
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growth g(s) and the current nominal interest rate, 1/q(s) - 1, is possible,
depending on the serial correlation properties of the shocks. Thus the model
allows the correlation between money growth and the nominal interest rate to
be positive or negative, strong or weak. Equation (5.13) suggests that this

feature is quite general.

0. Conclusions

We motivated this paper, in part, by reference to attempts to use
statistical descriptions of lead-lag relationships in aggregate time series as
a way of discriminating between broad classes of theoretical models:

"classical,” "Keynesian,” and so on. In one sense, the theoretical direction
we have taken is complementary to this line of econometric work, for our model
is stochastic and its "predictions”™ take the form of the entire joint
distribution of endogenous and exogenous variables, given preferences,
technology and the distribution of exogenous shocks. Our emphasis, moreover,
has been on structures simple enough so that these predicted distributions
might be calculated, and on methods of analysis that might assist in such
calculations. While we have not computed numerical solutions of the model as
yet, many qualitative possibilities are clear enough from the analysis we have
presented. Reviewing some of these will be a good way to conclude the paper.
Consider first the joint distribution of real output, the money growth
rate, and the inflation rate only. Suppose that Y¢ in the model is identifed
with observations on real output and g, — 1 with the observed growth rate of
some measure of the money supply, and that the state of the system consists of
current and lagged values of these two variables, Sy = (yt_n, 8t—ps ***» St
yt). Since p(st) was expressed as a ratio of the price of goods to the
current money supply, the nominal price level in the model is Mtp(st). The

theoretical counterpart to the rate of change in a general price index—-the
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inflation rate——is thus M¢p(s;)/My_1p(s¢~1) — 1 = g¢p(sy)/p(sp_y) — 1. What
can be said about relationships among these variables?

No statements about "causation" in the statistical sense have been ruled
out by our assumptions. However, if y, were really an exogenous endowment,
one would not expect g, to "cause” Yis in either the ordinary or the
statistical sense of the word. But if the monetary authority reacts to real
shocks, gy will in general “"cause” y . These are simply observations about
shocks taken to be exogenous in the theoretical model.

Next consider the inflation rate gtp(st)/p(st_l) - 1. From (2.7) we see
that p(s) = U;/(v + w). Now for concreteness consider example 3 in section
5. In that example, v + w = a, and U} = a/c), so that p(s) = 1/c;(s).
Therefore, from the solution for 1/c] we see that p(s;) depends on y¢ and
E{l/g, 41 | s;]. Therefore in this, as in the general case, the inflation rate
will depend upon lagged values of the two state variables——money growth and
real income-—-but not on its own lagged value.

In general, in recursive models, lagged values of variables that are not
themselves state variables (such as the inflation rate in our model) should
not help to predict anything (including their own future values) provided a
complete list of state variables is included in the set of variables one is
conditioning on. In practice it is rare to find variables of which none of
the lagged values contains information useful for prediction. This suggests
that in the typical case in practice, there are important state variables that
are not included in the set of observations one has available. There is a
second way to match our theoretical variables with observations that is more
consistent with this conclusion, and also with common sense.

Let us think of y. as an unobservable "productive capacity” or "full

income,” credit goods cy. as "leisure,” and cash goods cj, as measured
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output. (With three consumption goods we could easily treat intermediate
cases, but for the present purposes this extreme example will suffice.) As in
the first example, take the state vector to be s, = (yt_n, r-ns ***» &t

yt), but now treat the observed series as c)., g and the inflation rate. As
in the first example, take information at the time of securities trading to be
the money growth rate, g, as well as lagged values of all observables. Then
observed "output"”, cy, and the price level, p(st), will depend on
expectations about future money growth, g,,;, as well as on the current,
unobserved endowment, Ve Therefore, except by coincidence, the projections
of ¢14, g and the inflation rate gtp(st)/p(st_l) on lagged observables all
will now assign weight, or statistical significance, to all lagged

variables. It is clear from example 3 that the theory will not place any
restrictions on individual contemporaneous or lagged correlations.

Including securities, as in section 5, permits us to consider the likely
consequences of adding short term interest rates to the list of observable
variables whose empirical joint distribution we are considering. As with the
inflation rate, bond prices q, are not state variables in the model, so that
if the full state vector s; is treated as observable, q; should not help to
predict anything. Empirically, of course, interest rates and other securities
exhibit leading or “causal”™ relationships to many economic variables, strongly
suggesting that one wants to think of important components of s; as being
unobserved. In this case, it is clear from section 5 that q¢ will reflect (in
the language of efficient market theory) or be affected by early signals about
movements in s;, before these s movements affect other date t endogenous
variables. Hence it would be surprising if interest rates did not have strong
causal properties in the statistical sense, even in a system such as ours in

which the securities market plays no allocative role whatever.
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The model of this paper is narrowly "classical™ in the sense that if
changes in the stock of money do not alter the probability distribution of
future money growth, then they have an equiproportional effect on goods prices
and no other effects. No "rigidities™ or informational complexities are
present that would attentuate the effects of such a change. Yet even within
this severely limited framework, a very wide variety of statistically causal
relationships are consistent with the model. It is a kind of converse to this
observation that empirical summaries of these relationships are not likely to
be useful as diagnostic devices.

This is not to say that models of the type analyzed here are vacuous. On
the contrary, with a specific parameterization of preferences the theory would
place many restrictions on the behavior of endogenous variables. But these
predictions do not take the form of locating blocks of zeros in a VAR
description of these variables. While it would clearly be desirable to be
able to analyze more complicated models of this general type, it does not seem

likely that this particular feature of the equilibria will be reversed.
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Notes

lThis model is a special case of the one discussed in Lucas [1984] and is
very closely related to Lucas and Stokey [1983] and Townsend [1984]; the

reader is referred there for further discussion.

2One way to interpret "credit goods”-—-goods which do not need to be paid
for in cash--is as non—market goods, such as "leisure." We will make
illustrative use of this interpretation in section 6.

3With infinitely-lived agents and recourse to lump-sum taxes, the timing
of taxes and subsidies is immaterial, and there is no distinction between an
injection of money through a fiscal transfer payment and an injection through
an "open-market” purchase of government bonds. Hence, this convention will
not affect the results. See Lucas and Stokey [1983] for a parallel discussion
in which taxes are assumed to distort and this distinction is central.

4See Hutson and Pym [1980], chapter 8, for the terminology used and
results cited in this proof.

5Since U,(0,y)/U5(0,y) > 1, the cash-in-advance constraint is binding in
this solution, so p(s)cyj(s) =1 and the price level, p(s), is "infinite.” A
condition like (4.l1), below, is used in Brock and Scheinkman [1980] and
Scheinkman [1980] to rule out non-stationary equilibria that converge to
"barter,” as well as stationary barter equilibria in overlapping generations
models.

6Theorems 1~5 apply to the case in which the state space S consists of a
finite number of points and the transition function is described by a Markov
matrix

II=1[n,.] where =, = Pr{s. = s.ls = s, }.
1) 1] J 1

In this case (3.7) defines an operator T taking the set D =

{v e ® | 0<v; <A, i-= l,..,n} into itself. Since D is compact and

convex, Theorem 1 would in this case be an application of Brouwer's Theorem.

This is the route taken by Labadie [1984], Theorem 1, in a problem that is

technically very similar to ours.

7Specifically, let (Z,Z) be a measurable space, and let n: S x Z »
[0,1]. Assume that for each s € 8, n(s,*): Z » [0,1] is a probability
measure; and that for each B € Z, n{(*,B): S + [0,1] is S—measurable. It is
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then straightforward to define the required conditional expectations.

8The only restriction is that b: S x Z » IR be bounded and measurable.
Similarly, when analyzing the consumer's problem below, we assume that the
price function gq: S X Z » IR is measurable. The latter assumption is

vindicated by the equilibrium prices so derived, given in (5.12).
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