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The consequences of misclassification are analyzed.' The direc-

tion of the least squares bias is derived. An optimal regime 
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empirically with other classification rules. We then examine 

the Joint Executive Committee, a railroad cartel in the l880s. 

The econometric evidence indicates that reversions to noncooper-

ative behavior did occur for the firms in our sample, and 

these reversions involve a significant decrease in market price. 
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Switching Regression Models with Imperfect Sample Separation 
Information - with An Application on Cartel Stability 

by 

Lung-Fei Lee and Robert H. Porter(*) 

1. Introduction 

This article is concerned with the possibility of estimating 

a switching regression model and its application to a study 

on cartel stability. The switching regression model is the 

exogenous switching model proposed by Quandt [1972]. The 

regime switching problem in Quandt [1972] generalized a problem 

of mixture distributions (Day[1969]). The sample in this model 

is generated from distinct regression equations or regimes for 

each time period. If the investigator has a priori information 

on how the sample is partitioned into the underlying regimes, 

it is a switching regression model with known sample separation; 

otherwise, it is a model with unknown sample separation. The 

estimation of these models has been considered in Quandt [1972], 

Goldfeld and Quandt [1972], and Kiefer [1978,1980], among 

others. The switching regression model is appropriate for the 

study of cartel behavior when there are price wars, as the firms 

will change from cooperative behavior to noncooperative behavior. 

This model will allow us to exploit the fact that there will 

be periodic and stochastic switches or reversions between coop-

erative and noncooperative structures. 

Our econometric model, however, is different from the switch-

ing models in the econometrics literature in that there is 



additional imperfect sample separation (or regime classification) 

information available. In this article, we will generalize 

the switching regression model to take into account this extra 

information. We will analyze its potential use in the efficient 

estimation of the unknown parameters and the extra information 

that it can provide in the classification of the sample periods 

into different regimes. The consequences of misclassification, 

when this information is regarded as a perfect sample separa­

tion indicator, will be analyzed. This specification analysis 

should have implications on the consequences of misclassification 

in other models with switching; in particular, the disequilibrium 

market models of Fair and Jaffee [1972]. For the disequilibrium 

market models, many of the empirical studies assume that the 

direction of price changes provides perfect sample separation. 

This assumption is, however, unreliable and the consequences 

of misclassification of the sample for parameter estimation 

should not be neglected. 

This model formulation and the estimation methods will be 

employed to analyze the behavior of the Joint Executive Commit­

tee railroad cartel with weekly time series data and to test 

the proposition that observed price ward represented a switch 

from collusive to noncooperative behavior. 
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2. A Switching Regression Model with An Imperfect Regime Classi­

fication Indicator 

The classical switching regression model specified in 

Quandt [1972] consists of two regression equations, 

regime 1 

and 

regime 2 

for t = 1, •.. ,T • The vectors and are exogenous 

variables. The observed dependent variable Yt in each 

period t is generated either from regime 1 or from regime 2, 

but never both. The probability that the observation Yt is 

generated from regime 1 is assumed to be a constant A,AE(O,l). 

(2.1 ) 

(2.2) 

In some cases, one may know exactly whether the observed sample 

Yt is generated from regime 1 or regime 2 for each t. These 

are the cases of known sample separation. When sample separation 

information is available, each of the equations can, of course, 

be estimated by standard methods such as ordinary least squares 

(OLS). When sample separation is unknown, maximum likelihood 

estimation methods have been suggested by Go1dfe1d and Quandt 

[1972], Hartley [1978], and Kiefer [1980]. Other estimation 

methods based on moment generating functions are investigated 

in Quandt and Ramsey [1978] and Schmidt [1982]. 

In this article, we will consider the above switching regress­

ion model when some sample separation information is available, 

but this information is imperfect. Specifically, we suppose that 
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there is a dichotomous indicator for each t, which 

provides some sample separation information. For each period t, 

we define a latent dichotomous variable It where I = 1 t 

if the sample Yt is generated from regime 1; It = 0, otherwise. 

Thus is a measure of with measurement error. The 

measurement error of It is assumed to be independent of CIt 

and C2t or, equivalently, conditional on It' wt is independent 

The relation between and can best 

be described by a transition probability matrix 

w=l w=O 

I=l 

I=O 

where PII = Prob (wt = 11 It = 1), POI = Prob (wt = 11 It = 0), PIO = 1 - Pll 

and POO = 1 - POI' Let p = Prob (wt = 1) • Since Prob (It = 1) = A, 

it follows that p = APII + (1 - A)POI' 

In addition, we assume that CIt and c 2t are normally 

2 2 distributed, N(O,a
l

) and N(0,a 2 ), respectively, and, condi-

tional on It' the triple (clt,C2t,Wt) is independently and 

identically distributed (i.i.d.) for different t. The i.i.d. 

assumption rules out the possibility of serial dependence. 

Serial correlation can not be handled easily in switching regress-

ion models without perfect sample separation information. Let 

(2.3) 

be the probability density function for Yt in regime i, 
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i = 1,2. The joint density function for and is 

Since prob(wt=l, It=l)=APll,Prob(wt=O, It=l)A(l-Pll ), 

Prob(wt=l, It=O)=(l-A)POl and prob(wt=O, It=O)=(l-A) (I-POI)' 

prob(wt,It=l)=wt Pll+(l-wt ) A (l-Pll ) and Prob(wt,It=O)=wt • (l-AJP Ol+ 

(l-wt ) (I-A) (I-POI). Hence the joint density function for Yt 

and is 

f (yt,wt)=f l (Yt ) [wtAPll + (l-wt ) A (1-11.1)) +f2 (Yt ) [wt (l-A)POI 

+(l-wt ) (I-A) (l-P
Ol

)) 
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W 1-w 
= [f l (Yt ) APll +f2 (Yt ) (l-A)POl) t· [fl (Yt ) A (l-Pll ) +f2 (Yt ) (I-A) (l-POl)) t 

(2.4) 

On the other hand, the marginal density function for Yt is 

(2.5) 

which is a mixture of the density functions fl (Yt ) and f 2 (yt ). 

The regime classification indicator wt conveys some informa-

tion on sample separation if PlltPOl · When Pll=POl ' 

prob(wt!It)=prob(wt ) and the joint density function 

f(yt,wt)=g(y t )· [wtP+(l-wt ) (l-p)). Thus when Pll=POl ' the indicators 

wt do not contain any information about the equations in (2.1) 

and (2.2). The model without any sample separation information can 

be regarded as a special case in our general framework. On the 

other hand, when Pll=l and POl=O, the indicator wt provides 

perfect sample separation and 



When the regression functions (2.1) and (2.2) are identical 

except for the constant terms, we have a regression equation 

with an unobserved dichotomous variable It; 

and is a measure of with measurement error. This errors-

in-variables model has been studied by Aigner [1973] and 

Mouchart [1977]. The specification of the measurement relation 

between wt and It by a transition matrix is exactly the specifi­

cation originated in Aigner [1973]. Aigner shows that if some 

exogenous information (or estimate) is available for the covari-

ance between the regressor and the error of observation, a consis-

tent estimator can be derived by modifying the usual normal 

equations of ordinary least squares. Such information, however, 

is rarely available in practice. In a subsequent work, Mouchart 

[1977] provides a Bayesian approach.!! 

6 



3. Least Squares Bias 

When the regime classification indicator wt is not perfect, 

i. e., Pll":f 1 or P01":f 0, but is regarded as a perfect regime classi­

fication indicator, we have a misclassification problem. Mis-

classification of the sample {Yt } into different regimes may 

cause bias and inconsistency problems in estimation. Without 

loss of generality, suppose that the first Tl observations of 

the sample {Yt} are classified to regime 1 and the remaining 

observations to regime 2. Each of the equations (2.1) and (2.2) 

can then be estimated by the method of maximum likelihood or least 

squares. Since the distributions of and E:2 are normal, 

the least squares estimates (OLS) and the maximum likelihood esti-

mates (MLE) are the same after a degree of freedom adjustment 

of the MLE of the variances and 

without loss of generality, we will analyze the (asymptotic) 

bias of the OLS of the regression equation in regime 1. The OLS 

(3.1) 
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Since, conditional on It' £It 
1 T 

E(£ltIIt) = 0, iflt=lWtItXit£lt 

and wt are independent and 
1 T 

and ifl t=lWt (1-It )xit£2t con-

verge to zero in probability under general regularity conditions 

on the exogenous variables, e.g., and are uni formly 

bounded for all t. It follows that 

-1 

plim 81 = (Plim.¥l:=l wtXitXl t) (Pli~l:=lWtIt~i tXl t Bl 
T -+00 T -+00 T-+oo 

Suppose Xlt 

III = E (xitXlt) 

and X2t are stochastic regressors, and let 

and l12 = E (xi t X2t) denote the second order 

moments. Equation (3.2) becomes 

and the (asymptotic) bias is 

-1 
The bias is proportional to the vector 211l12B2 - Bl , and the 

(l-A)POl 
proportionality factor p is the conditional probability 

of misclassifying I = 0 
t 

into W = 1 
t 

given that 

analytical results can be derived for some special cases. 

More 

Consider the case where xl t = X2t for all t, i.e., equations 

(2.1) and (2.2) have the same regressors. The bias in (3.3) 

becomes 

(3.2) 

(3.3) 
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T+oo 
plimB -8 = (1-A)POl(8 -8) 

IIp 2 1 (3.4) 

and 

(3.5) 

The estimate 8
1 

converges in probability to a weighted aver-

age of 81 and 82 and the weights are the conditional probabil-

ities of classifying into w = 1 t 
given that The 

larger the probability POI of misclassifying regime 2 into 

regime 1, the larger the bias will be. Let 81j and 82j denote 

the jth component of the vectors 8
1 

and 82 . If the para-
A 

meters 81j and 82j are the same, the estimate 81j will be 

consistent. It will be biased upward if 82j > 81j and biased 

downward if 82j < 81j . When there is no misclassification of 

regime 2 into regime 1, i.e., POI = 0, there will be, of course, 
A 

no bias for 81 , independent of whether Pll=l. 

The OLS of crt is 

(3.6) 

where k is the dimension of the vector x lt . Its (asymptotic) 

bias can be analyzed in a similar fashion. Since I:=lwt (Yt-XltBl)
2 

TAT /\ 
= 2t =lWt (Yt -xlt 81 )Yt = It=lwt (ItYlt +(1-It )Y2t-Xlt 81)· 

(It y lt+(1-It )Y2t) , 
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in Goldfeld and Quandt [1976], and disequilibrium market models, 

see, e.g., Maddala and Nelson [1974]. The bias in equation (3.4) 

holds for two stage least squares estimation of structural equa­

tions in cases where the explanatory variables in the correspond­

ing structural equations are the same. The proof is similar and 

is omitted here. In the disequilibrium market models literature, 

sample separation information is usually unavailable. However, 

in many empirical studies, the investigators employ the sign of 

the first difference of the price time series to classify the 

sample into periods of excess demand or excess supply. This 

procedure may create a misclassification problem which should 

not be neglected. 

12 
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4. Maximum Likelihood Estimation and Asymptotic Efficiency 

is 

Given the sample {(Yt'wt ) !t=l, •.. ,T}, the likelihood function 

T 
L=l1 f(Yt'wt ) 

t=l 

13 

(4.1 ) 

Estimation of switching regression models without any sample 

separation information has been considered in Goldfeld and 

Quandt [1972], Quandt and Ramsey [1978], Hartley [1978], Kiefer 

[1980] and Schmidt [1982]. In this section, we consider the estima-

tion of our model by maximum likelihood methods. The E-M algorithm 

described in Hartley [1978] and Kiefer [1980] will be extended 

for the estimation of our model. The switching regression model 

without any sample separation information corresponds to the use 

of only the marginal likelihood of {Yt}. It is well known that 

if xl t = X2t for all t and there are no a priori restrictions on 

the parameter space, the equations in (2.1) and (2.2) can not 

be distinguished from each other if there is no sample separation 

information. This occurs because the names of the two regimes 

can be interchanged in this situation. The same problem still 

exists for our model with imperfect sample separation information. 

With the classification indicator wt ' the a priori assumption 

that Pll > 1/2 and Pao > 1/2 will distinguish the case 



w=l w=0 

I=l 

I=O 

from the following case 

w=l w=o 

I*=l pil pio 

I*=O POI P OO 

where I*=l-I, i.e., the names of the two regimes have been inter-

changed. We can distinguish between these cases because, for the 

14 

first case, we have Pll > 1/2 but for the latter case, pil (=P
01

) < 1/2. 

However, even if we know that Pll > 1/2 and P
OO 

> 1/2, if 

w*(=l-w) were to be used as the classification indicator for I, 

we could not discriminate between the following cases: 

w*=l w*=O w=l w=o 

IX=l p** 11 p** 10 I=l Pll P IO 

I*=O p** 01 p** 00 I=O POI POO 

In this distance, it is apparent that pii = POO and POO = Pll • 

Thus, as usual, we need to assume that there is a priori in for-

mation to distinguish between the two equations in (2.1) and 

(2.2) . 

2 
Given such a priori information, the parameters Sl' S2' vI' 

cr~ and A can be identified from the marginal likelihood function 

of {Yt }. Conditional on wt=l, the conditional density function 

of is 

.' 



APll 
and hence ---- and p 

(l-A)POI 
p are identifiable. Since the mar-

ginal probability p can be identified from the marginal likeli-

hood of {wt }, both the parameters and are identifiable. 

Let £ = Q,nL be the log likelihood function of L in (4.1). 

This log likelihood function is a sum of two components: 

(4.2) 

where 

T 
f'l = Lt=l Q,n g (Yt) (4.3) 

which is the log likelihood function of the sample {y
t

}, and 

T 
£2 = Lt=l Q,n h(wt!yt ) (4.4) 

where h(wt!yt ) is the conditional probability function of wt 

given Yt. It is well known that for some values of Bl , B2 , and 

2 02' the log likelihood function of the model without sample sepa-

ration information, i.e., £1' tends to positive infinity as 0~ 

goes to zero. The availability of imperfect sample separation 

information does not eliminate the unboundedness of the log likeli-

hood function £. The conditional probability function h(wtIYt) 

is 

15 



Evidently, the conditional probability that I =1 given 
t 

16 

is 

(4.6) 

Hence 

h(WtIYt)=Wt[PllP(lIYt)+Pol(l-P(lIYt)l] 

+ (l-wt ) [ (l-Pll ) P (11 Y t) + (1-P01)(l-P (11 Y t) 1] (4.5') 

Therefore, 

T 
\£2 I.2.It=11 Q,n h(wt\Yt) \ 

:::.I:=lltn[PllP(lll't)+Pol[l-P(lIYt ) 1]1 

+I:=1\Q,n[P10 p (l\Yt ) +POO(l-P(llyt > J) I 
T T 

2It=lmax(lQ,nP111, lQ,nP011>+It=lmax(lQ,nP101 ,1Q,nPool>. 

The last inequality follows from the fact that the extreme values 

of ax + b (l-x), x E [0,1], are attained at x=O and x=l. For any 

P11 , POl in (0,1), the log likelihood function £2 is bounded. 

Since £2 is bounded from below and £1 is unbounded from above, 

£ is unbounded from above. 

Even though the likelihood function is unbounded, Kiefer [1978] 

has shown that, for the model without sample separation information, 
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one of the roots of the log likelihood normal equations is con-

sistent and asymptotically efficient. Hartley and Mallela [1977] 

derived the same conclusion for the disequilibrium market model. 

Thus to estimate our model by the ML method, we will consider 

the solution of the normal equations. From the density func-

tion in (2.4), the conditional probability that It=l condi-

tional on Y w =1 t' t is 

and the conditional probability bhat I =1 conditional on 
t 

The first order derivatives of the log likelihood in (4.1) are 

as follows: 

T 
a Q,nL _ 1 L I as;-- 0'2 t=l!?(O Yt,Wt)x2t(Yt-X2tS2) 

2 
T 

aQ,nL 1 L I 2 2 
-2-= -4 t=lP (1 Yt'Wt ) [(Yt -xltS l ) - 0'1] 
aO' l 20'1 

aQ,n~ = 14 I:=lP (0 !Yt'wt ) [(Yt -x2t S2 ) 2 - O'~] 
aO' 2 20'2 

(4.7) 

(4.8) 

(4.9) 

(4.l0) 

{4.ll} 

(4. 12) 

(4.13) 



3£nL T [Wt l-wt 1 . 
-a-p = It=l p--l-p JP(lIYt,wt ) 

11 11 11 

T [wt l-wt 1 3 £nL _ \' - - --- P (0 I Y ,w ) 
ap- - Lt=l POll-POl t t 

01 ) 

Setting the above derivatives to zero, we have 

To solve the normal equations 3£nL = 0 where 
38 

8= (B~,B;,ai,a~'A'Pll'P01)" an iterative method is required. 

Since the equations in (4.16) - (4.22) are equivalent to 3~~L = 0, 

the root of the log likelihood normal equations is the root of 

the equations in (4.l6r(4.22). One can start with an initial 

value of 8, calculate the probabilities p(llyt,wt ) and 

p(Olyt,wt ) and use these in the equations (4.16)-(4.22) to obtain 

18 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

" 



a new value of 8, say 81 , Given 81 , new estimates of P(l\Yt'wt ) 

and P(O!Yt'wt ) can then be calculated from (4.7) and (4.8). The 

process can be iterated until convergence is obtained. The solution 

to this algorithm solves the likelihood equations. This iteration 

is a straightforward generalization of the iterative method for the 

model without sample separation information suggested by Kiefer [1980]. 

The iteration reduces to a set of weighted least squares estimators. 

The probability P(l\yt,wt ) is the conditional probability that the 

observation is from regime 1 and P(O\Yt'wt ) is the conditional 

probability that Yt is drawn from regime 2. The estimators of A, Pll 

and POI in (4.20), (4.21) and (4.22) are intuitively appealing. We 

note that wtP(i\yt,wt ) is the conditional joint probability 

Prob(It=i, wt=l\Yt'wt ), for i=O,l. As pointed out in Kiefer [1980], 

such iterative methods are related to the E-M algorithm (also see 

Hartley [1978]). 

Whenever PlljPOl' prob(wtIIt)jprob(wt) and the indicator wt 

will contain information on the equations in the two regimes. 

This additional information can be used to improve the efficiency 

of the estimation of the switching regression equations in (2.1) 

and (2.2), relative to estimation using only the sample {Yt}' 
a£ 1 a£ 2 

This occurs since £ = £1 +£2 and ae and ae are uncorrelated by 

construction. Therefore the difference between the information 

matrix of £ and the information matrix of £ 1 is 

which is a positive semi-definite matrix. In addition, the condi-

tional log likelihood £2 contains information about the 

19 
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and A. The conditional probability 

P(l\Yt) in (4.6) can be rewritten as 

(4.23) 

which is a quadratic logistic probability. When 2 2 
0'1 = 0'2' (4.23) 

becomes a linear logistic probability. The log likelihood £2 

in (4.4) with (4.5 1
) and (4.23) will provide estimates of some 

nonlinear functions of the parameters 81 ,82 ,0'1,0'2 and A in 

addition to the estimates of and These additional 

pieces of information are independent of the likelihood function 

£1 and hence they will improve the efficiency of the estimators 

of 81 ,82 , etc. For the model with known sample separation, the 

value of information has been addressed in Goldfeld and Quandt 

[1975] in the context of a disequilibrium model, via a Monte Carlo 

experiment; and Kiefer [1979] and Schmidt [1981] compared. the 

asymptotic variances in a normal mixbure model. As indicated 

by their numerical stimulations, the value of sample separation 

information is higher when the two samples are hard to disen-

tangle and goes to zero as the two distributions become far apart. 



5. Regime Classification and Probability of Misclassification 

Since the true regime which generates the sample Yt for each 

period is unknown, it may be of some interest to classify the 

observations into the underlying regime for each time period. 

This problem is a problem in discrimation analysis. For our model, 

several intuitively appealing methods can be used to classify the 

sample Yt into the underlying regimes. One possibility is to 

use the indicator wt to classify the sample. Thus, if wt=l, 

the underlying regime in period t would be classified to regime 1; 

regime 2, otherwise. Another possibility is to use the conditional 

probability p(lIYt) in (4.6). The observation at period t belongs 

to regime 1 if p(lIYt) > 0.5; regime 2, otherwise. On the other 

hand, since we have a sample consisting of both Yt and wt ' it 

may be useful to employ the conditional probability p(lIYt'wt ) 

in (4.7) and (4.8) instead of p(lIYt) to classify the regimes. 

The rule using the probability p(lIYt'wt ) is indeed the optimal 

rule in the sense of minimizing the total probability of misclassifi-

cation. 

Let be the probability function of w 
t 

on regime i, i=1,2. The joint density function for 

in (2.4) can be rewritten as 

where 

and 

conditional 

and 

(5.1) 

(5.2) 

21 
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(S.3) 

A classification rule Dt for each period t may be thought 

of as an ordered partition Dt = <Dlt ,D2,t> of the sample space 

of (Yt'wt ), where Dt assigns period t to regime i if 

and only if (Yt'wt ) EDit' For any classification rule, misclassi­

fication may occur. Let pct(il j} be the probability of classi­

fication of the sample (Yt'wt ) from regime j to regime i. 

pct (112} and pct(2Il} are thus the misclassification probabilities 

from one regime to another; 

and 

Since our sample (Yt,wt ) is a mixture of continuous and dis­

crete variables, the summation and integration operators are used 

in (S.4) and (S.S) with respect to and in 

respectively. The total probability of misclassification C(Dt } 

for period t is 

The optimal partition Dt = <D~ t' D~t> is the partition which 

minimizes the total probability of misclassification, i.e., 

(S .• 4) 

(S • S) 

(S.6) 



It is well known (Anderson [1952]) that the optimal partition is 

and 

Since Yt is a continuous variable, the probability that 

Afl (Yt)Ql (wt ) = (1-A)f2 (Yt )Q2(wt ) is zero. It is straightforward 

to show that the classification rule that the sample (Yt,wt ) 

be classified to regime 1 :i-l and only if p(llyt,wt ) > 0.5, 

is exactly the above optimal rule.~ 

The probabilities of misclassification can be evaluated by 

the equations (5.4), (5.5) and (5.6). For the classification 

rule using wt only, the probability of misclassifying an obser­

vation from regime 2 to regime 1 is POI; the probability of 

misclassification of regime 1 to regime 2 is PIa' and the total 

probability of misclassification is APIO+(l-A)POl. The computa­

tion of the other two classification rules, which are based on 

23 

conditional probabilities, is relatively more complicated. Consider 

222 
the case where °1=° 2=0. Taking the logarithmic transformation of 

the discrimination scores Afl(Yt)Ql (wt ) and (1-A)f2 (Yt)Q2(wt ), 

we have (Yt'wt ) EDit if and only if 

(5.7) 

or, equ1valently, 

(5.8) 



The left hand side expression is Fischer's linear discrimination 

function. 

in and 

distance. 

When oi = 0;, the optimal classification rule is linear 

212 
wt · Let I I d t II = '2 (xl t 61 - X2t ( 2 ) be the Mahalanobis 

o 
If the observation in period t comes from regime 2, 

Y t = x 2t 62 + E2t and equation (5.8) implies that 

It follows that 

24 

(5. 9) 

where ~(.) is the standard normal distribution function, and 

hence the probability of misclassification of regime 2 to regime 1 

is 

p ct (112) =~ (5.10) 

Similarly, 

POO I-A 1 21 (l-w ) 9,n- + 9,n- - -II d II 
t PIO A 2 t 

(5.11) 

and 



(1-~)P01 1· 2] (l-A) 21 
.Q,n ~p - 2 1ldt II .Q,n Po 0 _ 1.11 d II 

I - 11 AP 2 t 
P t (2 l)-ill II II P11 + ill 10 

c d t ---;-;-II-=-dt--:-;-II ---; P10 

The total probability of misc1assification for D* 
t 

is 

The classification rule based on P(lIYt) is equivalent to classi­

fying period t to regime 1 if and only if 

which is the familiar discrimination rule for a mixture of normal 

distributions. The probability of misc1assification of regime 1 

to regime 2 is 

the probability of misc1assification of regime 2 to regime 1 is 

and the total probability of misc1assification for this rule is 

All these probabilities become small when the distance d t is 

1arge.}'/ 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 
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When 
2 2 
al~ 02' the discrimination function is quadratic in Yt 

and linear in and so the computation of the misclassification 

probabilities is more complicated. In this case, monte carlo 

simulation methods may allow us to evaluate these probabilities. 

The above probabilities are functions of unknown parameters, but 

these parameters can be consistently estimated by the relevant 

consistent estimators. Discriminant analysis with mixtures of 

continuous and discrete variables has been considered in Chang 

and Afifi [1972], Krzanowski [1975] and Goldstein and Dillon [1978]. 

The models they considered differ from ours. The density functions 

of the continuous variables for each regime conditional on the 

discrete variables are assumed to be normally distributed and 

hence their marginal distributions are mixtures of normal distribu-

tions. For our model, the marginal distribution of Yt for each 

regime is normal and the distribution of conditional on 

is a mixture of normal distributions. 



6. The Joint Executive Committee and Cartel Stability 

In the following two sections, the above methodology will be 

applied to weekly time series data on the Joint Executive Committee 

(JEC) railroad cartel from 1880 to 1886. We estimate the para­

meters of demand and supply functions for the industry, and iden­

tify periods in which firms were behaving collusively, as opposed 

to noncooperatively. These different behavioral rules are reflected 

by differing supply functions. Thus we estimate a simultaneous 

equations market model, where the supply curve is drawn from one 

of two possible regimes. 

The JEC was a cartel which controlled eastbound freight 

shipments from Chicago to the Atlantic seaboard in the 1880s. 

(Historical descriptions of the JEC are contained in MacAvoy [1965] 

and Ulen [1978].) Grain shipments accounted for 73 percent of all 

dead freight tonnage handled by the JEC. The railroads also 

handled eastbound shipments of flour and provisions but, with only 

a few exceptions, the prices changed for transporting these commodi­

ties were tied to the grain rate. While different railroads 

shipped grain to different port cities, most of the wheat handled 

by the cartel was subsequently exported overseas, and the rates 

charged by different firms adjusted to compensate for differences 

in ocean shipping rates. Finally, differences in delivery speeds 

were of negligible importance. Thus the assumption that a good 

of homogenous quality was sold seems to have been approximately 

satisfied. With little loss of generality, our attention will 

be focused on the movement of grain. 

27 



Price has typically been thought to be the strategic variable 

of firms in the rail-freight industry. Denote the market price 

in period t by Pt' Since the products provided by firms are 

of approximately homogeneous quality, all firms will charge the 

same price in equilibrium. The total quantity of grain shipped 

in period t, Qt' is assumed to be a loglinear function of price, 

where Lt is a dummy variable equal to one if the Great Lakes 

were open to navigation, and {u2t} is a sequence of independently 

and identically distributed normal variables with zero mean and 

variance Here is the price elasticity of demand, and 

presumably negative. Also a 2 should be negative, reflecting 

a decrease in demand when lake steamers, the principle source of 

competition for the JEC, were operating. This demand equation 

will be invariant across regimes. 
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(6.1) 

The price equation will vary across regimes to reflect collusive 

or Bertrand behavior on the part of firms. In the case of the 

JEC, the cartel agreement took the form of market share allotments. 

Firms set their rates individually, and the JEC office took weekly 

accounts so that each railroad could see the amounts transported 

as well as an index of listed prices. The actual market share 

of any particular firm would depend on both the prices charged 

by all the firms as well as on unpredictable stochastic forces. 

The internal enforcement mechanism adopted by the JEC was a variant 

of a trigger price strategy. According to Ulen [1978], there 

were several instances in which the cartel thought that cheating 

on the agreement had occurred, in the form of secret price cutting. 



Prices were then cut in response for a time, at which point prices 

returned to collusive levels. 

The inference problem that the firms faced in deleting cheat­

ing is quite similar to that originally posed by Stigler [1964]. 

As is pointed out by Green and Porter [1981], in an uncertain 

environment such as that faced by the JEe, a collusive price 

agreement can be maintained if firms occasionally revert to 

noncooperative behavior, i.e., engage in a price war, in response 

to suspected cheating. In this case, since firms are price setters, 

this involves reverting to Bertrand behavior, or pricing a.t 

marginal cost. Such an enforcement mechanism will provide the 

correct incentives for firms to adhere to the cartel agreement. 

A firm which considers a secret expansion of output above the 

collusive level must trade off immediate profit gains with the 

increased probability that the other firms will suspect cheating, 

thereby increasing the likelihood of lower future profits. In 

equilibrium, then, price wars are triggered solely by unpredictable 

disturbances, as member firms have no incentive to cheat. The 

predictable fluctuations in demand that resulted from the annual 

opening and closing of the Great Lakes to shipping, which determine 

the degree of outside competition, did not disrupt industry con­

duct but rather, rates adjsuted systematically with the lake navi­

gation season. 

Suppose It is a latent dichotomous variable which equals 

one when the industry is in a cooperative regime, and equals 

zero when the industry witnesses a reversionary episode. The price 

setting equation is then specified as 
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(6.2) 

where St is a vector of exogenous variables which explain some 

variations in prices over time, including the Great Lakes naviga­

tion dummy variable and dummy variables which reflect entry and 

acquisitions in the industry. In some industries, entry has trigger­

ed price wars, which may represent a predatory response on the part 

of the original firms, or just the outcome of a more uncertain 

environment. In the case of the JEC, entry occurred twice between 

1880 and 1886. It appears that the cartel passively accepted the 

entrants, allocating them markets shares, and thereby allowing 

the collusive agreement to continue. The reason for this is 

probably that when a firm entered the rail-freight industry in 

the late nineteenth century, it faced a "no-exit" constraint 

(Ulen [1978], pp. 70-74). Thus for the JEC, entry does not seem 

to have cause reversions to noncooperative behavior. The parameter 

82 should be positive, reflecting the higher prices charged in 

cooperative periods. This functional form thus involves only the 

intercept of the price equation changing across behavioral 

regimes. As is demonstrated in Porter [1982], this occurs because 

there is a constant elasticity demand curve, in conjunction with 

constant elasticity of individual firm marginal costs with respect 

to own output. (In Porter's econometric work, marginal cost was 

found to be approximately constant, at least locally.) If coopera-

tive regimes involved pricing at joint-profit maximizing levels, 

then 82 should be an exact function of aI' the demand elasticity. 

However, in an uncertain environment, an optimal cartel trigger 

price strategy will not typically involve pricing at joint-profit 



maximizing levels. There is a trade-off between single period 

joint profits and the incentive to cheat, which can be reduced 

only by increasing the severity of punishing reactions. Thus we 

will not constrain S2 to depend on a l . 

In summary, price wars should be caused by unpredictable dis-

turbances rather than by entry or predictable fluctuations in 

demand. The switching of the dichotomous indicator It is thus 

assumed to be governed by the binomial distribution; 

I = 1 t with probability A 

= 0 with probability I-A. 

Note that if trigger price strategies were actually employed by 

the JEe, the {It} sequence should follow a Markov process of 

length equal to the length of reversionary periods. Rather than 

attempt to estimate the simultaneous equations switching regression 

model of (6.1) and (6.2) subject to a constraint of this sort, 

which would be relatively difficult and costly, we have chosen 

to adopt the above formulation. 
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7. Data, Empirical Analysis and Results 

A principle function of the JEC was information gathering 

and dissemination to member firms. Weekly accounts were kept 

in an effort to keep members abreast of developments in the 

industry. A list of variables used in the estimation is as 

follows: 

P grain rate, in dollars per 100 lbs. 

Q total quantity of grain shipped, in tons. 

L dummy variable; 1 if Great Lakes were open to navigation, 

o otherwise. 

W regime classification indicator; 1 if colluding reported by 

Railway Review, 0 otherwise. 

DEl dummy variable; 1 from week 18 in 1880 to week 10 in 

1883; 0 otherwise; reflecting entry by the Grand Trunk 

Railway. 

DE2 dummy variable; 1 from week 11 to week 25 in 1883, 

o otherwise; reflecting an addition to New York Central. 

DE3 dummy variable; 1 from week 26 in 1883 to week 11 in 1886, 

o otherwise; reflecting entry by the Chicago and Atlantic. 

DE4 dummy variable; 1 from week 12 to week 16 in 1886, 0 other­

wise; reflecting acquisition of the Chicago and Atlantic. 

WK£ a set of seasonal dummy variables; each year was segmented 

into thirteen four-week segments; £ refers to the £th 

segment. 

The sample consists of weekly data from week 1 in 1880 to week 16 

in 1886. The sample size is 328. The quantity variable, Q, is a 
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reasonably accurate measure of the total tonnage of grain shipped 

by the members of the cartel. The price variable, P, is an index 

of prices charged by member firms and was provided by the JEC. 

The Great Lakes navigation dummy variable, L, documents when the 

JEC faced its main source of competition. It would be preferable 

if the prices charged by the lake steamers had also been used in 

the econometric work. Unfortunately, that series was not available. 

The classification indicator, w, equals one unless the Railway 

Review, a trade magazine, reported that a price war was occuring. 

This series concurred with the reports of the Chicago Tribune-:-and 

other accounts in this period. This series was gathered by 

Ulen [1978]. One reason for suspecting measurement errors in this 

series is that it conflicts sharply with an index of cartel 

adherence created by MacAvoy [1965]. The various DE dummy 

variables proxy structural change caused by entry, acquisitions 

or additions to existing networks. In each case, structural change 

is presumed to result in a once-and-for all shift in the price 

equation. The following TABLE 1 gives some simple summary statistics: 

!:Variable 
Q,n P 
Q,n Q 
L 
W 

DEI 
DE2 
DE 

I DE~ 

TABLE 1: Summary 
~lean 

-1.4387 
10.0371 

0.5732 
0.6189 
0.4238 
0.0457 
0.4329 
0.0152 

Statistics 
Standard Deviation 

0.2865 
0.4688 
0.4954 
0.4864 



The empirical model consists of two equations corresponding to 

equation (6.2) and equation (6.1): 

and 

12 
.Q,n Q = a O + al.Q,n P + a 2L + I a 2 +j WK.Q, + U 2 

j=l 

This model is formulated as a recursive simultaneous equations 

model. Equation (7.2) is a standard structural equation. It is 

overidentified. The dichotomous variable It in equation (7.1) 

is measured by wt ' possibly with error. This equation is a 

special case of the general switching regression model as described 

in section 2. Equation (7.2) can be estimated by two stage least 

squares (2SLS). To estimate equation (7.1), we need to modify 

slightly the iterative procedure described in section 4. Equations 

in (4.16), (4.17), (4.18), and (4.19) should be replaced by 

and 

where Y t stands for 
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(7.1 ) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

and S= (SO,Sl""S17) '. The expressions for A, Pll' POI are the 

same as those given in equations (4.20)-(4.22) without modification. 
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The estimation of equation (7.1) is reported in the first column 

of TABLE 2. 

TABLE 2 
Log Price Equation - Limited Information MLE* 

Variables ! Estimations with samples {Yt' WtJ Estimation with {YtJI 

I -1.4611 (.O48~-1.4738 -1.4729 (.0421) Constant (.0424) 
L -.1599 (.0587) -.1615 (.0159) -.1723 (.0153) 
DEI -.1919 (.0397) -.1827 (.0420) -.1835 (.0418) 
DE2 -.2114 (.0962) -.2096 (.0868) -.2077 (.0835) 
DE3 -.2922 (.0404) -.2813 (.0425) -.2769 (.0420) 
DE4 -.4002 (4.9029) -.3903 (6.587) -.3955 (5.9972) 
I .4725 (.0152) .4787 (.0148) .4830 (.0145) 
WK1 -.0543 (.0283) 
WK2 .0316 (.0416) 
WK3 .0052 (.0382) 
WK4 .0026 (.0334) 
WK5 -.0312 (.0477) 
WK6 .0072 (.0702) 
WK7 -.0161 (.0682) 
WK8 -.0071 (.0647) 
WK9 .0176 (.0692) 
WK10 .000026 (.0671) 
WK11 -.0224 (.0625) 
WK12 .0662 (.0631) 

2 .0131 (.0012) .0132 (.0011) .0126 (.0010) 0-

A .7160 (.0284) .7166 (.0278) .7178 (.0279) 
Pll .8109 (.0278) .8048 (.0273) ----
POl .1348 (.0391) .1489 (.0411) ----

tn -87.482 -92.859 -150.79 
likelihood (combined with L_j_ 

(*)standard errors are in paretheses. 

The estimates of the price equation are fairly sensible. Price 

was significantly higher in cooperative periods. In cooperative 

periods, price was 60 percent higher than the price in the noncoopera­

tive periods, ceteris parabus.!/ Equivalently, when there were price 

wars, the price was cut about 37.66 percent. When the lakes were 

open to navigation, price was significantly lower. But it was only 



about 14.78 percent lower. The coefficients of the structural 

dummies are also reasonable. All the entry and acquisition variables 

have negative coefficients and, except for the variable DE4 , they 

are statistically significant. Both instances of entry led to a 

fall in market price. All the seasonal dummies are not significant 

at conventional levels of significance. The second column in 

TABLE 2 presents the estimation of the price equation without the 

seasonal dummy variables. A joint test using the likelihood ratio 

statistic confirms their insignificance. The computed value of the 

minus two log likelihood ratio is 10.754. The chi-square statistic 

with 12 degrees of freedom at a ten percent level of significance 

is 18.55. The estimated regime probability A is 0.72 which implies 

that in seventy-two percent of our sample periods, the firms are 

cooperative. The estimate of Pll is 0.81 which implies that the 

Railway Review had reported colluding correctly in eighty-one percent 

of the sample periods. In about thirteen percent of the noncoopera-

tive periods, the Railway Review had not reported correctly. To 

compare the MLE of the price equation with and without the indicators 

{wt }, we also estimate the price equation using the sample {Yt} only. 

The estimates are reported in column three. A comparison of the 

second and third columns clearly reveals that there are essentially 

no differences between the two sets of estimates and the estimated 

standard errors.~/ These indicate that, at least for this data set, 

the asymptotic efficiency gains in using the indicators {wt } in 

addition to the observations of {Yt} are small. This occurs since 

the two distributions of 9.,n Pt are far apart. This is evident from 
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the fact that the difference of the means is 0.4787 and the variance 

is only 0.013.~/ This result supports the Monte Carlo simulation 

results in Schmidt [1981]. The likelihood value reported in the 

third column is computed from the function in L, where 

and it is evaluated at the estimates of the third column and 

A l\,T 
P = T-L wt · t=l 

This likelihood corresponds to the constrained likelihood 

function of the sample {Yt'wt } with the constraint Pll=POI · The two 

values of the log likelihood function in the second and third columns 

are directly comparable. It is apparent that the unconstrained 

version has a much better fit even though the estimates of the co-

efficients are quite similar. Obviously, the constraint Pll = POI 

is rejected. 

In TABLE 3, the probabilities of misclassification based on the 

various classification rules are computed. Since the switching 

regression equations have the same slope coefficients and the same 

variance, the probabilities of misclassification in (5.11)-(5.13) 

and (5.15)-(5.17) do not depend on the exogenous variables and hence 

the probabilities of misclassification are the same for all time 

periods. All these probabilities are estimated using the MLE in 

the second column of TABLE 2 with the exception of the probabilities 

in the third column of TABLE 3, which are estimated using the esti-

mates in the last column of TABLE 2. Since these probabilities are 

continuous functions of the unknown parameters in the model, 

the estimated probabilities are consistent. Comparing the three 



classification rules, the recommended classification rule has the 

smallest total probability of misclassification C(D), as 

we expected theoretically. The total probability of misclassifica­

tion using the indicator w only is about eighteen percent. 
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The use of the classification rules based on the conditional proba­

bilities p(·ly) and P(· Iy,w) reduces tremendously the total mis­

classification probability to only 1.7 and 1.2 percent, respectively. 

The two estimates of the probabilities in the second and third 

columns of TABLE 3 are slightly different. Since the estimates 

in the second column are computed by using more efficient estimates 

of the unknown parameters, these estimated probabilities may be 

more reliable than the estimates in the third column. The total 

probability of misclassification based on either of the two condi­

tional probabilities, p(lly) or p(lly,w), are indeed quite small. 

The reduction in the total probabilitity of misclassification 

by using the sample values of Yt and wt is only about one half 

percent in absolute value, compared with using the sample values 

of Yt only. However, in terms of relative magnitudes, the reduc­

tion is about 28 percent. The computation of the specific probabil­

ities of misclassification pc(2ll) and Pc (ll2) also reveals 

that the best classification rule is to use the whole sample 

(Yt'wt ) and the worst classification uses only the indicator wt . 

In TABLE 4, we investigate the compatibility of the three classifi­

cation rules in the actual classification of the 328 sample periods. 

Contingency tables for pairwise comparisons are provided. Compar­

ing the classification rules based on p(lly) and w, 66 periods 

out of a total of 328 have been classified differently. There 



are 57 periods classified differently if one compares the classifi­

cation rules based on wand p(lly,w). Only 9 periods are classi­

fied differently with the rules employing p(lly,w) and P(l\y). 

To summarize the compatibility of these rules we compute the 

measurement of association for the 2 x 2 tables based on the cross-

product ratio (Fienberg [1977], pp. 16-19). The association 

between the two classification rules based on P(l\y,w) and p(lly) 

is much stronger than their respective associations with the classi-

fication rule which uses the indicator w. On the other hand, 

the classification rule using the indicator w only has a rela-

tively stronger association with the optimal classification 

rule based on P(l\y,w), than with the classification rule based 

on P(l\y). 

TABLE 3 

Probabilities of Misclassification 

classification rules based on 

Error P(·\y,w) P(.\y) 
W probabilities MLE Consistent Est. 

P (2\1,w=1) .0034 --- ---
I 

---
I c 

P (2\1, w=O) .0254 --- --- ---c 
pc (2I l ) .0077 .0106 .0089 .1952 

P (1\2,w=1) .0727 --- --- ---c 
Pc (1\2, w=O) .0134 --- --- ---
P (112) .0222 .0314 .0265 .1489 c 
C (D) .0118 .0165 .0139 .1821 
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TABLE 4 

Compatibility of Sample Classification 
- Frequency Counts 

p(llxL~ P(1Iy)<·5 Totals 

w=l 187 16 203 

w=O 50 75 125 

Totals 237 91 328 

cross-product ratio = 17.53 

p(lly,w) > 0.5 P(l y,w) < .5 \ Totals 

w=l 190 13 203 

w=O 44 81 125 

Totals 234 94 328 

cross-product ratio = 26.91 

p(lly,w) >.5 p(lly,w) < .5 Totals 

p(lly) >.5 

p(1Iy)<·5 

Totals 

231 

3 

234 

cross-product ratio = 1129.33 

6 237 

88 91 

94 328 
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In TABLE 5, we report the OLS estimation of the log price equa-

tion with the classification indicator w as a regressor. The 

estimates in the first column are the OLS estimates with the sea-

sonal dummy variables included and those in the second column are 

the OLS estimates without the sea.sonal dummy variables. Comparing 

the OLS estimates with the maximum likelihood estimates in 

Table 2, the biases of the estimate of the coefficient of I 

in the price equation and the variance 0
2 are obvious. As 

theoretically predicated, the estimated value of the coefficient 

of I is indeed biased downward. In absolute magnitude, this 

bias is about 37 percent. In statistical terms, the difference 

is about 12 standard deviations. This coefficient indicates that 

the price of shipment would increase 35 percent instead of 60 

percent during cooperative periods. The OLS estimate of the 

variance 2 
o is three times larger than the consistent estimate. 

In addition, the dummy variables DE4 and WK3 have become signi­

ficant. These comparisons indicate clearly that measurement errors 

in the classification indicator should not be neglected. 

Finally, the demand equation in (7.2) is estimated by two 

stage least squares. The estimated equation is 

'" 9-n Q = 9.169 
(0.184) 

- 0.4367 L 
(0.1200) 

. 7420 9-n P + --- (seasonal dummies) -- + u 2 (0.1207) 

where the standard errors are in parentheses. In the demand 

equation, the predicted quantity demanded is much lower when the 

lakes were open. The demand elasticity is negative, as expected, 

and less than one in absolute value, indicating that a price increase 
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would be expected to increase total industry revenues. This 

is consistent with the notion that member firms have an incentive 

to raise prices to increase total revenues. In the absence of 

cost data, we cannot identify the joint profit maximizing price. 

TABLE 5 

Log Price Equation - OLS Estimation 

I Variables OLS Estimates 

Constant -1.351 (.068) -1.297 (.047) 

L -.112 (.062) -.161 (.022) 

DEI -.215 (.045) -.218 (.042) 

DE2 -.168 (.064) -.169 (.064) 

DE3 -.294 ( . 047) -.298 (.044) 

DE 406 (101) 4 - . . - 390 . ( 097) . 
W .303 (.025) .301 (.024) 

WK1 -.007 (.055) 

WK2 .OS5 (.055) 

WK3 .131 (.056) 

WK4 .051 (.059) 

WK5 -.018 (.080) 

WK6 -.025 (.080) 

WK7 
-.042 (.080) 

WKS .019 (.081) 

WK9 .043 (.OSl) 

WK10 -.052 (.OSl) 

WK11 -.020 (.080) 

WK12 .073 (.080) 

0
2 .0385 .0394 

-2 
R .5310 I .5207 



8. Conclusions 

This article was motivated by an empirical problem on the 

study of cartel stability. The empirical study employed 

weekly time series data on the Joint Executive Committee railroad 

cartel from 1880 to 1886 to test the proposition that observed 

price wars represented a switch from colluslve to noncooperative 

behavior. The model is an exogenous switching regression model 

with unknown regime switching. However, some information was 

available on sample separation; a trade magazine, the Railway 

Revie~ reported in each of the sample periods whether a price 

war was occuring or not. However, this series may not be at all 

accurate. We have derived the direction of the least squares 

bias when an imperfect regime classification indicator is regarded 

as perfect and used to classify the samples into the different 

regimes. The empirical results confirm that the biases are substan­

tial. An efficient estimation method is suggested to take into 

account the imperfection of the indicator. The usefulness of this 

extra information in regime classification is investigated. 

This extra information helps to reduce regime classification errors. 

An optimal regime classification rule is derived and compared theo­

retically and empirically with others. The econometric evidence 

indicates that reversions to noncooperative behavior did occur in 

the Joint Executive Committee, with a significant decrease in market 

price in these periods. 
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Footnotes 

(*) We would like to thank Professor Gary Chamberlain for valuable 

discussions on the problem of classification rules. Any errors 

are our own. Lung-Fei Lee appreciates the financial support 

of the National Science Foundation under Grant SES-800648l to the 

University of Minnesota. Robert Porter benefited from a Sloan 

Foundation Grant to the University of Minnesota Economics Department. 

y Since the likelihood function is not very simple, computation 

of the moments of the posterior distribution will rely on numerical 

techniques. The requisite computational effort is rather large 

for a sample size of more than fifty as indicated by Mouchart. 

?:/ In the context of a disequilibrium market model, both 

Gersovitz [1980] and Kiefer [1980a) recommend the (similar) condi-

tional probability classification rule. In their articles, they 

have not provided a theoretical justification for their recommenda~ 

tion. Their recommended classification rule is indeed optimal 

according to the same argument that we provide here. 

~/ [ 1 2] a --x 
¢ --x~ for x > 0 is The derivative~ of the function 

-~~ [a -!x2] [1+ ~~ 1 and hence the function is decreasing on the 

range x 2 
> -2a. It goes to zero as x tends to positive infinity. 

i/ This is computed from the ratio 

where PI is the expected price when 

expected price when I = O. The ratio 

Po is the 

does not depend 

44 



on the exogenous variables x as they are cancelled out. 

~/ The standard errors in the TABLE 2 are evaluated by the 

cross-product of the first order sample derivatives evaluated at 

the corresponding estimates. The inequalities of the standard 

errors need not necessarily hold for finite samples. 

~/ Further evidence is provided by the small classification 

errors reported in TABLE 3 using the classification rule based on 

p(lly)· 
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