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POSTERIOR IMPLEMENTABILITY IN A TWO-PERSON 

DECISION PROBLEM' 


When a decision rule is implemented using a Bayesian incentive compatible mechanism 
in which the messages are publicly observable, the players' information is augmented by 
their observation of each others' strategies. In this paper we study the set of Bayesian 
implementable decision rules which have the further property that the information conveyed 
in the process of their implementation does not invalidate the optimality of the players' 
strategies. We call such rules posterior implementable. 

We concentrate on a two-person problem with two possible decisions, and, for this 
problem, we obtain a complete characterization of the set of posterior implementable 
decision rules. Our main result entails that a posterior implementable social decision rule 
can take essentially only two values throughout the range of observations of the two players. 
The domains over which each of these two outcomes is realized can be characterized by 
the fact that the boundary between them is a step function satisfying a certain set of 
equations. 

The motivation for studying posterior implementable rules is that they represent the 
outcomes of a two-stage cooperative process. In the first stage, communication takes place 
but no binding commitments can be made. The second stage consists of ratifying ("signing") 
the agreement obtained at the first stage. At this state, no further information is conveyed. 
Both parties must be satisfied with the nonbinding commitments obtained at the first stage, 
so that these actions are actually carried out. 

Possible applications of this theory are given. A constructive method for finding the 
posterior implementable rules is presented and the set of such rules is contrasted, in an 
example, with the full set of Bayesian implementable rules. 

KEYWORDS:Collective decision making, incentives, Bayesian implementation, pos- 
terior implementation, information, commitment, mechanism design. 

INTRODUCTION 

WE STUDY A MODEL of collective decision-making in which each of two parties 
has private information that is relevant to the value of a joint action that they 
are considering. The particular economic environment we examine and the 
solution concept we employ are both new. It is probably best to begin with a 
general discussion of the context and objectives of this paper before going on to 
the details. 

In many realistic instances, the process of forming contractual arrangements 
takes place in two stages. The parties first exchange information in nonbinding, 
informal negotiations. These negotiations are open-ended. They terminate only 
when no further voluntary communication is forthcoming. Second, they sign the 
actual contract that will govern the structure and conduct of their relationship. 
At the signing stage, no further information is exchanged. Indeed to introduce 
new information or further consideration at that time would be to extend the 
negotiation phase. The formal signing of the amended contract, representing the 
binding agreement, would be done subsequently and voluntarily. This paper is 
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an attempt to ascertain which decision rules can emerge from such a two-step 
process. 

Having described our objectives in general terms, let us now present the model 
by means of a concrete application to the case of two individuals who are deciding 
whether or not to undertake a joint venture. Before making this decision they 
will each gather information that can be used to evaluate the success of the 
venture, if it were undertaken. They will then meet and pool their information, 
but only to the extent that each of them is willing to reveal what he has learned. 
Finally, they will decide whether or not actually to undertake the venture. At 
this last stage they will each have whatever information has been revealed by the 
other player in the previous stage, in addition to their own observations. The 
outcome of this process can be described by the induced decision rule. It gives 
the probability that the venture will be undertaken, as a function of the observed 
private information. We provide a criterion for the implementability of a decision 
rule which we call posterior implementability. It is designed to capture the idea 
that binding agreements cannot be made until all information has been exchanged. 

Let us now try to contrast the concept of posterior implementability with the 
rest of the theory of incentive compatibility, from which it is quite distinct. There 
are two grounds for comparison. The first concerns the information available to 
the players and to the mechanism designer. The second concerns the ability or 
inability of players to make binding commitments during the play of the game 
associated with the mechanism. 

Any mechanism must specify the strategies available to each agent and the 
outcome that will result if each possible combination of strategies is played. The 
way in which this game is played depends upon the information available to the 
participants. Incentive theory quite properly recognizes that this information may 
be different than that available to the mechanism designer at the time at which 
commitment to use the mechanism is made. If the agents know only their own 
private information, the appropriate concept is the Bayesian equilibrium of the 
game. If they actually know all about the other players in the game, then the 
Nash equilibrium is more natural. In either case, however, two crucial assumptions 
are made. First the information is exogenously given to the agents before they 
must play. And second, a binding commitment to abide by the result of the 
mechanism is possible. 

In our model both of these presumptions are dropped. We assume that each 
agent acquires all additional information that is endogenously transmitted in the 
course of playing the mechanism. And precisely because no binding commitments 
can be made, they are allowed to modify their play after having received this 
endogenous information. Only when it is common knowledge that all agents are 
going to remain satisfied with their play, given the play of all others, do we 
imagine that the outcome specified by the mechanism is actually implemented. 

Thus, our concept of implementability lies somewhere between Bayesian and 
Nash implementability in its informational basis. We emphasize, however, that 
in its assumption of the inability of agents to commit themselves to their play, 
it departs significantly from the mainstream of this literature. 
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Before turning to a formal treatment of our model, we offer some further 
remarks about the economic environment as it pertains to the structure of 
preferences and information. In most of the models for which Nash implementa- 
tion has been used as the solution concept, the information of each agent pertains 
only to his own preferences over the set of actions. It is irrelevant to others. 
Therefore agents would need to know this information only because it determines 
the strategy that other agents will play. For any given strategic choice others' 
information does not affect their preferences. In environments with this informa- 
tional structure the definitions of Nash implementability and posterior 
implementability coincide. 

In our model, and in other models where mutually payoff-relevant information 
is present, Nash implementable decision rules will be a proper subset of posterior 
implementable rules. In a Nash implementation, all private information is 
revealed, whereas in a posterior implementation the information to be revealed 
only need be fine enough to render the decision rule measurable-that is, fine 
enough so that a unique action can actually be determined. The additional 
information available in the Nash case may destroy the optimality of the strategies 
played in the posterior implementation. 

The revelation principle, stating that Bayesian implementable rules can be 
implemented via truth-telling strategies, is not valid for the concepts of posterior 
and Nash implementability. Nash implementability, however, can be regarded 
as a special case of Bayesian implementability, for which the revelation principle 
is valid, if we endow everyone with the information available to all. Viewed in 
this way, it is quite natural to construct message spaces for each agent which 
consist simply of all the possible observations available to all agents in the system. 
Because of the endogeneity of the information the revelation principle cannot 
similarly be applied to posterior implementability. As information is initially 
private and is only exchanged in the process of playing the mechanism, it turns 
out that it is often important to keep the strategy spaces fairly small so as not to 
adversely influence incentives. Indeed, the strategy spaces in our model turn out 
to be far smaller than each individual agent's private information, rather than 
far larger as would be generally the case with Nash. 

The requirement of posterior implementability places strong restrictions on the 
decision rules. In this paper we examine a two-person decision problem with 
two possible social choices. For this case we are able to give a complete characteriz- 
ation of the posterior implementable decision rules. Smooth variation of the 
social decision, or smoothly changing randomizations over the two possible 
decisions, cannot be achieved. As the private information varies, the social 
decision can take only two possible values. Moreover, the sets of pairs of private 
observations over which each value of the social decision is realized must satisfy 
some stringent restrictions. The set of posterior implementable decision rules is 
much smaller than the set of Bayesian implementable rules. 

In Section 1 we lay out the model and our assumptions. Section 2 is devoted 
to the proof of the characterization of posterior implementable decision rules. 
Finally, Section 3 characterizes the qualitative nature of posterior implementable 
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rules and offers various comments on the construction of mechanisms implement- 
ing these rules. The relationship of this research with the literature and possible 
extensions is also discussed. 

1. THE CONCEPT OF POSTERIOR IMPLEMENTATION 

We consider two individuals called players who must choose between two 
decisions denoted do and d l ;  do is the satus quo decision and its utility is set at 
zero for both players. Each player receives a private real valued observation that 
is relevant to his utility of d l .  Let 8, E Oi be the observation received by player 
i, i = 1,2,  and let ui(O,, 8,) be the expected utility of dl for player i given 8, and 
02.The joint distribution of ( O , ,  0,) over O ,  x 02,which is common knowledge, 
is given by the density f (O , ,  8,)., 

Throughout the paper we make the following assumptions: 

ASSUMPTION Oi is a closed interval of [W, i = 1,2: Oi = [ O i m i n ,  O i m a x ] .Al:  

ASSUMPTIONA2: ui is continuous and strictly increasing in both arguments, 
i = 1,2. There are at most a jnite number of pairs ( e l ,8,) for which u , (8 , ,  0,) = 

v2(8,, 82) =0. 

ASSUMPTIONA3: f is continuous and strictly positive on O ,  x O,. The conditional 
densities f l (  . I 0 , )  and f,(.I 02)  are strictly positive on their domains, 0, and 0,, 
respectively. Moreover, for any subinterval 6,of Oi ,  the conditional distributions 
F,(.1 e,, 8, E bi)are monotonic increasing in 8, in the partial ordering offirst order 
stochastic dominance, for i = l , 2 ,  j # i. 

Assumption A1 is a technical assumption. It avoids certain problems related 
to disconnected domains of private information, analogous to those discussed 
by Holmstrom (1979) in the context of dominant strategy implementation. 

Assumption A2 represents the idea that higher values of 0 ,  and 8, are, for 
both players, "good news" with respect to the value of d l .  

Assumption A3 asserts a monotone likelihood ratio property o f f  which is 
crucial for the analysis. With A2 it gives the monotonicity of tke integrals, 
Id, ui(8 , ,  e,)f;(O, 1 0,) d0, for i = 1 , 2  and j f i, and any subintervals O ,  ,6,. 

An alternative derivation of the same structure would be to assume that the 
true ultimate values of d l  to the two players, V ,  and V 2 ,are jointly distributed 
with 8,  and 8, in such a way that the vector-valued random variable ( V ,,V 2 ,  8 , ,  0,) 
is affiliated (see Milgrom (1981)).The fact that the support of the conditional 
distribution Fl( . l  8 , )  (resp. F,(.l 8,)) is independent of 8, (resp. 8,) simplifies 
the analysis but could easily be generalized. 

Incentive theory has introduced the notion of a mechanism to describe the 
strategic interaction through which a decision is reached. 

'The distribution functions associated with density functions ( f )  are identified by capital letters 
( F ) .  
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A mechanism is a pair of measurable message spaces M , ,  M,  and a measurable 
outcome function g from M Ix M2 into [0, 11. 

The interpretation is that the players choose messages, m, E M I  and m2E M , ,  
respectively; then the decision d l  is chosen with probability g ( m , ,  m,).  

Most of the literature on incentive compatible group decision making has 
focused on the case in which the players choose mi E Mi based on their a priori 
beliefs and their private information 8, E Oi .  Allowing for the possibility of 
randomization, a strategy of agent i is a measurable function from Oi into the 
family of distributions over Mi.This can be expressed by the conditional distribu- 
tions s i (mi1 O , ) ,  for 8, E Oi . If the strategies s ,  and s, are used in the mechanism 
( M I ,  M 2 ,  g )  the resulting social choice can be described by the function 

defined by 

The value of 4 is the probability that the decision dl  will be taken when ( 0 , ,  6,) 
is the information received by the players. 

Given s2 ,a message m , E M I  is an optimal message for player 1 if it maximizes 

A strategy for player 1 is optimal if for almost every 0, E O , ,  s ,(  . l o , )  assigns zero 
probability to the set of nonoptimal messages. 

If, for the given strategy s , ,  the strategy s, is an optimal strategy for player 2 
and conversely, then we say that ( s , ,  s2) constitute a Bayesian equilibrium of the 
mechanism and that 4 is Bayesian incentive compatible. The adjective Bayesian 
refers to the fact that in verifying the optimality of his choice mi given O i ,  player 
i uses his posterior distribution F , ( .I O i )  as well as his knowledge of s j ( . l . )to 
compute the joint distribution of ( m j ,O j )  that is relevant to his action. 

When there exists a mechanism ( M I ,  M 2 ,  g )  and a Bayesian equilibrium ( s ,,s2) 
of this mechanism resulting in 4 :O , x 02+[O, I], we say that 4 is implementable. 
The set of implementable functions is one of the basic objects studied in the 
theory of incentives. It is generally thought to represent the feasible set of 
alternatives for this pair of individuals, and any optimization or normative 
discussion of mechanism design is then carried out within this set. 

In this paper we add a further requirement beyond the implementability of 4 
as defined above. We will now describe the idea before offering the formal 
definition. Suppose that 4 has been implemented by ( M I ,  M , ,  g )  and a Bayesian 
equilibrium ( s , ,  s ,) .  As each player i knows the strategies being played, he can 
compute the posterior distribution of the other's observation 8, given his play 
m, E M,. At this point it is often in neither player's interest to play the mi that 
he has selected. Assuming that the other player will persist in his decision, each 
would like to revise his own. The main idea of this paper is to impose as a further 
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condition that at every situation to which the Bayesian equilibrium of the mechan- 
ism could arrive, both players are satisfied with their choices. 

Formally, let 4 be implemented via ( M I ,  M,, g)  in the Bayesian equilibrium 
(s, ,s,). Let p ( m l ,  m2, 0, , 0,) be the joint distribution over M I  x M, x O, x O2 
generated in this equilibrium. Let pi(O,) be the marginal distribution of mi given 
0, for j f i. Define F2(0, I m, ,0,) and ~ ~ ( 0 ,  I m,, 0,) to be the conditional distribu- 
tions that the two players would hold about each other's observation after having 
observed the other's choice mi and their own observation 0,. They are defined 
for every 0, and pi(@,)-almost every mi. We will say that (s, ,  s2) is a posterior 
optimal pair of strategies if, for p-almost every (m, ,  m,, O,, O,), 

over mi E M I ,  and 

m, maximizes v2(0,, 02)g(ml, mi) dF2(01 I m,, 0,) I,, 

over mi E M, . 

A function 4 is said to be posterior implementable if it is implementable via 
( M I ,  M,, g )  with posterior optimal strategies (s, ,s,). 

A basic result of the theory of incentives, known as the revelation principle, 
states that if 4 is implementable then 4can be implemented by M, = O, ,M, = O,, 
and g =4,with the strategies (s,, s,) that are each degenerate distributions 
concentrated on the truth. When 4 is implemented in this way, both players will 
know, expost, the exact observation received by the other. Therefore, 4 is posterior 
implemented through such a truthful implementation if for all (0, ,O,), the truthful 
statements O,, 0, are a Nash equilibrium of the game with payoff functions 
u,(O,, ~ , ) ~ ( g , ,  ,g2) where 8",, 8; are the strategies. This &) and v2(0,, o,)~(B", 
means that the truthful strategies are dominant strategies in this game. And this 
implies that, unless g is a constant, each ui can have only one sign, throughout 
Oi. In any interesting problem this will generally not be the case. We can conclude 
from this discussion that truthful strategies reveal too much information for them 
to be useful in a posterior implementation. 

In designing a mechanism so as to satisfy the stronger property of posterior 
implementability, one faces the following type of tradeoff. The smaller the message 
spaces, the less information will be conveyed in equilibrium and the easier it will 
be to achieve posterior optimality. But at the same time, smaller message spaces 
allow for less flexibility in varying g to accommodate the players' mutual interests. 

In the next section we characterize the posterior-implementable choice func- 
tions. 

2. CHARACTERIZATION O F  POSTERIOR-IMPLEMENTABLE CHOICE RULES 

In this section we prove, through a sequence of lemmas, that posterior- 
implementable rules must have a very special form. There can be at most two 
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possible outcomes of the social decision process as (O,, 8,) varies. The regions 
in which these two outcomes obtain are formed by a partitioning of O, x O, by 
a step function which must satisfy certain restrictions. The strength of this result 
derives from the fact that implementable rules, in general, can be much more 
complex. There may be many outcomes and they may depend in a more elaborate 
way on the private information of the agents. 

The sequence of steps used to prove our characterization theorem is as follows. 
We show (Lemma 1) that it is never necessary to set up a mechanism in which 
there are some messages that are never sent or in which there are any redundant 
messages, that is distinct messages which lead to identical outcomes. Then we 
show (Lemma 2) that the mapping from individual's private observations to the 
messages they send is of a very special form. The interval Oi is simply partitioned 
into a collection of subintervals, each of which is mapped nonstochastically into 
a single message. Using this result we show (Lemma 3) that holding other players' 
messages fixed, the outcome function can take on at most three values as any 
one player's message varies. The locus of discontinuity points in the outcome 
function is then characterized in a sequence of steps (Lemmas 4, 5, 6, and 7) 
and is shown to be a step function solving a certain system of integral equations. 
From this result, the next step (Lemma 8) reduces from three to two the maximum 
number of outcomes that a player can reach by varying his own message. Putting 
these results together, we arrive at the Theorem sketched above. 

We first introduce the concept of minimal implementation. The choice rule 4 
is said to be minimally posterior implemented via (MI ,  M,, g )  if it is posterior 
implemented via ( M I ,  M2,  g)  and if (i) there do not exist distinct m:, m: in MI  
such that g(m:, m,) =g(m:, m,) for all m , ~  M2, (ii) there do not exist distinct 
mi, m: in M, such that g(m,, m:) = g(ml,  m:) for all m, E M I .  

In a minimal implementation there is no redundant message. To characterize 
implementable choice rules there is no loss of generality in restricting the analysis 
to minimal posterior implementation as shown by the following lemma. 

LEMMA1: I f  4 is posterior implementable, then it is minimally posterior 
implementable. 

PROOF: Let 4 be posterior implemented via (M, ,  M,, g )  and the strategies 
(s, ,  s,). Define an equivalence relation on MI  by identifying points m:, m: such 
that g(m:, m,) =g(m:, m,) for all m,. Let MT be the set of such equivalence 
classes, and likewise for MT. Let g*(mT, mT) =g(ml,  m,) for any m, E mT, 
r n , ~m;. The measurability of (MT, M:, g*) is inherited from ( M I ,  M,, g )  in a 
straightforward way. 

Properties (i) and (ii) in the definition of minimal implementability are satisfied 
by construction. 

Define the strategies S T ( . /  Oi) on M *  by 

$(AT / Oi)= si(Ai(AT)/ Oi) 

for every measurable A4 cMT, where Ai(A" ={mi/ mi E mT for some m" A?). 
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It suffices to show that ST(. /  6,) are posterior optimal under the mechanism 
(MT, M,*, g*). 

Let F,*(OI I mT, 6,) be the beliefs of player 2 after the observation of 6, and 
mT, defined for all possible observations of mT given the strategy ST. Let 
F2(6,I m,, 6,) be defined as in Section 1. Given 6, consider any optimal message 
m, and its equivalence class m,* E M,*. By definition of mT, the choice of m, is 
optimal when beliefs are F2(6, I m, , 6,) for any m, E mf.  Since F?(O, I mT, 6,) is 
a convex combination of F2(6, I m,, 6,) for m, E mT, the choice of m,* remains 
posterior optimal in the mechanism (M?,  M,*, g*) after the observation of 6, 
and mT. Hence, s,* constitutes a posterior optimal strategy. Q.E.D. 

By virtue of Lemma 1 we can confine attention to minimal posterior 
implementations. Let us define the correspondence T,: M, -,Oi by 

T,(m,)= (6, I mi is an optimal message given 0,). 

Given s , ( .  I O,), there is a joint distribution of (mi, 6,) E Mi x o i .  The set T,(mi) is 
the support of the induced conditional distribution of 6, given mi. 

We next derive some properties of the correspondences T,. 

LEMMA2: In any minimal posterior implementation of 4 via ( M I ,  M, , g), the 
image sets 7'.(mi) are convex and ifm: + m? then T,(m:) fl T,(mf) contains a t  most 
one point. 

PROOF: Let 

W(O,,m,,m,)= vl(~l,~2)g(ml,m2)dFl(~21m2,~l).I,, 

In choosing a best response mT to m, given O,, player 1 will want to maximize 
g(m, , m,) when I,, v,(O,, 6,) d ~ , ( 6 ,  1 m,, 6,) is positive, minimize it if this integral 
is negative, and will be indifferent to the value of g(m, ,  m,) if this integral is zero. 

First we will show that T,(m,) is convex. Suppose that 6: 6 : ~6: and that 
o:, 6: E T,(mT) and 6 : ~  T,(mT). Suppose 6: E T,(mT*). Consider any m, such 
that g(m,,  m,) is not a constant with respect to m,. To ease the notation, let 
I (6 , )  =Io2 vl(6,, 6,) d ~ , ( 0 , l  m,, 6,). By positive affiliation and the monotonicity 
of v,(A2, A3), I(6:)zOimplies 1(6:)>0, I(o:)> 0; and 1(6:)GOimplies 1(6:) < 
0, I(6:) < 0. Since o:, 6: E T(mT), either (i) ~ ( 6 : )  z 0,1(8:) > 0 and mT maximizes 
g(m, , m,) or (ii) ~ ( 6 : )  < 0, I(6:) G 0 and mT minimizes g(m, , m,). As mT* is 
assumed to be an optimal message given o:, in either case g(mT*, m,)= 
g(mT, m,), as they must both maximize g ( . ,  fi2) (case (i)) or minimize g ( . ,  m,) 
(case (ii)) when 6: is observed. 

If m, is such that g(m, ,  m,) is a constant with respect to m,, then in particular, 
g(mT*, m,) = g(mT, m,). Therefore, for all m, E M,, g(mT*, m,) = g(mT, m,), 
contradicting the minimajity of the implementation. This proves that T,(mT) is 
convex, that is, it is an interval. 
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Moreover, the above argument shows that if 8, E int T,(mT),then 8, @ T,(mT*) 
for any m f *  # mT. To prove that if mi # m: then ~ , ( m : )fl~ , ( m : )contains at 
most one point, we apply this observation. If they did intersect in a nondegenerate 
interval, we could take 8, in the interior of this interval, and as it would be in 
the interior of both T l ( m : )and ~ , ( m : ) ,we would have a contradiction. Q.E.D. 

Given any minimal implementation of 4, the last lemma tells us that the 
information conveyed to each player, ex post, consists of knowing that the true 
Oi of his opponent lies in some interval, possibly degenerate. The implication of 
this condition is that when posterior beliefs differ because of a difference in the 
opponent's play, the change in beliefs is an unambiguous shift, upward or 
downward, in the range of possible values of his 8,. Therefore, the player's 
evaluation of his expected utility will shift monotonically with the opponent's 
play, by virtue of the fact that preferences are monotone and that the observations 
are affiliated. 

The next lemma draws the implications of this monotonicity for the nature of 
the functions g that can be used in a minimal implementation. Let us define an 
ordering on Mi that orders the points of Mi in the same way as the intervals in 
Oi to which each mi E Mi is associated. This ordering will be called the informa-
tional ordering of Mi in the miniminal implementation of via ( M I ,  M,,  g )  and #J 

the equilibrium ( s , ,  s ,) ,  or simply the informational ordering when the context is 
otherwise clear. 

LEMMA3 :  In any minimal posterior implementation of 4, for each m,  E M I ,  
g ( m l ,  m,) can take at most three values as m2 varies over M,. Moreover, it is 
monotonically nondecreasing in the informational ordering on M,. 

PROOF: Fix m1E M I .Let & be such that 

Assume g ( m , ,  m,) takes at least two values as m, varies over M,.  There is no 
m, E M2 such that 8,E int T2(m2).For if so, there would be some 8, E T2(m2)for 
which g ( m ,, . ) should be minimized, and others for which it should be maximized, 
contradicting the fact that the same m, is optimal. 

Therefore, for each m,, either 

(ii) 	 T2(m2)G ( -a,J2] .  
All m, s_uch that (i) holds must give rise to the same value of g, unless 

T2(m2)= { O , ) ,  in which case any value of g is acceptable. 
Likewise, all m, such that (ii) holds must give rise to the same value of g, 

unless T,(m,) = (8,).Therefore, there can be at most three values of g(ml, m,): 
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a maximal value for m2 such that T,(m2)n(6 ,a)# 4, a minimal value for m2 
such that T2(m,)n( -oo,8,)# 4,  and a value between them which is possible 
only when T,(m,) =(8,). 

This argument has also demonstrated the stated monotonicity property. 
Q.E.D. 

From the previous lemma we know that for each player i there is a set of 
intervals of Oi which overlap at most at their endpoints, describing the messages 
sent in a minimal implementation. 

Define a function t , :M2+ O ,  as follows: If there exists 0, such that 

J,, VI(O1, 02) dFl(021 m2, 01) = 0  

set t , (m,)= 8 , .  If this integral is negative for all O , ,  set t , (m2)= O,,,,, and if 
positive for all O , ,  set t , (m2)= O I m i , .  The function t ,  is strictly monotonically 
decreasing in the informational ordering on M,.  We can use t ,  to define a 
correspondence from O,  to O , that will be very useful in the analysis of posterior- 
implementable decision rules. 

Let 2,:02+O ,  be defined by 

Z1(02)= {0110,= t l ( m 2 )for some m, E M2 such that O , E  T2(m2)) .  

The graph of 2, consists of intervals where m, corresponds to an interval of 
values of 6, and isolated points where m, corresponds to a unique value of 0,. 
The intervals may be open or closed at their endpoints, but this will be of no 
consequence in what follows. 

Let 2,be generated by the correspondence Z ,  by taking the closure of the 
graph of 2, and then taking the convex hull of the values of the resulting 
correspondence for each 0, E 02.Let 5,  be the graph of 2,. 

The graph 5 ,  consists of a set of "steps". For each m,, there is a piece of the 
graph of the form { t , ( m , ) }x T2(m2),which we call a "vertical" segment. These 
vertical segments are connected by "horizontal" segments which are generated 
by the convexification procedure described above. (See Figure 1.) 

The same construction for player 2 results in a graph 5,. In 5, the nature of 
the horizontal and vertical segments is reversed: vertical segments are obtained 
by convexification and horizontal segments result from the cutoff values of 6, 
for each m,  E M I .  

Note that, in principle, some points of 5 ,  could be on both horizontal and 
vertical segments, as for example any "corner" or any point of the form ( t , ( m ; ) ,  
T2(m;) )where m; is a message sent after the observation of a single value of 6, 
(see Figure 1). If all points 6, in a nondegenerate interval 1 2 s  O,  were of this 
type, then i ,would be a smooth decreasing curve in this region because informa- 
tion would have been completely revealed. We rule out this possibility in the 
next lemma. 

LEMMA4: In any minimal posterior implementation of 4, 5,  cannot be strictly 
decreasing over any nondegenerate interval. 



POSTERIOR IMPLEMENTABILITY 

, ,vert ical  segments 

segment 
1 5 1  

PROOF:Assume that 6,  is strictly decreasing over some nondegenerate interval 
I, .  There exists a nondegenerate interval I:  such that 6,  and 6, are distinct within 
I ; X  I,. This is true because if they were to coincide over any rectangle, I,  x I,, 
and thus both be strictly decreasing, both players would have perfect information 
about each other, and hence 6, would be the graph of vi =0, for both i, which 
would contradict the fact that v , = u, =0 for only finitely many pairs (O, ,  8,) 
( A 2 ) . Whenever they fail to coincide over I ,  x I, we can find a subinterval of 
I , ,  I:, such that they are distinct on I? x I , .  

Thus let e l , ,  e l R ,  o Z A ,  62, be such that 0 , ,  < e l , ,  0,, < O,,, 0 , ,  <Zl(O,,) < 
e l , ,  e2, >Z2(0 lA) ,and 0,, >2 , ( 6 , , ) ,  without loss of generality. (See Figure 2 . )  

Let m,, ,  m, , ,  m,,, m, ,  be messages associated with these respective 0's. 
From Lemma 3, 

Also, 

Therefore, 

Call their common value g. 
Also, if m , <m , ,  in the informational ordering, 
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and likewise if m,  > m,,. Finally, by monotonicity, if mlA< m,  < m,,, 

Therefore, m , ~and m,, are redundant messages, and hence q5 is not minimal. 
Q.E.D. 

Let (8,)x I,  be a vertical segment of i,,where I, is an interval in 02.This 
segment will be called terminal if either (see Figure 3)  ( O , ,  0,) E ilimplies 0, a 8, 
or ( O , ,  9,) E 5, implies 0, s 8,. 

LEMMA5: Let q5 be a nonconstant decision rule that is minimal posterior 
implementable. Let ( O , ,  8,) be a point in 5, which is not in 5,. Then ( 8 ,  ,8,) is in 
a terminal segment of i,. 

PROOF:Assume that it is in a segment of 6,  that is not terminal. We can find 
two nonintersecting horizontal segments, one in 5, and one in 5,, that have in 
common a nondegenerate interval I ,  of 0, values, and we can find two non- 
intersecting vertical segments, one in 5, and one in 5,, having a common non- 
degenerate interval I,  of 0, values (see Figure 4). Let R = I ,  x 12. By the 
minimality of the implementation, and by the measurability of q5 with respect to 
M I  x M,, + ( e l ,8,) is constant over int R. Take ( O f ,  0;) E int R. 

By monotonicity of g from Lemma 3 applied to i,,+ ( e l ,8;) = + ( O f ,  8:) for 
all 8, s O f .  And by the monotonicity of i,and this same lemma, + ( O l m i n ,  02min)= 

+ ( O f ,  0;). 
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Similarly, +(OT, 6,) = +(By, 0;) for all 02Z 0;. And +(OImax, O,,,,) = 

+(OT, 02). 
Thus + is a constant. Q.E.D. 

Consider the common part of the loci 5, and 5, and their upper left and lower 
right endpoints a and b. It follows from monotonicity (Lemma 3) that the value 
of + at any point which is dominated by a point on this locus (in the vector 
ordering) is equal to that at any other such point. Let +(O,, 6,) =g- on the set 
of dominated points. Likewise let +(O, ,6,) = g+ whenever (0, ,  6,) dominates 
some point on this locus. 

Thus + is known to have exactly two values, except perhaps on this locus and 
in the two "corners" northwest of a and southeast of b. We will now show that 
the value in these corners can be determined uniquely. It will be either g+ or g-
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according to the shape of this locus near a and b. In each corner we have one 
of the three possible cases described in Figure 5. 

LEMMA6: Case 3 on Figure 5 is impossible. 

PROOF:Since a' and b' are the endpoints of terminal segments, 6, and 6, must 
coincide in a neighborhood of a' when 8,  is above aj and 8, is below a;.  We 
first show that there must be an infinite number of segments in 6, and i2in any 
neighborhood of a'. If there were a finite number of them, then because a t #  a 
and b'# b, we could find a vertical segment of 6, with b' as an endpoint and a 
horizontal segment of 5, with a' at an endpoint. This would contradict the fact 
that 6, and 6, coincide in this region. Therefore, there is an accumulation point 
of horizontal segments and of vertical segments converging to a'. 

We know that the locus of v,  = 0 cuts every nondegenerate vertical segment in 
its interior, by definition of t , (m,) .  Therefore, u, =0 holds at a', by continuity. 
But v,  = 0  is a strictly monotonic decreasing locus. Hence, it cannot cut the 
segment aa' in its interior; hence, a ' =  a. Q.E.D. 

LEMMA7 :  In the corner dejined by case 1 ,  4 = g- and in the corner dejined by 
case 2 ,  4 = g+ . 

PROOF:Case 1. Suppose 4 =g" >g- which is the value taken by 4 below bb' 
from above. Then by measurability, agent 2 would need two different messages, 
one above b and one below b. But, then a, b', a' could not be on the same vertical 
line. Therefore, by monotonicity g" = g - .  Case 2 is treated similarly. Q.E.D. 
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To complete the characterization of implementable choice rules, we examine 
the behavior of g along il= i2. 

LEMMA 8: Let 4 be minimally implemented by ( M I ,  M,, g ) .  Suppose that 8, is 
not an accumulation point of intervals T , (m, )  for m,  E M I .  Let 8, = T ( m , ) .  Then 
g(m, ,  m,) takes at most two values as m2 varies in M2.  

PROOF:Consider first a message m,  E M I  such that T, (m, )is a nondegenerate 
interval and to which are associated three values of g as m, varies. To this message 
corresponds a cutoff point & for agent 2 and a horizontal segment AB of [,= [,. 
By measurability there is a specific message m2 associated with 8,;thus the 
associated cutoff point t , (m2)for agent 1 is in the interior of AB. 

The third value of g can only occur on AB, but since g is not constant, g must 
take two different values on AB, a contradiction. 

Consider now a message m,  E M I  such that 8, = T , (m l )which belongs to T , (m: )  
and ~ , ( m : )and to which are associated three values of g as m2varies. Then the 
same argument as above applies to a vertical segment if 8, is not elminor elmax. 
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Take now the case where 6, = BImin.Immediately to the right of 8, there is a 
message m:. Consider Figure 6. 

Let 8,= t2(ml) be the cutoff point for m, and 8, = t,(m:) be the cutoff point 
for mi and suppose that we have these values for g(ml,  m,) as m, varies over M,. 

To & is associated a message m, and below & there is another message m:. 
But since g = g- on the interval (&, @,), it implies that Omin is the cutoff point 
for mi. But then the cutoff point for m, should be strictly to the left of 
which is impossible. Q.E. D. 

In an accumulation point of nondegenerate intervals (6,,  O,), 61 and 6, can 
give rise to specific messages m, and m,, respectively, and g can take any value 
between g- and g+ at (m,,  m,). 

Since v, must cut each vertical segment of f-,= f-,and v2 must cut each horizontal 
segment of f-,= 5,, an accumulation point can only arise at a point of intersection 
of v, and v2 (see Figure 7). 

We can now describe several features that posterior implementable 4-functions 
necessarily have. 

Almost everywhere 4 is nonstochastic and almost everywhere takes only one 
of two values, namely, g+ if (%,, 6,) is above i,= f-* and g- if (e l ,  6,) is below 
51 =i2 .  

The behavior of 4 on il= 5, is more complex. Throughout the interior of a 
given horizontal (or vertical) segment of f-,= 5,, 4 may be strictly between g-
and g+ because s2(.l6,) (or sl( .I  0,)) is a random variable taking values on two 
distinct messages, leading to g- and g+ with positive probability. These random 
variables may differ on the different segments. 
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At the corners of el = c2 the value of + is determined by its values on the two 
segments that intersect at that point because the randomizations inherent in s ,  
and s2 are performed independently. 

Since the expected utility of agents is insensitive to the values of + over the 
set of measure zero el = c2 ,  we can ignore the values of + on this locus. The 
characterization of implementable +-functions takes then a simple form. 

Let 2 be the set of decreasing step functions which partition O ,  x O2 in two 
subsets and which have the property that any vertical segment ( a ,  b )  is such that 

I,,Vl(61, 62) d ~ l ( 0 2 1 6 1 ,  0 2 ~ ( a ,b ) ) = O  

and any horizontal segment (c ,  d )  is such that 
C 

THEOREM:Any posterior implementable q5-function is such that there exists a 
step function 6 in 2? and + ( 6 , ,  6,) = ++ i f  (O , ,  6,) is above 6, and + ( O , ,  6,) = +-
i f  ( 6 ,,6,) is below 6, where ++ 2 +- . 

A major feature of this result is that q5 is monotonically increasing and can 
take only two values. The dividing line between the two regions defined by the 
values of + is a decreasing step function with a special property described by 
the family 2. 

An example of posterior implementable mechanism is given in Figure 8. 
The rule implemented by the mechanism in Figure 8 is one in which player 1 

has three messages and player 2 has two. If player 1 sends m , ,  , + =g- with 
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certainty; likewise, if m,,  is sent 4 =g+. In the middle range of O,, where m, ,  is 
the message, the outcome depends on m,.  Note that since 

on the horizontal segment of 6, player 2 will want to choose his message as 
indicated after m, , .  Since player 1's other messages determine the outcome, 
player 2 is indifferent in those cases. 

Similarly, 

for k = 1 and 2, so that player 1 is choosing optimally given each of player 2's 
messages. 

3. COMMENTS 

A. The Four Forms of Implementable Rules 

The step function 6 referred to in the last theorem, which separates the region 
of 4, from 4-, connects either the upper ( 6 , = 02max)or right ( 0 ,= O , , , , )  
boundary of O to the lower ( 0 ,= 02min)or left ( 0 ,= 0 , ,in) boundary. Qualitatively 
there are four cases as shown in Figure 9. 
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cose 1 

cose 3 

cose 4 

In the first two, one of the two players can dictate either g+ or g- -his lowest 
message mandating the latter, and his highest mandating the former, for all 
possible messages of his opponent. Between these messages there is cooperation 
in the sense that both players can influence the outcome. In the third case, either 
player can mandate g- by playing his lowest message, while in the fourth case 
either can force g, .  

Note that in the first case the number of messages available to player 1 is one 
greater than that for player 2, in case 2 it is one less, and in cases 3 and 4 their 
message spaces are of equal cardinality. This characterization of the four cases 
will be used below to provide a fixed point method for finding implementable rules. 

B. 	 The Construction of Posterior Implementable Decision Rules Using Fixed Point 
Methods 

The results above characterize the posterior implementable decision rules, and 
four qualitatively different forms of these rules have been displayed in Figure 9. 
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It is of interest and analytical importance, however, to be able to find posterior 
optimal rules by a mathematically constructive procedure. That is the goal of 
this subsection. 

For a given type of rule we might want to know, for example, whether there 
are posterior implementable rules with some specified number of messages being 
used. Intuitively, the more distinct messages are used, the more steps there will 
be in the associated curve r separating the region where 4 =4, from 4 = 4 - ,  
and the more likely it becomes that the decision will be ex post efficient. (This 
is merely meant to be suggestive; any result along these lines would have to 
depend on assumptions about the vi much stronger than monotonicity.) 

Below we will show how all posterior implementable rules can be found by 
examining the fixed points of a collection of functions. 

Let (d l ,  8,) be an arbitrary interval in O,.  Define the function h, mapping 
intervals in O, into O, as follows. Consider the expression 

If there exists O,E 0, such that (3.1) is zero, set 

If (3.1) is positive for all O,, set 

and if (3.1) is negative for all O,, set 

The monotonicity arguments used above in Section 2 show that (3.1) has at most 
one zero in O,. 

Define h1(8,, 8,)in an analogous fashion. 
Let 0: <. . . < 0;-I be points in Oi and let B Y =  Oimin,0: = Oimax  for i = 1,2. 
Define the function H mapping vectors (o:, . . . ,Of-', o:, . . . ,@,"-I) into 

vectors (t:, . . . ,t f ,  t:, . . . ,t,") by 

t: = hi(@;-', 0:) for i = 1,2; k = 1, . . . ,K - 1; j # i. 

Clearly H has all the properties necessary for the application of Brouwer's 
fixed-point theorem. Moreover, tf 5 t;+l for a11 k, by virtue of monotonicity 
considerations. 

If (OT1,. . . ,OrK-', O:', . . . ,0,*"-') is a fixed point of H in which all adjacent 
points OTk, O r k - '  are distinct, then there is a posterior implementable decision 
rule with each player sending K distinct messages, each mik corresponding to 
an interval (OTk-I, OTk) in Oi. The associated g function is given by 
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The meaning of this fixed point is very intuitive and can be seen in Figure 10 
for the case of K =2. If O l m i n  < 0, <Or', player 1 sends the message m,, . Player 
2's response to this will be to maximize or minimize the value of g(m,,,  . )  
according to the sign of (3.1) where 8,= Olmin,8,= 0:'. The cutoff value of 0, 
for this decision is therefore 0;'. Note that if 0, > OF1, so that player 1 sends 
m,,, player 2 would want to use the cutoff h2(6F1, OIma,) .  In particular, he would 
want to minimize g(m,,, . )  in this circumstance, whenever 02< h2(0:', OIma,). 
However, as g(m,,, m,) = g+ for all m, (by (3.2)), the choice of m2 is irrelevant 
to him, and therefore the strategy defined by the cutoff Of1= h2(OImi,, o?') is 
optimal. 

Note that this construction always gives a rule of the form of Case 4 of 
Figure 9. To attain rules as in Case 3, for example, one could define H by 

t: = hi(0:-', 0;) for i = 1,2; k =2, . . . ,K ;  j # i; 

and the corresponding mechanism by 

Details of the other two cases are precisely the same and are left to the interested 
reader. 

C. Comparison with Bayesian Incentive Compatibility 

In general, the set of Bayesian incentive compatible decision rules is much 
larger than the set of posterior implementable rules. The main reason for this, 
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quite obviously, is that there is a single incentive-compatibility constraint for 
each private observation instead of separate constraints for each possible response 
by the other player. 

For the class of environments studied in this paper, the possibility of correlation 
between 0, and O2 makes the complete characterization of the Bayesian incentive 
compatible rules very difficult (see Laffont and Maskin (1979) and Aspremont 
and GCrard-Varet (1982)). When 0, and O2 are independently distributed, any 
piecewise differentiable incentive compatible rule is characterized by the first and 
second order conditions that truthful strategies by each player are optimal, given 
that the other player is truthful. 

To illustrate the restriction imposed by posterior implementability to Bayesian 
incentive compatible rules, we consider an example with a discrete set of charac- 
teristics. The extension of our theory to this case would be straightforward and 
would allow for weakly monotonic evaluation functions. 

The matrix of payoffs is defined below where in each entry the first (second) 
number denotes agents 1's (2) payoff if the decision is dl: 

The four pairs of observations are equally likely. 
Mechanisms can be assumed to give each player two possible messages, without 

loss of generality. The g function can be represented by the matrix (g(O,, 0,)). 
Figure 11 shows the ex ante utilities obtained by the two players under various 
mechanisms. The Bayesian incentive compatible mechanisms which are ex ante 
Pareto optimal generate the utilities described by the heavy line of Figure 11. 
They are generated by the extreme points: E is generated by the best mechanism 
for an utilitarian decision maker: 

B is generated by the dictatorship of agent 2: 

C is generated by the dictatorship of agent 1: 

The set of all ex ante attainable utilities under Bayesian incentive compatibility 
is the convex hull of these three points with the trivial mechanism that always 
chooses do and hence gives both players a zero utility. 
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Agent 2's 
expected u t i l i t y  

eipected utility 

It is easy to see, however, that the point E cannot be sustained by a posterior 
implementable rule. It would require that all information be leaked and this 
would provide an incentive for one of the agents to change his message whenever 
the randomized outcome is realized. 

Points B and C, being dictatorial rules, are of course posterior implementable. 
In addition, the trivial mechanism that always chooses d l  generates the expected 
utilities at D. 

The only other posterior implementable mechanism is the unanimity mechanism 

[ ] for ne[O, l ] .  

Expected utilities are monotonic in a and at the best such mechanism, where 
a = 1, they are shown as A in Figure 11. 

The set of expected utilities generated by posterior implementable rules is not 
convex. For example, mixing the unanimity mechanism with the dictatorship of 
individual 1 yields mechanisms of the form 

Here individual 2 would not continue to tell the truth at 6,= G2 after learning 
that 6,= 8,. 
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The set of expected utilities generated by posterior implementable mechanisms 
are shown by the light lines in Figure 11. They are generated by mechanisms that 
are convex combinations of the two trivial mechanisms (choosing door d,) with 
unanimity or with either of the two dictatorial rules. 

D. Relations with the Literature 

The concept of posterior implementability was used by Pratt and Zeckhauser 
(undated) in a model with a transferable resource. They confined their attention 
to the problem of whether truthful revelation of the private parameter value 
would remain optimal, given a knowledge of other players' observations. For the 
particular class of environments thejl considered, the (full-information) socially 
optimal decision rule could be implemented using this equilibrium. It was there- 
fore unnecessary for Pratt and Zeckhauser to define the more general, nontruthtell- 
ing concept of posterior implementability treated in this paper. 

Milgrom (1981) mentions a property related to, but distinct from, posterior 
implementability in the context of auction design. In the Vickrey auction, where 
an indivisible object is sold to the highest bidder at the price offered by the 
second-highest bidder, the revelation of this second-highest price would not cause 
any of the bidders to wish to change their bids. However, if all the bids were to 
be mutually observable, then, in general, some of the participants would want 
to change their bids. Prospectively, under rational expectations, the first round 
of bidding would then be different from what it would have been had the bids 
been secret and binding offers. Such dynamic issues are not treated by Milgrom, 
nor is it obvious that our concept of posterior implementation is the appropriate 
construct. We do believe, however, that there is an interesting relationship and 
perhaps even an equivalence between rational expectations equilibria in dynamic 
models with nonbinding, observable offers and the equilibria established in a 
posterior implementation. We intend to explore this in future work. 

On a related point, the work of Farrell (1982) should be mentioned. Farrell 
studies the decision rules that can be achieved if a preliminary phase of voluntary 
communication is used before the actual play of a game of incomplete information. 
During the communication phase, the agents may announce the moves they plan 
to make later, hoping to coordinate with their opponents. The perfect equilibria 
of these dynamic games of communication, which are characterized by Farrell, 
may be related to the posterior implementable decision rules. Again, this is a 
question requiring future work. 

Posterior implementability can be compared to the concept of durability of a 
mechanism, as introduced by Holmstrom and Myerson (1983) and as further 
explored by Crawford (1985). A decision rule is durable if it is the Bayesian 
equilibrium of a mechanism and if, moreover, after the private information has 
been observed, no substitute mechanism can be introduced by any player that 
will be accepted by all players as superior to the one they are using. Durability, 
like posterior implementability, reduces the set of implementable decision rules. 
However, the two criteria are different in several respects. When implementing 
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a durable decision rule, the information revealed may make agents' indicated 
plays nonoptimal, and thus the decision rule is not posterior implementable. On 
the other hand, it is not obvious that every posterior implementable decision rule 
can be implemented in a durable fashion. The difference really turns on the 
unanimity requirement for overturning nondurable rules and on the fact that the 
mechanism selected to implement a posterior implementable rule is chosen before, 
rather than after, the private information is observed. 

Finally, mention should be made of work which places related restrictions on 
the set of Bayesian incentive compatible mechanisms. Cramton (1984) uses the 
idea that the players' lack of ability to commit themselves to stop bargaining, 
although they can perceive a mutual benefit to continuing, may affect the conduct 
of their earlier negotiations. The set of incentive compatible bargaining mechan- 
isms subject to this "no involuntary stopping" constraint is in general much 
smaller than the set of all incentive compatible mechanisms. Cramton calls them 
the perfect bargaining mechanisms, by analogy with the perfect equilibria of 
extensive games. This idea is related to posterior implementability, but is different 
in some important respects. Cramton's agents cannot recant an agreement to 
trade, once this agreement has been reached. In a posterior implementable 
mechanism, entire strategies can be revised because no binding agreements at all 
can be made. It should be noted, however, that whenever trade is consummated 
in Cramton's model it is mutally beneficial. Therefore, except insofar as the price 
represents a zero-sum transfer between the buyer and seller, neither party would 
actually want to alter or delay an agreement to trade. 

E. Extensions 

In this paper we assumed that all messages sent by the agents were publicly 
observable. An important extension is to examine cases in which only some 
aspects of these messages are observable. Specifically, suppose that the messages 
are sent to a central agent who uses them to select a public choice. It may therefore 
be reasonable that the agents will come to learn and draw inferences from this 
choice, but cannot see the details of all the messages. To the extent that the 
public choice is not a sufficient statistic for the messages, agents' posterior beliefs 
would not be as refined as we have assumed in this paper. 

A related extension concerns cases where the public choice is a parameter 
(such as a price vector) in a subsequent decision problem faced by the agents. 
This is the situation in rational expectations models of the learning from prices 
variety (see Green (1973), Grossman (1981) and Laffont (1985)). Laffont (1985) 
has shown that rational expectations equilibria, when they are not completely 
revealing, may be inefficient within the class of all Bayesian implementable 
decision rules. It would be of interest to examine the efficiency issue within the 
smaller class of rules that are implementable subject to mutual knowledge of 
whatever "public" parameters are needed to control the system. 

In the narrower context of extensions of the present model, there are several 
obvious directions to pursue, for example, cases of more than two players, more 
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than two possible decisions, or the inclusion of a transferable resource. We also 
would like to determine whether there are welfare relationships among the 
posterior implementable decision rules and whether the number of messages used 
by each of the piayers is indicative of the utility levels attainable. 
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