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Abstract

An important purpose in pooling time series and

cross section data is to control for individual-specific

unobservable effects which may be correlated with other

explanatory variables: e.g., latent ability in measuring returns

to schooling la earnings equations or managerial ability In

measuring returns to scale in firm cost functions. Using

instrumental variables and the time-invariant characteristic

of the latent variable, we derive

1) a test for the presence of this effect and for the over-
identifying restrictions we use;

2) necessary and sufficient conditions for identification of
all the parameters in the model; and

3) the asymptotically efficient instrumental variables estimator
and conditions under which it differs from the within-groups
estimator.

We calculate efficient estimates of a wage equation from the

Michigan Income dynamics data which indicate substantial differences

from within-groups and Balestra-Nerlove estimates - particularly

a significantly higher estimate of the returns to schooling.
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1. Introduction

An important benefit from pooling time series and

cross section data is the ability to control for

individual-specific effects - possibly unobservable - which

may be correlated with other included variables in the

specification of an economic relationship. Analysis of

cross section data alone can neither identify nor control

for such individual effects. A specification test proposed

by Hausman (1978) and subsequently used in a number of

applied contexts has indicated that correlated individual

effects may be present in many econometric applications to

individual or firm data. 1

The traditional technique to overcome this problem

has been to eliminate the ^individual effects in the sample

by transforming the data into deviations from individual

means. However, the least squares coefficient estimates

from the transformed data, (which are known as "within- groups"

or "fixed effects" estimates), have two important shortcomings:

(1) all time invariant variables are eliminated by the

transformation so that their coefficients cannot be estimated,

and (2) under certain circumstances, the within-groups

estimator is not fully efficient since it ignores variation

across individuals in the sample. The first problem is

This technique corresponds to Model I of the analysis of
variance, e.g., Scheffe (1959) • wnen used in analysis 01

covariance, errors in measured variables can create a serious
problem since they are exacerbated by the data transformation.
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usually the more serious, since in many applications,

primary interest is attached to the unknown coefficients

of these variables, e.g., to the coefficient of schooling

in a wage equation specification.

To consider a specific model, let

(1.1) Y
it

= X
lt

B + ZiY + a
jL

+ nlt
i=l,...,N; t=l,...,T

where 3 and y are k and g vectors of coefficients associated

with time-varying and time-invariant variables, respectively.

The disturbance n., is assumed to be uncorrelated with the
it

columns of (X,Z,a) and has zero mean and constant variance a 2

n

conditional on X., and Z. . The unobservable individual effect,
it i

a., is assumed to be a time-invariant random variable,

distributed independently across individuals.

The primary focus of this paper involves the potential

correlation of a. with the columns of X and Z. If such correl-

ations are present, least squares (OLS) or generalized least

squares (GLS) will yield biased and inconsistent estimates of both

B and y Transforming the data into deviations from individual

means eliminates the correlation problem by eliminating the

time-invariant a.; unfortunately, at the same time, it

eliminates the Z , precluding estimation of y. Another

possible approach is to find instruments for those columns

of X and Z which are considered potentially correlated with

Oj and perform instrumental variables estimation on equation
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(1.1) or on a single cross-section. But It may be difficult

or impossible to find appropriate instruments, excluded

from equation (1.1), which are not correlated with a . For

instance, use of family background variables as instruments

for schooling in a wage equation seems unlikely to eliminate

bias, since the unobserved individual effect is likely to be

correlated with measures of family background.

Specifications similar to equation (1.1) have been

used in at least two empirical contexts. If equation (1.1)

represents a cost or production function and a. denotes the

unobservable managerial efficiency of the i'th firm, Mundlak

(1961) has suggested the use of the within-groUps estimator

to produce unbiased estimates of the remaining parameters. If

Y., denotes the wage of the i'th individual in the t'th time

period, one of the Z!s measures his schooling, and a. denotes

the unmeasureable component of his initial ability or ambition,

then equation (1.1) represents a specification for measuring

the returns to education. To the extent that unmeasureable

ability and schooling are correlated, the OLS estimates are

biased and inconsistant. Griliches (1977) has relied on an

instrumental variables approach, using family background

variables excluded from equation (1.1) as instruments. Another

approach is the factor analysis model, pioneered in this

context by Joreskog (1973) and applied to the schooling

problem by Chamberlain and Griliches (1975) and Chamberlain
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(1978). The factor analysis approach relies for identification

upon orthogonality assumptions which must be imposed on

observable and unobservable components of a. . The method

presented in this paper does not assume a specification of

the components of a. and may be less sensitive to our lack

of knowledge about the unobservable individual-specific

effect.

Insteadj our method uses assumptions about the correlations

between the columns of (X,Z) and a. . If we are willing to

specify which variables among the included right hand side

variables of equation (1.1) are uncorrelated with the individual

effects, conditions may hold such that all of the g's and y's

may be consistently estimated. By combining the unbiased

within-groups estimates of the 3's with the biased between-

groups estimates of the 3's and y's, adjustments can be made

which produce consistent estimates of y and more efficient

estimates of 3. An alternative approach which uses these

assumptions observes that the columns of X., which are un-

correlated with a. can serve two functions because of their
l

variation across both individuals and time: (i) using

deviations from individual means, they produce unbiased

estimates of the 3's, and (ii) using the individual means,

they provide valid instruments for the columns of Z that

are correlated with a.

.

One needs to be quite careful in choosing among the
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columns of X., for those variables which are uncorrelated
it

with a... For instance, in our returns to schooling example, it

may be safe to assume that health status and age are uncorrelated

with a. , but one might be reluctant to assume that unemployment

and a. were uncorrelated. An important feature of our method is

that in certain circumstances, the non-correlation assumptions

can be tested, so that the method need not rely totally on a

priori assumptions.

The plan of the paper is as follows. In Section 2, we

formally set up the model and consider estimates proposed in

the literature for cases in which a. is uncorrelated or
1

correlated with some of the independent variables. In the latter

case, we propose a consistent but inefficient estimator of all

the parameters in the model. In Section 3> we discuss a

variety of tests which determine when such correlations may be

present, generalizing results of Hausman (1978). In Section 4,

we find conditions under which the parameters are identified

and develop an efficient instrumental variables estimator that

accounts for the variance components structure of the model.

We derive a test of the correlation assumptions necessary for

identification and estimation, applying results from Hausman

and Taylor (1980). Section 5 connects our results with

Mundlak's (1978) paper and derives Gauss-Markov properties

of our estimator in special cases. Finally, in Section 6,

we apply the procedure to an earnings function, focusing

on the returns to schooling. These results indicate that when
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the correlation of a
±
with the independent variables is

taken into account, traditional estimates of the return to

schooling are revised markedly.

2. Preliminaries

2.1 Conventional Estimation

We begin by developing the model in equation (1.1)

slightly and examining its properties in the absence and

presence of specification errors of the form E(a. |X., ,Z. ) ^
f 1 1T> 1

Let

(2.1)

Y
it

= x
it e + zs + e

it

e
it

= a
i

+ n it

where we have reason to believe that E(e . , |X. , , Z. )
=

E(a.|X.
fc
,Z.) ^ 0. That is, some of the measured variables

among the X. . and the Z. are correlated with the unobser-

vable individual-specific effects a.. It will prove con-

venient to distinguish columns of X and Z which are asympto-

tically uncorrelated with a. from those which are not . For fixed T,

let
1 ' 1 '

plim
jj

X
11

.a
1

= 0, plim tt Z .a. = 0,
J\J-»-

00
""

/ N-> 00
~

(2.2)

1 ' 1 '

plim
jj-

X
2i

„a
i

= h
x / 0, and plim ^ ^

2 l
a
l

= h
z

^ 2
jsT—>- co N-*- «>

where X.. = [X,., :X
2
..], Z. = [^f-ZoJi and the dimensions

of X and Z are TNxk = [TNxk-^TNxkg] and TNxg = [TNxg
1
:TNxg

2
]
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respectively. Note that, somewhat unconventionally, X and

Z. denote matrices whose subscripts indicate variation over

individuals (i=l,...,N) and time (t=l,...,T). Observations

are ordered first by individual; a. and each column of Z are

thus TN vectors having T identical entries for each i=l,...,N.

We are thus assuming that k~ columns of X., and g ?

columns of Z. are correlated (asymptotically) with the time-

invariant unobservable a.: E(a.|X., ,Z.) ? 0. Implicitly,

we are also assuming that there are no other observable

exogenous variables which - along with the X.. and Z. -

could enable us to write E(a.|X. ,,Z.) as a linear function

of observables plus an orthogonal error. In addition, we

assume no knowledge of other relationships in which the

unobservable a. enters in a similar or known fashion. In

sum, we are thinking of a. as an inherently immeasurable

individual-specific effect about which we have only the

prior information embodied in equations (2.1) and (2.2).

Operationally, this means that we cannot obtain a consis-

tent estimate of the conditional mean of Y. , from avail-

able observable data without further assumptions regarding

the relative magnitudes of (k ,k„,g, ,g„)

.

To derive consistent and efficient estimators for

($,y) in equation (2.1), it will be helpful to recall the

menu of appropriate estimators in the absence of misspecifi-

cation. If we let i T denote a T vector of ones, two convenient

orthogonal projection operators can be defined as



pv
= 1 'NT 1

T
t
T QV

: I
NT " PV J

which are idempotent matrices of rank N and TN-N respec-

tively. With data grouped by individuals, P„ transforms

a vector of observations into a vector of group means:

i.e., PyY
it

=
?p / Y. - Y.. Similarly Qy produces a

vector of deviations from group means: i.e.,
Q-y^it

= Y -+-

Y.. - Y. . Moreover, Qv is orthogonal by construction

to any time-invariant vector of observations: QyZ^ =

:i-fE z
i

=
9

t=i
Transform model (2.1) by Qv , obtaining

QvY±t
= QyXlt 8 + Qv

Z.y + Qyai + Qvnlt

which simplifies to

(2.3)
.

Y
it

- x
lt p + nlt

Least squares estimates of 3 in equation (2.3) are Gauss-

Markov (for the transformed equation) and define the

within-groups estimator

a i _i » ~ i ~
N -i"" '

~

BW
= (X

it QV
X
it } X

it QV
Y
it = (X

it
X
it } X

it
Y
it

Since the columns of X.. are uncorrelated with ru^* 3W is

unbiased and consistent for g regardless of possible corre-

lation between a. and the columns of X., or Z. . The sum
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of squared residuals from this equation can be used to

2
obtain an unbiased and consistent estimate of a , as we

shall see shortly. As pointed out in the Introduction, this within'

groups estimator has two serious defects: (i) it ignores

between group variation in the data, and (ii) the trans-

formation Qv eliminates time-invariant observables such

as Z..

To make use of between-group variation, trans-

form model (2.1) by Py, obtaining

Vit = p
v
x
it p + P

v
z
i^

+ Vi + Vit

or

(2.4) Y
1<

= X
1# 3 + Z iY + a

1
+ n ± .

.

Least squares estimates of (3 and y in equation (2.4) are

known as between-groups estimators (denoted $B
and yb )

and because of the presence of a.

,

both £ R and yr
are biased

and inconsistent if E(a. |x.. ,Z.) ^ 0. Similarly, the sum

of squared residuals from equation (2.4) provides a biased

2 12
and inconsistent estimator for Var (a. +tk. ) = cr + m o when

E(a
i
|X
lt

,Z
1

) ? 0.

In the absence of misspecification, the optimal

use of within and between groups information is a straight-
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forward calculation. Let

Y
it - x

it e + V + £
it

where E(e . , Jx.. ,Z. ) = and covCe.^) = ft = 0.*™ +

a
t:EN ® l

T
l
T^

= cr

n
I
TN

+ Ta
a
PV 5 a famlliar block-diagonal

matrix. Observe that the problem is merely a linear

regression equation with a non-scalar disturbance covar-

iance matrix. Assuming a. and n., to be normally distri-

buted, it is easy to show that the within and between

groups coefficient estimators and the sums of squared

residuals from equations (2.3) and (2.M) are jointly

2 2
sufficient statistics for (B,y ,0^,0^) . The Gauss -Markov

estimator, then, is the optimal matrix-weighted average of the

between and within groups estimators, where the weights

2 2
depend upon the variance components a and cr and are

chosen to min var (3glsYqLS )
'= AVgA» + (I-A)V

W
(I-A)

»

,

where VR , V\, denote the covariance matrices of the

between and within groups coefficient estimator. The

solution can be written as

= A + (I-A)

(see, e.g., Maddala (1971)), where
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2 2 1-1

A = {(X:Z)'P
V
(X:Z) + -D

—

§
—5L (X:Z) 'Qy (X:Z)| (X: Z) 'Py (X: Z )

a
n

" 'W^V
This Is frequently known as the Balestra-Nerlove estimator;

2 2
it requires knowledge of the variance components a and a

but one can substitute consistent estimates for the variance

2
components without loss of asymptotic efficiency. Observe

that if E(a |x.,,Z. ) ^ 0, these Gauss-Markov estimators

will be biased and if h / and h ? 0, they will be incon-

sistent, since they are matrix-weighted averages of the

consistent within-groups estimator and the inconsistent

between-groups estimator.

For both numerical and analytical convenience, we

can express the Gauss-Markov estimator in a slightly dif-

ferent form. Nerlove (1971 ) shows that Q has two distinct

2 2 2
eigenvalues, a + To of multiplicity N and a of multiplicity

TN-N; from equations (2.3) and (2.4), it follows that the N

and TN-N basis vectors spanning the column spaces of Pv and

Qv span the eigenspaces of Q corresponding to the eigenvalues

2 2 2
a + To and a respectively. Thus if we weight these basis

2
The finite sample implications of this substitution are
explored in Taylor (1979).
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vectors by = %/(% + Ta
a }

U/2
we obtain the following.

Proposition 2.1; The TN*TN non-singular matrix

$T
1/2

= epv + qv
= iTN

- epv

transforms the disturbance a. + r\.. into a sequence of

independent and identically distributed random variables.

Proof : Basis vectors of the column spaces of Pv and Qv

can be chosen to diagonalize ft. To make the resulting

matrix scalar, it is necessary to multiply P„ by the square

root of the ratio of the two distinct eigenvalues:

ft
1/2

ft ft~
1/2

= [6PV+QV ] ^W?«pv [eVQv]

= 6
2
(a

2+Ta
2
)P,

r
+ a

2
Q, 7

= a
2
ImM .

n a v n v n tn

Alternatively, note that

fi

"V2e
it

= CiTN
-(i-e)Pv

](a1+nlt )

= o
1

- Ci-6)a
i

+ nit
- (i-e)n

i .
= e(a

1 +n i .) + n lt ;

since the last two terms are orthogonal,

cov(ft"
1/2

e
ls

,ft"
1/2

e
jt )

s^t or i^j

= a s=t and i=j
n
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-1/2
We can then p.remultiply equation (2.1) by fi ' , or -

equlvalently - transform the data- so that

+ ^1/2
Z lY + «-1/2a

1
+ ^ 1/2

n lt , orn --Y
lt

= a x
lt e

(2.5)

Y
it

" (1_e)Y
i.

= Cxit
-(i-e)x

lp
]B + ez

±y
+ ea

±
+ n it

- (i-e)n
i . .

Least squares estimates of (B,y) In equation (2.5) are

Gauss-Markov, provided E(a.|X.,,Z. ) = 0. If misspeclflca-

tion is present, the fact that a. appears In equation (2.5)

means that the GLS estimates will be inconsistent.

2.2 -Consistent But Inefficient Estimation

Despite correlation between the unobservables and

the observable explanatory variables, we saw in Section 2.1

that Bw is unbiased and consistent for B but makes no use

of between-group variation in the data. Furthermore,

QyZ.y = 0, so that it appears impossible to obtain an

estimate of y from the within-group data. Under appro-

priate assumptions about k-, and g? , (the number of exogenous

X's and endogeneous Z's), it is possible to obtain consistent

estimates of y» using the residuals from the within-groups

regression. Let

d
it

=
-it " X

it BW
= {INT"Xit CX

it QV
X
it

) X
it QV } Y

it

be the TN vector of group means estimated from the within-
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group residuals. This simplifies to

(2.6) d.
t

- ziY + a
±

+ U^-x.^X!^)" 1^} n ±t

Treating the last two terms as an unobservable disturbance,

consider estimating y in equation (2.6). Since a is correlated

with the columns of Z„ , both OLS and GLS will be inconsistent

for y. Consistent estimation is possible however, if the

columns of X - uncorrelated with a. by assumption -

provide sufficient instruments for the columns of Z_.

which are correlated with a. . A necessary condition
1

for this - and thus for the identification of y in. equation

(2.6) - is clearly that k-, >_ g?
: that there be at least as

many exogenous time-varying variables as there are endogenous

time-invariant variables. We shall return to the question of

identification of (3,y) from equation (2.1) in the next

section.

The 2SLS estimator for y in equation (2.6) is

(2.7) YW - (<Vi'"
lz
iVit
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where W denotes the instruments X n and Z n , and P.. is the
1 1' W

orthogonal projection operator onto the column space of W.

The sampling error is given by

yw - r - (z'Pw
z)-1z'P

w[v [%-*i. tfiAt^it^it]'

and under the usual assumptions governing the X and Z processes,

the 2SLS estimator is consistent for y» since for fixed T,

plim k W'a. = and plim J Xl.n.x. = 0. The fact that the* N l ^ ^ N it 'it %

d.. are calculated from the within-group residuals suggests
1 x>

that if By is not fully efficient, then yw in equation (2.7)

may not be fully efficient.

Having consistent estimates of 3 and - under

certain circumstances - y, we can construct consistent

2 2estimators for the variance components a and a . First,
o

a consistent estimate of a can always be derived from the

within-group residuals; i.e., from the least squares resi-

duals from equation (2.3). If "Q£ denotes ITN
- X

±t
(X^X^ )" 1X^

t ,

we can write the sum of squares of within-group residuals as

^t Qx*it = ^t Qx^it
= Vit " n^xCx-xT1*'^
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so that if S 2 = ^yY^Q-Y.^

^m s
' =

£ii
m ^fcir ^tSFit

pi*™ Nifcry \t nit - °
= mm wtkij nitVit

-»5

since rank (Qy) = N(T-l).

Finally, whenever we have consistent estimators

2for both 3 and y 3 a consistent estimator for a can be

obtained. Let

/\ A
°
2

- \ (V-VvW^i.-VvW;
then

plim 5
2

= plim \ (Y
jL>

-X
1
^-Z

1Y)
, (Y

1
.-X

i
.3-Z.Y)

N-^-oo N-*-00

= plim sr (ot.+n..

)

f
Cot

1+ni .

)

„ 2 4. 1 ~2

2 "2 1 2 2
so that s = a - m s is consistent for a ,

a l n a
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3. Specification Tests Using Panel Data

A crucial assumption of the cross-section regres-

sion specification Y. = X.3 + e. (i = 1,...,N) is that the

conditional expectation of the disturbances given knowledge

of the right hand side variables is zero: E(a. |X. ) = 0.

A great advantage of panel data is that following the cross-

section panel over time allows a test of this hypothesis.

To derive such a test, we consider the random effects

specification of equation (1.1), including the time-

invariant Z. among the X.. for notational convenience:

Y
it

= x
it p + a

i
+ n it

(i = 1 3--- J N ;t = i,...,t).

C3.D
The unobservable disturbance has been broken into two terms,

the first of which reflects unobservable individual char-

acteristics unchanging over time which are not represented

in X. , $. The r\., are random shocks which we assume to be

orthogonal to a. and the X. . .

1 1 I

The specification tests which we consider test

the null hypothesis

H
Q

: E(c^fX
lt

) = 0,

against the alternative that E(a.jX., ) ? 0. If H
Q

is

rejected we might try to reformulate the cross-section
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specification in the hope of finding a model in which the

orthogonality property holds. Alternatively, we might well

be satisfied with using an estimator which permits consis-

tent estimation of the slope parameters by controlling for

the correlation between a. and X. , . An asymptotically

efficient procedure for doing this is outlined in the

latter half of this paper.

Recall the three estimators for 3 in equation

(3.1) - 3W s 3B s 3GL c - which we discussed in the previous

section. Since these estimators have different properties

under the null and alternative hypotheses, we are led

naturally to form three different specification tests.

CD GLS vs. within . Under the null hypothesis, 3GLc is

efficient, while under the alternative, it is inconsistent.

3^ is consistent under both, but inefficient. Consider

the vector

q l
=

^GLS " V
Under Hn , plim q-, = 0, while under H, , plim q 1

^ 0, since

plim Bqtq ¥ 3 = plim 3„. Hausman (1978) showed that
A. A. As. O

var(q,) = var(3w ) - var ^QLs^ so a X test is easily

formed. This test has been used fairly frequently and

has appeared to be quite powerful.
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(2) GLS vs. between . Under H
Q

, BB
is inefficient while

under the alternative hypothesis it is inconsistent and

plim 3n 7* plim 3 PT „ ^ 3. Thus deviations of the vector

q 2
= 3GLS " h

from the zero vector cast doubt upon the null hypothesis.AAA
Using Hausman's (1978) results, var(q~) = var(3

R ) - var(3GLS )

which gives rise to another chi-square statistic.

(3) Within vs. between . As we have seen, under H„,

plim-3R = plim 3W = 3, whereas under the alternative

hypothesis, plim 3W = 3 f plim 3R . Also, from the char-
N->oo

w
n-^00

aeterization in Section 2, the within and between groups
a a

estimators lie in orthogonal subspaces so that 3,, and 3B

are uncorrelated. Thus if

q
3

= ew - e
B >

var(q^) = var(3y) + var(3
B ), and a third chi-square statis-

tic is available.

In considering these three tests, Hausman (1978)

conjectured that the first test might be better than the

a a
third since V(q

2
) :> V(q-,); while Pudney (1979) conjectured

that the second test might be better than the third because
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3GLS is efficient.-3 (Actually, var(qO >_var(q-,).)

A somewhat surprising event occurs, however, if

we parameterize the relationship between a. and the X. .

.

Using the specification of Mundlak (1978) that

C3.3) ot

±
= X

1
.ti + u

±

and assuming that to. and r\.. are independent joint normal

leads to a straightforward maximum likelihood problem.

Assuming that we know ft for simplicity, what we might call

the Holy Trinity of statistical tests appears. That is,

the three tests outlined above correspond to the likelihood

ratio, Lagrange multiplier (Rao efficient score), and Wald

test respectively. '

This, however, creates a problem. Assuming ft to

be known, the within and between groups estimators are

jointly sufficient for 8 so that no other information should

be present in the data. In addition, we know the likelihood

ratio, Lagrange multiplier and Wald tests to be identical

for testing linear restrictions on linear models and the

null hypothesis E(a. |x. , ) = corresponds - in this special

case - to the linear restriction 7T = 0.

"3

Pudney actually considered using estimates of e . . from the

three estimators and then basing tests upon the sample
covariance X'e, using either the within or GLS estimate of
8 to form e. However, the tests are considerably simpler
to apply by^directly comparing the 0's; Pudney was not aware
that using Bpro to form e is equivalent to the second test.
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In this case, it is evident that the tests must

be identical, and it is straightforward to demonstrate this

Identity in general. Recall that 3GLS can be written as a

matrix-weighted average of 3B and g,,,

4
where the weight matrix A Is non-singular. While this form

of the GLS estimator is computationally inconvenient, it is

extremely easy to derive the relationships among tests (1-3)

from it. Considering the tests in turn

*1
= 6GLS ~ 3W = ^W = "^3

and

/s ^

3GLS " 3
B

= (I-^CV^B 5
= (I"A)q

3

so that the three tests are all non-singular transformations

of each other. Their operating characteristics must there-

fore be identical. Indeed,

Proposition 3-1 - The chi-square statistics for tests (1-3)

are numerically exactly identical.

Proof : Recall that var(q\) = var(3
B ) + var(§

w ) s V . Then

var(q
1

) = AV
3
A» 5 V

1
and var(q

2
) = (I-A)V

3
(I-A) ' = Vgf Thus

4
Note that if a

2 and a
2 are unknown and must be estimated, the

a n

above identity holds exactly in finite samples, using the

estimated weight matrix A .
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q^q-L = q^A 1 [AV
3
A']

_1
Aq

3
= q^ 1

^

and

^2V2^2 = q3(I-A)'L(I-A)V
3
(I-A)']

1
Cl-A)q

3
= q^ 1

^,

Since the chi-square statistics which define the

tests are identical, it makes no difference which test is

used. Computationally, the first test might be preferable

since it requires calculation of only those estimators

which might be used under either the null CGLS) or alterna-

tive (within-groups ) hypothesis. Note that Hausman (1978)

shows that this test - and, as we have just shown, tests

(2) and (3) - can be set up as an F test in an auxilliary

regression so that direct calculation of the quadratic form

is unnecessary.

The important result in this section, however, is

that all three tests are identical. Despite intuition and

folk wisdom to the contrary, it makes no difference which

comparison is used , in testing for the presence of correlation

between a. and the columns of X and Z. In the next section,

we extend these specification tests to determine when the

prior information in equation (2.2) - upon which our identificatio

and estimation results depend - is in agreement with the data.
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H. Instrumental Variables Estimators

l\.l Identification

In this section, we address the question of the

identification of some or all of the elements of (3,Y) using

only the prior information embodied in equation (2.2) and

the time-invariance characteristic of the latent variable

ex.. Because the only component of e.. which is correlated

with the explanatory variables is time-invariant, any vector

that is orthogonal to a time-invariant vector can be used as

an instrument, and TN-N linearly independent vectors with

this characteristic can always be constructed. Recall from

Section 2 that

QV
: INT

1 »

I
N ® f l

T
T
T

I - P

is an idempotent matrix of rank TN-N which transforms a

TN vector into deviations from individual means. Thus

any set of TN-N basis vectors for the column space Qy

is orthogonal to any time-invariant vector. In particular,

Q a. = 0, from which we conclude that there are always at

least TN-N instruments available in equation (2.1).
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Unfortunately j as noted in the introduction, Qy

is also orthogonal to Z. which violates the requirement

that instruments be correlated with all of the explanatory

variables. We thus need to specialize the familiar results

on identification in linear models to identification of

subsets of parameters. Consider the canonical linear

simultaneous equations model

0.1) Y = XB + e

where some columns of X are endogenous and the matrix Z

contains T observations on all variables for which

plim Z'e = 0. Consider the projection of equation Ol.l)

onto the column space of Z: *

(*».2 ) P
Z
Y = P

Z
X3 + P

z
e.

Now, if A is a k vector of known constants,

Lemma : A necessary and sufficient condition for 3 to be

identified in equation (4.1) is that every linear function

A' 3 be estimable in equation (4.2).

This useful result follows immediately from a theorem of P.

Fisher (1966, Theorem 2. 7.2, p. 56) which implies that the

parameters of a structural equation are identified if and

only if the two stage least squares estimator is well-defined,

which in turn is equivalent to the non-singularity of the

matrix X'P
Z
X. A function X'3 is estimable in equation (4.2)

if and only if X» lies in the row space of P
Z
X (Scheffe
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(1959), Theorem 1, p. 13). For this to hold for any A,

P„X must be of full column rank, which completes the proof.

Suppose that the conditions of this lemma are not

attained, as occurs in equation (2.1), taking elements of

the column space of Qv as exogenous. Then

Corollary : A necessary and sufficient condition for a

particular (set of) linear function(s) A'3 to be identi-

fied in equation (4.1) is that A'3 be estimable in equa-

tion (4.2).

Clearly, if A' 3 is estimable in equation (4.2), then it is

identified. On the other hand, if A' 3 is identified in

(4.1), it has a consistent estimator a'Y for which

plim a'Y = plim a'X3 + plim a'e = A'3
T->oo T-*-00 T-*-00

for all 3. Thus plim a'e = so that a lies in the column

space of Z, the set of all exogenous variables. Hence

a = P„b for some T vector b and

plim a'X3 = plim b'P
z
X3 = A'3
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for all 3) so that A' lies In the (asymptotic) row space

of P
Z
X. By the previously cited theorem of Scheffe, A'

3

is thus (asymptotically) estimable in equation (H . 2)

,

completing the proof.

Returning to the question of identification in

equations (2.1) and (2.2), we observe that even if none of

the columns of X or Z is exogenous (k, = g, = 0), all of

the elements of 3 are identified: Simply project equation

(.2.1) onto the column space of all the exogenous variables -

such a projection operator is Qv - and observe that all

linear functions of 3 are estimable, since X..Q.JC., is

non-singular. The two stage least squares (2SLS) estimator

for 3 in this case is

32SLS
= (X

it
QVXit } X

it
QVYit

= (X
it

X
it } X

it
Y
it

= BW

which is identical to the within-groups estimator. In this

case (k-, = g-. = 0), it is easy to verify that y is not identified.

If prior information suggests that certain columns

of X and Z are exogenous (1^ > 0, g 1
> 0), then the columns

of X-,.. and Z,. must be added to the list of instruments.

5

TPhis fact underscores the importance of the observation
that the disturbance in equation (2.6) is correlated with
Z., so that instruments are required to estimate y.
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Let W denote the matrix [QV ":X, . . :Z-. . ] and let P., be the

orthogonal projection operator onto the column space of W.

Then, corresponding to the familiar rank condition , we have

Proposition 4.1 : A necessary and sufficient condition that

the entire vector of parameters (3,y) be identified in equa-

tion C2.1) is that the matrix

x«

z
±

|..-p
w cx.

t
: z )

be non-singular.

Corresponding to the order condition, we have

Proposition 4.2 : A necessary condition for the identifica-

tion of (£,Y) in equation (2.1) is that k, >_ gp.

Proof : The first proposition is a simple restatement of the

earlier Lemma. Proposition 4.2 asserts that we must have as

many (or more) exogenous X's as we have endogenous Z's: a

familiar enough requirement from the instrumental variables

literature, but here it is used to identify an otherwise

unidentified subset of the parameters. To prove it, observe

that rank [P
w
(X

lt
:Z

i
)] < rank [PwXit ] + rank [Py^] =
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k + rank [P„Z.] so that a necessary condition for the matrix

in Proposition k.l to be non-singular is that rank [P Z. ] = g.
w 1

Since Z. is orthogonal to Qv , k, >_ g p is necessary for

rank [P..Z.] to equal g, which completes the proof.

This discussion of identification in structural models

with panel data has revealed a few noteworthy features.

First, given only the assumption that individual-specific

unobservable components cause some explanatory variables

to be correlated with the disturbance, it is remarkable to

find that the coefficients of the time-varying variables

are identified while those of the time-invariant observations

are not. Second, Mundlak (1978) has shown that when all the

columns of X and Z are correlated with a., (i.e., k =g =0),

Bw is Gauss-Markov for B. In this case, the 2SLS estimator

coincides with the within-groups estimator for B and the

components of y are not identified.

Finally, identification of y can be attained by finding

additional instruments - at least one for every endogenous

column of Z . . Curiously, the k, exogenous columns of X ..

which are included in the structural equation (2.1) in question,

are the only candidates for these identifying instruments.

This contrasts with the conventional simultaneous equations

model in which excluded exogenous variables - such as family
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background in the traditional measurement of the return

to education - are required to identify and estimate the

parameters of a structural equation. Intuitively, this works

because only the time-invariant component of the error is

correlated with (X2> Z
2
). Since X

1±t
= X

1±t
+ x

lit » x
lit

can be used as an instrument for X^ and X^ can be an

instrument for Zp..

k.2 Estimation

If the parameters of equation (2.1) are identified

by means of a specified set of exogenous variables which can

be used as instruments, a consistent and asymptotically effi-

cient estimator for (£5,y) can be constructed. Except for the

fact that the disturbance covariance matrix var(e., ) = fi =

2 2

% ITN + T0
a
PV is non"scalar J equations (2.1) and (2.2) repre-

sent an ordinary structural equation and a list of exogenous

and endogenous variables from which the reduced form can be

calculated. Thus if ft were known, two stage least squares

(2SLS) estimates of (3,y) in

(4.3) «"1/2Y
it

= ft"
1/2

X
lt 3 + ft"

1/2
Z
iY

+ ft"
1/2

e
lt ,

taking as exogenous, Xlit and Z,. would be asymptotically

efficient, in the sense of converging in distribution to the

limited information maximum likelihood estimator.
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Alternatively, the information embodied in equa-

tions (2.1) and (2.2) can be written as a single structural

equation and two multivariate reduced form equations:

Y
it

x
it 6 + V + £

it

2it
= ^it^n + hl 11^ + Vl3 + vl it

Z
2i ~ X

lit
7r

21
+ Z

li
Tr

22
+ V23 + V

2it

where X,, Z , and CL. are exogenous, v, and v are correlated

with a. and thus with e., , and tt__ = 0. Transforming the
1 it' 23

structural equation by 9-differencing the data, we can rewrite

the system as

JT
1/2

Y.. = $r
1/2

X.. B + fi"
1/2

Z.Y + JT
1/2

e,^
it it 1 it

(H.H) X
2±t

= Xut 7T
11

+ ZUW
12

+ Q^^ + V
llt

Z
2i

= X
lit

1T

21
+ Z

li
7T

22
+ V23 + V

2it

again assuming the variance components - and thus 0, - to

be known.
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This system represents the information in equa-

tions (2.1-2.2) in a form convenient for discussing effi-

ciency of estimators for $ and y. In particular, equations

(4.4) are triangular - because the bottom two equations are

reduced forms - but not recursive - because v, and v are

correlated with a.. In addition, the reduced form equations

are all - by definition - just identified. Since the dis-

turbance covariance matrix in equations (4.4) is unknown,

the results of Lahiri and Schmidt (1978) imply that OLS is

inconsistent but 3SLS is fully efficient. Finally, since

the reduced forms are just identified, 3SLS estimates of

C$jY) in the entire system are identical to 3SLS estimator

of (3,y) in the first equation alone (Narayanan, 19&9) » and

these are, of course, just the 2SLS estimators. Thus 2SLS

estimates of ($,y) in equation (4.3) are fully efficient,

given the prior information in equation (2.2), in the sense

that they coincide asymptotically with FIML estimators from

the system (4.4).

Continue the assumption that Q is known. 2SLS

estimates of B and y in equation (4.3) are equivalent to

OLS estimates of £ and y in

V1/2Y
it - V" 1/2x

it p + V" 1/2z
i^

+ V" 1/2e
it'

(4.5)
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where Pw is the orthogonal projection operator onto the

column space of Instruments W = CX, lt
:Z, . :CU] . Least squares

applied to this equation is computationally convenient:

-1/2
(i) the transformation Q can be done by differencing

-1/2
the data, since Q X., = X., - (1-0 )X. y where

a
2/(a2

+Tc 2
)

n x] a
1/2

, as shown in equation (2.5),9 =

(ii) the projection of the exogenous variables onto

the column space of W yields the variables them-

selves, and

Ciii) the projection of the endogenous variables onto
r

the column space of W can be calculated using

only time averages, rather than the entire TN

vectors of observations, as shown in section six.

For ft known, then, the calculation of asymptotically

efficient estimators of (3,y) is straightforward. But the

only case of practical interest is where ft (i.e., the var-

2 2
iance components a and a ) is unknown and must be estimated.

The question that immediately arises is how ft should be

estimated when the only concern is the asymptotic efficiency

of the derived estimators of ($,y): Consider the equation

/v_l/? ~-1/? A-l/2 *-1/2V Y
it = V x

it^
+ V z

iY
+ V £

it

(4.6)

where Q is any consistent estimator for Q. Then
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Proposition 4.3 - For any consistent estimator ft of ft,

least squares estimates of ($,y) in equation (4.6) have

the same limiting distribution as the least squares esti-

mates of (3,y) in equation (4.5), based upon a known ft.

Proof : For notational convenience, absorb the Z.y into

the X..3. We shall show that for fixed T, /N[|(ft )-£ (ft )] I

Adding and substracting 3, we can write

/in:8(6)-ea»] =
|(|

x-r 172?^-172^"1

| x«ft-1/2w*(| w*«w*)
_1

j

x _1 W*«ft-
1/2

(a.+n.,)
•N

1 Xt

-{(**̂'n"
172?^"17

^) | x'ft~
1/2w*(| w*'w*)

x A W*'fi"
1/2 (a,+n^)

where the columns of the TNx (TN-N+k-,+g-, ) matrix W* span the

column space of W. Since ft is consistent for ft, the terms

in brackets converge in probability to the same matrix.

Expanding ft (a.+n it ) = 0a. + n.. - QHj, the last terms

reduce to

/N 6 — W* 'a - — W*'n
N

w a
i N

W V 1_

/N
+ —- W*'ri

it , and

/N 6 — W*'a - — W* f n
N

w a
i N

w V
/N

w*'n
it
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respectively. Since plim ^ WK'ou = 0, and plim ^ W*'n
1 .

= 0,

and assuming that both /N (9-9) and — W*'n
n.

+. converge in

distribution to some random variable, It follows that

*>. ^ y\

plim /NC3C^)-3(«) ) =

N->°°

which completes the proof.

We have thus shown that the 2SLS estimators of the

parameters in equation (4.3) - using any consistent esti-

mator for the variance components - are asymptotically

efficient. These estimators coincide with the LS estimators of

3 and y in equation (4.6); for future reference, let us

denote them by $* and y*

.

4.3 Special Cases

Depending upon the degree of identification of

(3jY) in equation (2.1), the consistent and asymptotically

efficient estimators (0*,Y*) exhibit some interesting

peculiarities, which we examine below. First, to establish

some terminology, recall the order condition for identifi-

cation k-, >_ g~ and its associated rank condition in

Proposition 4.1. We shall refer to the case in which

these conditions hold with equality as just-identified;

when the inequality is strict, the parameters will be said

to be overidentified.
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Secondly, we shall be interested In estimating

3 and y separately from equation (4.6), and two generic

formulae will prove convenient. Let Y = X,3-, + X~3p + e.

Then

Lemma : The following two expressions for the LS estimator

of 3-, are identical:

(i) "parse out" Xp by premultiplying by

Q
2

= I - X^X^)""^ and run LS on QpY =

Q2
X
1
3
1

+ Q
2
e. This yields 3

1
= CX

1Q2
X
1
)~ 1

xJq2
Y.

(ii) remove the LS estimates of Xp3p from Y and regress

that on X-,: i.e., run LS on Y - Xp3p = X-.3-, + e,.

This yields B
1

= (X^X
i
r 1

X^i;Y-X
2
(X

2
Q
1
X
2
)~ 1X

2
Q1

Y].

Proof : The first statement follows immediately from the

formula for a partitioned inverse. The second expression

can be derived from the first by tedious algebra, and

both formulas are probably well-known.

Now, suppose the parameters in equation (2.1) are

underidentified. Suppose

(1) k, = g, = 0. Here there are no exogenous variables

among the X. ,'s or the Z.'s and the set of instruments is

only W = [Qv]. Since fi"
1/2

= I
NT

- Cl-6)PV , P^"172
=

A.

Qy[I
Nm-(l-6)Py]

= Qv in this case, and 3* is exactly the

within-groups estimator 3W for 3. For the general underident-

ified case,
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(2) k, < gp ; k, > 0, g > 0. Here, the instruments are

[Q-,r'X, IZ,] which we write as [QV IH] for convenience. The model

is

W.7) Y*
t

= P
w
X*

t
B + P

wzJY
+ e*

t

_l/p * * *
where Q X. . is denoted X.

,

etc. Note that PTrZ. = P TT Z.
it it w i H i

* *
QyZ = 0. When k-, < gp S ^-u^l ^ s not °^ ^u^ 1 column rank,

since the dimension of the column space of H is g-j, + k-,

and Z. has g, + g? linearly independent columns. Thus

there exists a g vector % such that PyZ.? = and the g

vector Y cannot be identified since Y and (y+£) are obser-

vationally equivalent in equation (4.7). To calculate 3*

we "parse out" PtjZ. in equation (4.7). The column space

*
of PttZ is precisely the column space of H . ; projecting

* *
PyX., onto the orthocomplement of PH

Z. yields QyX.. . Thus

3* in the generic underidentified case is the within-groups

estimator By and there is no consistent estimator for Y-

Suppose the parameters of (2.1) are identified. Let

(3) k
1

= g2 ; k
1

> 0, g2
> 0, which is just-identified.

JF

Here again, the rank of P
H
Z equals the rank of H, so that

3* = 3W « To see this algebraically, note that the parse

operator in (4.7) is I
NT

- P Z*(Z*'P
H
Z*)~ 1

Z*'

P

R , which
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simplifies to INT
- PH since H'Z* and Z*'H are square, non-

singular matrices in the just-identified case. Thus since

^NT'Wit = QV
X
it 5 the LS ? stlmate of $ ln (4.7), is 6W

.

Now, however, PH
Z

i
has full column rank, and the LS estimate

of y in equation (4.7) is identical to the LS estimate of

Y in

Y
it - PAA = ViY + e

*

it

by the previous Lemma, since 3W is the LS estimate of 3 in

equation C ^ • 7) . Thus y* can be written as

Y« = CZ
t

P
W
Z.)

1
Z
± V^it-VitW

= (Z, PTr
Z.) X

Z. PTr (Y, -X. B Tr ) = (Z.P TrZ.)
xz.P d..

i Wi l Wi- i« W 1W1 l w it

which is the within-groups estimator of y defined in equation

C2.7). For the just-identified case, then, our 2SLS estimators

coincide with the within-groups estimators of both 3 and Y-

If the parameters are overidentified, the within-

groups procedure Is no longer appropriate. In the extreme,

suppose there are no endogenous variables.

(4) kp = gp = °> which is overidentified. Here, the set of

instruments coincides with the right hand variables in equa-

tion (4.3), so that the 2SLS estimator coincides with LS.
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-1/2
For estimated ft , this is identical to the GLS procedure

-1/2
in equation (2.5); for known ft , it is Gauss-Markov.

If endogenous variables are present, consider

(5) k, > g 2 ; k
2

> 0, gp > 0, which is the general overiden-

W
Z
i

*
tified model. In equation (4.7), the column rank of P,,Z

is now g and the column space of PyZ. no longer coincides

with that of H . Thus £* will differ from 3W in the over-

identified case. Since y* is derived from the regression

of Y - Xg* on PtyZjL* y* will differ from yw » which we derived

from the regression of Y - XBW on PyZ..

Since (B*,y*) are asymptotically efficient, ("w'^W

are inefficient in the overidentified case. Intuitively,

this inefficiency can be explained by regarding the within-

groups estimators as 2SLS estimators which ignore the instru-

ments X-. . and Z, . . It is a peculiar feature of this model
li* li* ^

that ignoring these instruments only matters when the para-

meters are overidentified.

4. 4 Testing the Identifying Restrictions

More efficient estimates of 6 and consistent estimates

of y require prior knowledge that certain columns of X.
1 u

and Z. are uncorrelated with the latent a. . An important

feature of our model .is that when the parameters are over-

identified, all of these prior restrictions can be tested.

This is an extremely unusual and useful characteristic: unusual

in that it provides a test for the identification of y, and
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useful since the maintained hypothesis need contain only

the relatively innocuous structure o f equation (2.1). It

works, basically, because B is always identified so that

By provides a consistent benchmark against which all (or

some) of the restrictions in equation (2.2) can be tested

by comparing B with B*. The principles of such tests are

outlined in Hausman (1978) and extended in Hausman and Taylor

(1980).

Following the latter analysis, we compare our efficient

estimator for B (which uses equation (2.2)) with the within-

group estimator (which does not require this information for

consistency). The null hypothesis is of the form

H
Q

: plim i|x' lt
a.=0 and plim ^Z- a -:0.

j\|->-oo In"*
100

Under H , both B„ and B* are consistent, while under the

alternative, plim B* ¥ plim By = B. Thus deviations of

q = B* - Bw from the zero vector cast doubt upon H .

To form a x
2 test based on q, premultiply equation (2.1)

-1/2 -1 -1 /?
by Q

z
fi ' = [ITN

- Z(Z'Z) Z']ft
7 and consider the within-

groups and efficient estimators for B in the transformed

equation. Letting X* = Q
z
ft"

1//2
X,

q = ia*'P
w
X*)

_1
X*'P

wQz
- (X*»QvX*)"

1
X*'Q

vQ z
]fi"

1/2
Y

(4.8)
= DY*
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-1/2
where Y* = ft Y is multivariate normal with a scalar

covariance matrix, and mean under H„. From the asymptotic

Rao-Blackwell argument in Hausman (1978),

Var(q) = Var(B
w ) - Var(B»)

since we have shown that 6* is asymptotically efficient

under H_. From equation (4.8), we can write Var(q) = DD'

.

Since q is being used to test k.. +g restrictions - which

may be bigger or smaller than its dimension k - the rank of

the kxk matrix DD' and the degrees of freedom for the x
2

test may be less than k. Following Hausman and Taylor (1980),

Lemma : Under the null hypothesis, q'(DD') q ^ x

^

> where

d = rank(D) and (DD')~ denotes a generalized

inverse of the covariance matrix of q.

Observing in equation (4.8) that Q„ projects onto a proper

subspace of the column space of Py ,

Proposition 4.4 : Rank (D) = min [k -g ,k, TN-k].

Proof : From Hausman and Taylor (1980),

rank (D) = min [rank(X* • P ) , rank(I-X*(X*'Q
v
X*

)

_1
X*'

Q

y ) ]

since P.. = P„ + Q. 7 . Under the usual linear independence
W H V

assumptions, the second term in brackets equals TN-k. For the

first term

rank (X*'P
H ) = min [k, rank (Q

Z
-P
H ) ]
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and since P
R

= P
Z
P
R

+ Q
Z
P
H , rank(Q

z
P
R

) = (k
1
+g

1
) - (g

1
+g

2
)

= (k -g
p ), which we called the degree of overidentification

in the previous section.

This specification test of the restrictions embodied

in equation (2.2) has some noteworthy features. The number

of restrictions nominally being tested is (k,+gO, in the

sense that if any of the restrictions in (2.2) is false,

q should differ from zero. Yet the degrees of freedom for

the test depend upon the number of overidentifying

restrictions (k-,-g~). Moreover, the degrees of freedom cannot

exceed the dimension of 3 (k) or the degrees of freedom in

the original regression (TN-k), whichever is smaller .When

the model is just-identified, 3W = 3* (see section 4.3);

in this case, the degrees of freedom are zero and q = ^.

Finally, note that the alternative hypothesis does not

require that any of the columns of X or Z be uncorrelated

with a.; hence all of the excgeneity information about

X and Z is subject to test by this procedure.

This test compares instrumental variables estimators under
two nested subsets of instruments: 3* uses [QV IX-.!Z,] and

3W uses [Qv] . If one wished to test particular columns of

X, and Z, for correlation with a. while maintaining a particular

set of identifying assumptions, a test - similar to the

above - can be constructed by comparing (3*,Y*) with

(3W ,YW ) where yw is given in equation (2.7). For details,

see Hausman and Taylor (1980).
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5. Mundlak' s Model

A final special case is the model discussed at

length by Mundlak (1978), in which no time-invariant obser-

vables are present and all explanatory variables are cor-

related with a.:

C5.D Y
it

«.x
lt e + a

±
+ nit

.

The relationship between a and X is expressed by Mundlak

through the "auxiliary" regression a. = X. it + ok where no

prior information is assumed about it. Mundlak shows that

(i) if a is correlated with every column of X.
,

(tt is

unconstrained), the Gauss-Markov estimator for $

is the within-groups estimator 3W , -and

Cii) if a. is uncorrelated with every column of X.
m

(u = 0), the G-M estimator for 3 is the GLS esti-

• mator $GLo in equation (2.5) s assuming ft to be

known.

Recognizing that case (i) is just-identified

(k,=gp=0) and case (ii) is overidentified (kp=gp=0), the

discussion in (3) and (4) above shows that the 2SLS estimator

3* is identical to the G-M estimator in both cases. More to

the point, if a. is uncorrelated with some columns of X. and

correlated with others, (tt obeys some linear restrictions),

the model is overidentified (k, > gp = 0) and case (5) above
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A. A,

shows that 3* is asymptotically efficient relative to 3W -

Thus it is only in the two extremes (i) and (ii) that 3W
or

3Grn is appropriate.

We can use this characterization of the G-M estimator,

however, to examine the relationship between 3* and the G-M esti-

mator, should the latter exist. Suppose ft is known, and we pre-

-1/2
multiply Mundlak's model (5-1) by ft and re-parameterize for

convenience

:

>ft""
1/2

Y
it

= ft"
1/2

X
lt

SS"
1
3 + ft

1/2
«
1

+ fi

~
1//2rl lt

C5.2)

-1/2 *
= ft

1/2M
it ? + e

lt

where M
±t

= X
±t

S, I = S"
1
3, e

±t
= Qa

±
+ n ±t

- (l-0)n
± .

=

# *
a, + x].. and the non-singular transformation S is chosen

so that

s-cx;
t
x
lt

)s = i
k

.

Since the X.. are random variables in the analysis, the

matrix S, being a function of the X., , will be random also;

since some X. . are endogenous S will also be endogenous.

Let us specify prior information about the correla-

tion between X.. and a in a somewhat more flexible manner

than Mundlak's. Let h denote the k vector of probability
x

limits (for fixed T)
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plim | X^a E h
x

= plim | S'^^j = S \
JM->oo

where h„ denotes the corresponding vector of (asymptotic)

correlations between a. and M.. . We can express prior

information on h as r (r<k) homogeneous linear restrictions
-A.

Rh
x

= = RS
_1

Sh
x

= R*hM

which yield r homogeneous restrictions on h.,. Note that

Ci) the exogeneity information in equations (2.2)

can be expressed as Rh =0 where each row of R^ x

has a single 1 and the rest zeroes;

Cii) the previous results on identification and esti-

i

mation go through, taking the columns of X..R. as
1 1

exogenous where R
1

(i = 1, . . .
,r) is a row of R;

(iii) homogenous restrictions on h correspond uniquely

to homogenous restrictions on n in Mundlak's

specification; i.e., Rh = => plim rr R(X. X. )

T
,

X " N-« N
l

1

x(X, X. )
L
X. a, => R tt = where R = R(X. X. ).i'i' i-i i- !•

In the model (5.2), then, certain linear combina-

tions of the columns of M., are assumed uncorrelated with

a. and all of the columns of M.
fc

are orthogonal.

Proposition 5.1 : The 2SLS estimator %* in equation (5.*0 is

Gauss-Markov for £.
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Proof : Let F denote the k*k non-singular matrix

P = [R 1 :B']

where the columns of B' (kxk-r) are k-r basis vectors for

the column space of I. - R' (RR' )~ R. Now, reparameterize

equation (5.^) as

fi_1/2Y
it " 0"1/2M

lt
PP" 1

C+ 4t

= fi"
1/2

[M
lt

R':M
it

B']F \ + e*
t

which we write as

C5.3) n
1/2

Y
lt = n 1/2L

iit
6
i

+ fi 1/2L
2it

<s

2
+ e

it

where 6 = [S^Sp] = F"
1
^. Consider 2SLS estimates of 6 in

equation (5.3) s using as instruments W = [QylL.., ] since

1 ' * 1 ' -1
plim rr L . a = plim jt E MI! a = by assumption. By

-1/2 -1/2
construction, ft L-. and ft L~ are orthogonal, and

P^L, = L.., so the 2SLS estimator

"
6
i aiit°"\it>"

:il
iit

"1,
tt

coincides with the GLS estimator (for known ft). It is

Gauss-Markov for <5, in this model since all columns of L,
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are uncorrelated with e.. and Lp is orthogonal to L,

.

Similarly , the 2SLS estimator for 6
?

is

6* = ih
2
9r1/2^r1/2

h
2
)~ 1L^r1/2

qY
^~1/2Y

lt

-1/2
since PyLp = QvL ?" Since Qyfi = Qy, this simplifies to

6
?

= (LpQ^Lp) LpQ.Y which is the within-groups estimator.

Using Mundlak's result (i) above, 6„ is G-M for 6„ since

every column of Lp is correlated with a., and Lp is ortho-

gonal to L, . Hence 6* = [6 :6
? ] is G-M for 6, and since

F is a non-singular, non-stochastic matrix, £* = F<5* is

Gauss-Markov for F<5 = %. This completes the proof.

Two related questions immediately emerge. First,

is 3* = S£* Gauss-Markov for 3, since S is non-singular?

Secondly, what became of the intuition that 2SLS estimators

were biased and thus not Gauss-Markov?

Proposition 5.2 : The 2SLS estimator 3* coincides with SC*

but 3* is biased for 3 and not a Gauss-Markov estimator.

Proof : Calculate 3* directly using 2SLS in the model

V1/2Y
it - V"1/2x

it 3 + V1/2e
it

where W = [QV ':L, . . ] is the appropriate set of instruments

here, as well as in equation (5. 3). Then
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3* = CxitO"
1^"172^ 3"^* ""172^"1721^

= s[sx'fi"
1/2

P
w
fi"

1/2xs]~ 1
sx'fi

1/2
p
w
^

1/2
-

= ss*.

Thus 3* is a non-singular transformation of the G-M esti-

mator £*: i.e.

,

3* = si* and 3 = S£

so that 3* - 3 = SCl*-?). However, recall that S is a

function of the matrix X. . ; it is endogenous and in calcu-

lating moments of 3* - 3, we cannot condition on it. Hence,

in general, E(3*-3) = ES(f*-£) t SE(f*-£) - 0, and

cov[3*-3] = cov[S(f*-5)] / S[cov(t*-£)]S' where cov(5*-£)

attains the Cramer-Rao bound.

A final anomalous property of 3* follows from

these propositions. Suppose the original design matrix X.,

i

were orthogonal, so that X..X,, = I,. Then the 2SLS estimator

3* using [QyiX-.R'] as instruments would be both unbiased

and Gauss-Markov. One rarely finds a G-M estimator in a

simultaneous equations problem; one does in this model

because 2SLS estimates when all the explanatory variables

are correlated with a. are identical to the within-

groups estimators, and these are unbiased in finite samples.
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To see this, recall that the set of instruments in this

case is just the columns of Qv , and Qv is orthogonal to

a^ in small samples, not simply as a probability limit.

6. Estimating the Returns to Schooling

In this section, we apply our estimation and testing

techniques to a returns to schooling example. This problem

has received extensive attention since many analysts have

felt that the unobserved individual component a may contain

an ability component which is correlated with schooling.

Since our sample does not contain an IQ measure, it would

seem likely on a priori grounds that the schooling variable

and a. are correlated. Yet as Griliches (1977) points out,

it is not clear in which direction the schooling coefficient

will be biased. While a simple story of positive correlation

between ability and schooling leads to an upward bias in the

OLS estimate of the schooling coefficient, a model in which

the choice of the amount of schooling is made endogenous

can lead to a negative correlation between the chosen amount

of schooling and ability. In fact, both Griliches (1977) and

Griliches, Hall, and Hausman (1978) find that treating schooling

as endogenous with family background variables as instruments

leads to a rise in the estimated schooling coefficient of about

50%. Thus, we would like to investigate how our estimation

7Using a specification test of the type Wu (1973) and Hausman
(1978) propose, we find a statistically significant difference
between the IV and OLS estimates. Chamberlain (1978) also finds
a significant increase in the schooling coefficient when he
compares OLS estimates with estimates from his two factor model
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method affects the return to schooling coefficient, since

we do not require excluded family background variables to

serve as instruments, as did the previous estimates.

Our sample consists of 750 randomly chosen (non-SEO)

prime age males, age 25-55 , from the PSID sample. We consider

two years, 1968 and 1972, to minimize problems of serial
o

correlation apart from the permanent individual component

.

The sample contains 70 non-whites for which we use a 0-1

variable, a union variable also treated as 0-1, a bad health

binary variable, and a previous year unemployment binary

variable. The two continuous explanatory variables are

9schooling and either experience or age. The PSID data does

not include IQ. The NLS sample for young men would provide

an IQ measure, but problems of sample selection would need to

be treated (as in Griliches, Hall, and Hausman (1978)) which

would cause further econometric complications. Perhaps of more

importance is the fact that for the NLS sample, 10 has an

extremely small coefficient in a log wage specification,

(e.g., between .0006 and .002 in Griliches, Hall, and Hausman

J5

Lillard and Willis (1978) demonstrate within a random coefficients
framework that a first order autoregressive process remains
even after the permanent individual effect is accounted for.
Our estimation technique can easily be extended to test for an
autoregressive process, but here we use a simpler case. Note
that we are not investigating the dynamics of wages or earnings
here.

9Experience was used as either experience with present employer
or a measure of age - schooling - 5- Qualitatively, the results
are similar, so we report results using the latter definition.
As the results show, use of age also yields very similar results
for the schooling coefficient. Unlike Griliches (1977) , we are
not attempting to separate out the influence of age from experience
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(1978)); and if it is included in the specification, it has

only a small effect on the schooling coefficient. Thus we

use the PSID sample without an IQ measure, although our

results should be interpreted with this exclusion in mind.

We now consider the estimation method proposed in Section

4.2 from the standpoint of computational convenience. Equation

(4.5) and Proposition 4.3 state the basic theoretical results.

Given initial consistent instrumental variables estimates of

(B,y)j we can estimate 0, and transform the variables by 9-

differencing the data. The model now is of the form of equation

(4.6), and OLS estimates will be asymptotically efficient.

The main difficulty that arises is computational: how to

do instrumental variables when the data matrix (of order TxN)

may exceed the computational capacity of much econometric

software. If this occurs, using equation (4.5) , calculate

predicted values of X
?

and Z~ from their reduced forms. The

predicted Z
?
.'s are formed from a sample size N regression

of Z„. on the columns of X,. and Z., . . For the X~. 's, rather
2i li. li 2it '

than doing a sample size TxN regression, an equivalent procedure

is to form X_., = X . - X_. + X . . The last term, X . , is
ulL ell d 1 « cl « C. X «

calculated from the sample size N regression of X on X.. .

CL X o XX*

and Z . Then the calculated X_., and Z are used with the

X, .. and the Z in an OLS regression to obtain consistent
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estimates of both 3 and y- A similar technique works

with the transformed variables in equation (4.6) which

yields asymptotically efficient estimates of 3 and y.

The reason that calculating X . in this manner is equivalent
tit

to the more cumbersome approach of a TxN sample regression

of X
?

.. on instruments as indicated in equation (4.4) is that

Qv is orthogonal to any time-invariant variable. Thus parsing

out Q„ in the second and third equations of (4.4) is

equivalent to premultiplying them by Pv , and X
p

. and Z

can be calculated from the sample size N regressions on

X, . and Z . To get X
?

.. , we must add Qytf to X_. , so that

X
2±t

is given by X
2±t

+ ±
2±m

-

If computational capacity is not a difficulty, a standard

instrumental variables package can be used, with X , X ,

X
?
.., and Z . as instruments. The variables which are time

invariant have T identical entries for each individual i. So

long as Proposition 4.1 is satisfied, the parameters are

identified and the number of columns of X, . is at least as

great as the number of columns of Z_ (i.e., k >_ g ?
). Note

again how the columns of X n .. serve two roles: both in° lit

estimation of their own coefficients and as instruments for

the columns of Z .

.

One note of caution, however. The estimates of the variance
from the second stage are inconsistent, for the same reason
as doing 2SLS in two steps yields inconsistent variance
estimates in the second step. To estimate the variances
consistently, one must use the estimated coefficients and
the model (2.1) without the hatted variables on the right
hand side.
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We now turn to our log wage regressions to determine

the effects on the schooling coefficient of our estimation

procedure. Column 1 of Table 6.1 gives the OLS results while

Column 2 gives the GLS estimates under the assumption of no

correlation between the explanatory variables and a. . The

OLS and GLS estimates are reasonably close, especially the

schooling coefficient which, in both cases, equals .067-

The effects of experience and race stay the same, while the

remaining three coefficients change somewhat, though" they are

not estimated very precisely .• Note that the correlation

coefficient across the four year period (p = .638) indicates

the importance of the unobserved individual effect. The finding

that an additional year of schooling leads to a 6.7% higher

wage is very similar to other OLS results, both on PSID and

other data sets.

In the third column of Table 6.1, we present the within-

groups estimate of the wage equation specification. All the

time invariant variables are eliminated by the data trans-

formation, leaving only experience, bad health, and unemployed

last year. As we have seen, the estimates of these coefficients

are unbiased even if the variables are correlated with the

latent individual effect. The coefficient estimates change

markedly from the first two columns. The effect of bad

health falls by 26%, the effect of unemployment falls by 3^%,

while the effect of an additional year of experience rises

by 59%. Comparing the within-groups and GLS estimates, using
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Table 6.1 DEPENDENT VARIABLE: LOG WAGE

OLS* GLS Within IV/GLS

1. Exp +.0132
(.0011)

.0133

(.0017)

.0241

(.0042)

.0175

(.0026)

2. Race -.0853

(.0328)

-.0878

(.0518) -

-.0542

(.0588)

3. Bad Health -.0843

(.0412)

-.0300

(.0363)

-.0388

(.0460)

-.0249

(.0399)

4. Unemp Last Yr -.0015

(.0267)

-.0402

(.0207)

-.0560

(.0295)

-.0636

(.0245)

5. Union +.0450
(.0191)

.0374

(.0296) -
.0733

(.0434)

6. Yrs School +.0669

(.0033)

.0676

(.0052) -

.0927

(.0191)

Other Variables Constant
Time

Constant
Time

- Constant
Time

NOBS 1500 1500 1500 1500

S.E.R. .321 .192 .160 .193

RHO .623 •

Instruments Dad's Educ
Poor
Mom's Educ

* Reported standard errors are inconsistent since they do not account for variance
components.
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results in Hausman (1978), we test the hypothesis that some

of the explanatory variables in our log wage specification

are correlated with the latent a.. Under the null hypothesis,

the statistic is distributed as x\, and since we compute

m = 20.2, we can reject the null hypothesis with any reasonable

size test. This confirms Hausman' s (1978) earlier finding that

mis-specification was present in a similar log wage equation.

In the last column of Table 6.1, we present traditional

instrumental variables estimates of the wage equation, treating

schooling as endogenous. Family background variables are used

as additional instruments: father's education, mother's

education, and a binary variable for a poor household. The

estimated schooling coefficient rises to .0915, which echoes

previous results of Griliches (1977) and Griliches, Hall,

and Hausman (1978) who find an increase of an almost identical

amount. Under the null hypothesis that the instruments are

uncorrelated with a., the estimated coefficients should be
l

about the same. Note that the instrumental variables estimates

are somewhat closer to the consistent within-groups estimates

than the original OLS estimates. We might conclude that the

instruments have lessened, the correlation of schooling with

a. by replacing schooling with a linear combination of

background variables serving as instruments. Yet the result

of the specification test is m = 8.70 which again indicates

the presence of remaining correlation between the instruments
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and the latent Individual effects. We conclude that family

background variables are inappropriate instruments in this

specification, perhaps because unmeasured individual effects

may be transmitted from parents to children.

In the first two columns of Table 6.2, we present

the results of our estimation method. We assume that X

contains experience, bad health, and unemployment last year,

all initially assumed to be uncorrelated with the individual

effect. Z, is assumed to contain race and union status, while

Zp contains schooling, which is assumed to be correlated with

a.. The estimated schooling coefficient rises to . 125 s which

is 62$ above the original OLS estimate and 32% above the

traditional instrumental variables estimate. Also, note that

the effect of race has now almost disappeared: its coefficient

has fallen from -.085 in the OLS regression to -.028. The

effects of experience and union status have risen substantially,

while that of bad health has fallen.

Using the test from Section 4.4, we compare the within-

groups and efficient estimates of the X coefficients. Observe

that the unemployment coefficient is now very close to the

within estimate, while bad health and experience have moved

considerably closer to the within-groups estimates from either

the OLS or instrumental variables estimates. The test statistic

is m = 2.24 which is distributed as Xp under the null hypothesis
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Table 6.2 Dependent Variable: Loci Wage

HT/IV HT/GLS HT/GLS HT/GLS HT/GLS

1. EXP .0217

(.0027)

.0217

(.0031)

- .0268

(.0037)

.0241

(.0045)

2. EXP
2

- - - -.00012

(.00015)

-

3. AGE - -
. .0147

(.0028)

- -

4. RACE -.0257
(.0531)

-.0278
(.0758)

-.0046

(.0824)

-.0014

(.0662)

-.0175

(.0764)

5. BAD HEALTH -.0535

(.0468)

-.0294

(.0307)

-.0228

(.0318)

-.0243

(.0318)

-.0388

(.0348)

6. UNEMP LAST YEAR -.0556

(.0311)

-.0559

(.0246)

-.0634

(.0265)

-.0634

(.0236)

-.0560

(.0279)

7. UNION .1245

(.0560)

.1227

(.0473)

.1648

(.0721)

.1449

(.0598)

.2240

(.2863)

8. YRS SCHOOL .1247

(.0380)

.1246

(.0434)

.1311

(.0490)

.1315

(.0319)

.2169

(.0979)

OTHER VARIABLES Constant
Time

Constant
Time

Constant
Time

Constant
Time

Constant
Time

MOBS 1500 1500 1500 1500 1500

S.E.R. .352 .190 ,196 ,189 ,629

RHO .661 ,678 ,674 ,817

* Reported standard errors are inconsistent since they do not account for
variance components.
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of no correlation between the explanatory variables and a. .

While m is somewhat higher than its expected value, 2.0

under H
n , we would not reject the hypothesis that the columns

of X, and Z-, are uncorrelated with the latent individual

effect.

We next present some additional results to see how

robust our estimates are to specification change. Column

3 of Table 6.2 replaces experience with age. While experience

is arguably correlated with a. through its schooling component,

age can be taken as uncorrelated, unless important cohort

effects cause correlation. The results are quite similar to

our previous findings. The effect of schooling is .120,

only slightly lower than the .125 found previously. Race

again has little or no effect, while the effects of bad

health and unemployment are similar to those in the specification

with experience. In the next column of Table 6.2, we include

both experience and experienced squared as explanatory

variables. Again, the results are quite similar to the

original specification. The schooling coefficient increases

from .125 to .132, and race still has little effect. We

conclude that our main results are reinforced by these

Neither of these alternative specifications of age or both
experience and experience squared pass the specification
test if estimated by OLS and compared with the appropriate
within-groups estimates. In both specifications, the
latent individual effects continue to be correlated with the
explanatory variables.
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alternative specifications.

Our last specification relaxes the correlation assumptions

among the explanatory variables. We now remove experience

and unemployment from the X, category to the X~ category,

permitting them to be correlated with ex.. Now X, contains

only bad health. The model is just-identified, so that the

efficient estimates of the coefficients of the X.. variables

are identical to the within-groups estimates. The speci-

fication test of section 4.4 has zero degrees of freedom

and no specification test can be performed. The asymptotic

standard errors have now risen to the point where coefficient

estimates are quite imprecise, especially the schooling

coefficient estimate. Nevertheless, it is interesting to

note that the point estimate of the schooling coefficient
c

has risen to .217. Thus all our different estimation methods

T .ve led to an increase in the size of the schooling- *

coefficient. Removing potentially correlated instruments

has had a substantial effect: the point estimates change

and their standard errors increase. All methods which control

for correlation with the latent individual effects increase

the schooling coefficient over those which do not; and this

is certainly not the direction that many people concerned

about ability bias would have expected.

In this paper, we have developed a method for use

with panel data which treats the problem of correlation

between explanatory variables and latent individual effects.
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Making use of time-varying variables in two ways - both

to estimate their own coefficients and to serve as

instruments for correlated time-invariant variables - allows

efficient estimation of both 8 and y. The method is a two-

fold improvement over the within-groups estimator: it is

more efficient and also produces estimates of the coefficients

of time-invariant variables. It also appears to be better

than traditional instrumental variables methods which rely

on excluded exogenous variables for instruments. Perhaps

most important is the fact that in the overidentified case

(k-, ^_ gp) s a specification test exists which allows a test

of the appropriateness of the instruments. Since the within-

groups estimates of g always exist, they provide a baseline

against which further results - using the information in

equations (2.2) - can'-be compared. If this specification

test is satisfied, we can be confident in the consistency

of our final results, since the maintained hypothesis

embodied in the within-groups estimator is so weak.
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