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LAND ALLOCATION UNDER UNCERTAINTY FOR ALTERNATIVE

SPECIFICATIOVS OF RETURN DISTRIBUTIONS* .

Introduction

Agricultural economists have long postulated that yield and price uncertain-

~ ties, combined with farmer dlstaste for risk, play a crucial role in land al-

locat1on dec151ons. While several approaches have been advanced to analyze :

farmer ch01ces under uncertalnty (Anderson), the expected utility approach has

emerged as the dominant analytical framework for this purpose. Analysis of

~land allocatlon W1th1n this framework requires specification of a ut111ty

“function, production technologies, and statistical dlstrlbutlons of returns.
While conceptual studies of the propertles of optimal 1and allocatlon

under uncertainty (Feder Just and Zilberman) can afford assuming rather

general functional forms, studies aimed at obtaining the exact optima require

more restricted specifications. Therefore, such studies tend to abstract from -

technological con51derat1ons by assumlng that the farmer faces a Leontief

Atechnology and reduce the farmer's obJectlve function to a linear combznatlon

of the mean and variance of profits (Freund).

This linear E-V approach corresponds to two possible scenarios: (1) the
farmer has a quadrat1c ut111ty function (Markow1tz) or (2) the farmer has a
negative exponential ut111ty function and the crop returns are normally dis-
‘tributed (Freund). However, as noted by Pratt and Arrow, the quadratic
utility function is theoretically unsat1sfactory because it embodles an under-
lying assumptlon of 1ncrea51ng absolute risk aver51on. Moreover, Day s pio-
‘neerlng stat15t1ca1 analyals of M1551551pp1 Experiment Station data on y1e1d
distributions has raised doubts regarding the reallsm of assuming normal dis-

trxbutlons of returns. Thus, the above arguments suggest that the linear
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’ ;:E-V approach may be 1napproprlate rn many cases, and a more general framework
for land allocation is needed.
This peper develops such a framework. It is based on Hanmond's observa-

- tion that the negative exponential utility functlon, ‘when used in the expected
ut111ty paradign, ylelds a convenient closed- form solutlon dependent on the
moment -generating functlon (MGF) of a random variable. The applicability of

: this model to'decisions under uncertainty depends critically on acceptance of

the exponential ut111ty function and the constant absolute risk aversion it

1mp11es as an adequate representatlon of the farmer's risk preferences.
~ Yassour, leberman, and Rausser used this approach to develop a model of

discrete ch01ce among technologles and demonstrated that ganma-distributed

crop yields would lead to akdifferent rate of adoption of new technologies
e”than;would;normally;distributed-pie;451—4$heirmapplication relates to the

special case.where technologies arevlumpy'and technological choice discrete.

Frequently, however, a farmer may allocate land to several activities, i.e.,

different technologies, crops, or 1end rental.

The current paper extends the application of the expected utility-noment
.generat1ng function approach to a continuous choice to derive an optlmal land
allocation rule for farmers fac1ng multivariate crop yield distributions both

in the presence of and without an active rental market for land. In addltlon,
- we derive optimal solutions for the case when yields are characterized by a
b1varlate'gamma dlstr1but1on. F1na11y, we suggest a procedure for choosing’
v.,among possible assumed "true" distributions of returns and apply this proce-
dure to the choice between the assumptlon that crop y1e1ds are either normal

. or gamma distributed.
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- A Model of Optimal Land Allocation Among Crops Under Uncertainty

Consider a farmer who allocates L acres of land among N crops. Let 1 be
the amount of land allocated to crop i; Vi’,the nonstochastic var1ab1e'cost
per acre of the ith crop; and Y,, the revenue pef acre of the ith crop. |
'Assume that the revenues are randomly d1str1buted with a joint distribution
functlon f(Yl, YZ’ ooy N) |

Suppose the farmer has a negatlve exponent1a1 ut111ty funct1on defined on-

o 'hls proflts. ThlS functlon is:

. (1) o RS " '. U('n‘) : —e-TT

where 7 = i?_l 1. (Y - vi) is the farmer's profit.

The farmer max1mlzes h1s expeeted ut111ty subJect to his land avallablllty

conatra1nt Let ‘ o ' L .

. (2) ‘ M(ty, ty, ..o, ty) =E Lexp Xlt YJ
’ L . 1_

..deflne the MGF of the randon variable Yl, YZ, cees N’ where E 1s the expec--

tat1ons operator. Using equations (2) and (3) the farmer's choice problem

“becomes:

N ) DR . max - exp|r Z 1, v, M(')
BEARTARUEE . 15,1=1,N O
where M(-) is evaluated at -r11, -rl2, ..., -Tly subject to:

(4.1) - 1. <L



and
w2 15 > 0; for all i.

Let A be the shadow price associated with the land constralnt (4) and
assume an interior solution. U51ng the Lagrange multlpller technlque the
optlmlzatlon problem has n + 1 first-order condltlons. Slnce the obJectlve
- function is concave, the flrst order conditions yield an optlmal SOlUthH.

.They are equatlons (4) and

'(’)_' UEERa N ) () (.Mi

(5) -~ reexp (r I 1 vy o M(e) - WY " Vi) =2

~ vhere M; is the first derivative of the MGF, M(-), with respect to its ith
element. U51ng (4) and (5), one can derive an alternative set of optlmallty
conditions which excludes A cons1st1ng of (4) and

M

| - M 1
(6) . S vl A TR T for all i = 2, N.

At the optlmal solution, the marginal effects of a change in a11 the cr0p ‘

e acreages on the MGF will be the same. In cases where farmers are r1sk neutral

the parameter, r, is equal to 0, M = 1 and M, = E(Y.) Hence, equat1on (6)

'1mp11es that the net expected profit per acre for all the crops grown by the

farmer should be the same.




Optimal Land Allocation Rules

Two LandiUsesQ—One With Certain Profits |
The optimality conditions in (5) and (7) yield land allocation rules for spe-
lcific distributions of revenue eer aere. First, consider the case where the
~ farmer has two land—use opportunities--one yielding ceftein revenue'per acre
of Yi and the other y1e1d1ng random revenue per acre of Y,. Such a situa-

tion occurs, for example, when the farmer can 1ease part of his land and grow
:one crop on the rest of it. Feder used a s1m11ar formulatlon to determlne

opt1ma1 land allocation between an old variety (which was assumed to yield a
~ sure profit) and a risky new variety. To find the optimality conditions for

this type of problem, let
(7) o mi(t;) = E [exp (ti Y;)]

be the MGF of Y;. * For the certain alternative, mi(ty) = exp (t1 Ylj. Since

- the Y3 and Yz are independent, M(t1, t2) =my(ty) mp(ty). Using equa-

tions (4), (6), and ( 7), the optimality conditions for the case of choice

between risky and certain land use are

(8) | 7 1i+#lp=1L.

v _ : -m'(;rl )
(9) ' _ vy = 2 - 2. v,

‘where m2 is the first derivative of m (+). Thus, at the optimal land alloca-
tion, the farmer will set the 1ogged derlvatlve of the MGF less the varlable

costs for growing the risky crop equal to certain activity.
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Renting land is an obvious example of a certain activity. Thus, condi-

- tions (8) and (9) suggest that;'ét the optimal land aliocation, the lagged

_derivative of the MGF less the variable costs is equal to the rent This ;
conclusion can be generalized to the case of multlple land uses in the pres-
ence of a land rental market—-1 e., at the opt1ma1 solutlon, the returns from
renting out land w111 be set equal to the partial logged derivative of the
joint MGF of the risky crops for each crop less that crop's variable costs.
Given this land allocation rule, it is clear that the farmer's subjective

~ opinion regard1ng the h1gher moments of the distribution could well determine
vhether he enters the land rental market and on which side of the market he
apart1C1pates. We show below that farmers with the same opinions regarding
mean and variance and the same parameter of absolute risk aversion--but with
differing opinions regarding other moments;of'the dietribution-—willlnot only
allocate lahd differently but also hill value land differently. This result,
in turn, has.important implications for the scale of farming which will be
optimal for farmers depending on how they view the distribution of returns.

In the absence of an active land market, the farmer éhould,continue to set
the logged derivative of thevMGF iess the variable costs for growing each crop
equal. If land is not a binding constra1nt the farm size w111 be determined

by setting each of these conditions equal to zero:

- s = 0; for all j =1, N.

In any case, the shadow price of land will be equal to- the logged derlvatlve

>

of the MGF less the variable costs for each crop planted
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In table 1, the optimal land allocation for the uncertain crop is computed

for several revenue distributiOns. Note thet the assumption of constant ab-
bsolute risk aver51on results in optimal allocatlons of land for the risky use
,_whlch are independent of the farm size when 1andh01d1ngs are assumed to equal
wealth ThlS unsat1sfactory outcome might be overcome if one assumes that
every farmer operates accordlng to a constant measure of risk aversion but -
~that the degree of rlsk aversion changes with the size of landholdlngs.1

For all the dlstrlbutlons, a reduction in risk aversion increases the land
in the risky use. The 1mportance of the rlght spec1f1cat10n, however, can be
' demonstrated by comparlng optimal allocatlons under  gamma and normal distri-
‘but1ons. Assumlng that both crops have the same varlable cost per acre, opti-
mality conthlons——when revenue from the risky crop is gamma distributed--
 require that more land be allocated to the risky use (than would be optimal to
rallocate under the assumptlon of normality) if its' expected revenue per acre :
is at least tw1ce that of the alternative use (“2 > Zul) In contrast,
opt1ma11ty condltlons for revenues under the normal distribution require that
more land be allocated to the,risky use (than would be optimal to allocate
”under the assumption that the revenue was gamma distributed) if its. expected
revenue per acre is less than tw1ce that of the alternative use (pz < Zul)
The greater the difference between uz/u1 and two, the greater the d1fference

will be in opt1ma1 land allocatlon for the two distributions.

The Case of Two’Risky-Lend Uses

The Case of Normality Cons1der the case where one can grow two crops

the revenue from each belng a random variable. In this case, the mean yield

. . . 2
and variance are given by u;, o}

i and the correlation coefficient between the
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 revenues is p. The MGF is:

(10) M(tl, tz) ='éxp [‘tlu1 + tou, + .S(t%o§A+ t%o% + Zptlt2 dloz)].

Introducing (10) into (2) and using (6), one can derive the land allocation

formﬁla

(il) R _ " vy) - (“z " V) TL(“% poya;)
. T

2 2
‘_'r(ol + 07 - 290102)

 :The Cése of the Bivariate éamma Distribﬁtion. Actually, the use of the
binormal distribution méy.be inferior to the use of other distributions in
describing the stbchastic révenues."As Day has shown, yields have skewed
distributions; and, at least for cases with fixed prices (e.g., Qnder price-
'support programs), one should’anaiyze farmers' Behavior using skewed revenue
distributions. .Following this érgument, éne should ‘consider using fhe bi-
variate gémma distribution to model crop yields. The bivariate gamﬁa-distri-

‘bution was introduced by CGhirtis and is presented in Johnson and Kotz. . It has

2"

B . "- ‘t £\ "% £\ " £\ %2
1 2 1 2
(12) M(ty, t,)) = (1 --=--2 . -— . -2 .
e I NOX X X .

The revenue per acre of each crop has a gamma distribution with the parameters

fivc parameters: s g5 az,,ll, A Its MGF is .

¢n + a: A: for i =1, 2. The mean and variance of each crop's revenue per acre
0 171 ’ ~

is given by:

>

: _ag+ ai'
4(13) | E(Y,) =y = v
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The correlation coefficient between the revenues is given by

' : ‘ ' ' . : a , .
(14) cov (Yl’ YZ) =p = -0 - .
: | g + o) (o) + a,)
0 1 0 27
From equations (13) and (14) one can derlve the’ parameters of the"
bivariate gamma d1str1but10n from means, variances, and covar1ances of the

revenues per acre of each crop. Using equation (12), the first-order condi-

- t1on in (6) becomes

%0y -2y e S
| Allz + Azrl1 + )\lrl2 Xl f rI1 AZ + rlz

(15) =V, - V.
Because the'explicit'expression for the optimal land allocations for the
- bivariate gamma distribution is cumbersome, we will use an empirical example
to compafe the outcome under the bivariate gamma and normal distributions.

An interesting analytic property of the solution under the bivariate gémma
~distribution is that it reduces to the solution under the bivariate normal
distribution as any of the a's approach zero when the variable costs are the
same for both alternatives. |
Enpirical Results of Bivariate Choice Model

, o
]

" To illustrate the importance of taking higher moments of the distribution into

account, we apply our model to the allocatlon of land between corn and cotton‘

-in the Tower M1551551pp1 dralnage. “The der1vat1on of the d15tr1but10n of re~

“turns per acre for each crop is descrlbed in Collender. The means of per acre
“returns for corh and cotton are, respect1vely, $53.30 and $244.10. The stand-

. ard deviations of returns to corn and cotton,are, respectively, $24.28 and
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$107.00. The correlation coefficient of returns between the two chops is
' 0.072. | | '

There are not many emp1r1ca1 estlmatlons of the measure of absolute risk
aversion. B1nswanger found that the measure of partlal risk ‘aversion
~=mU"(w + m)/U'(w + m) where m, the certa1nty equivalent of proflt varies
V from -1 to 10 as risk aversion varies from slight to extreme. Thus, we let
.the measure of absolute risk aver51on, r, vary from 1/(Y - vl) L to .
10/(Y - V,) L assuming (Y ) > (Y - v,).

, Tb compare the results of the optimal decision under normality and under
' gamma, we calculated the allocation of land to cotton, the certainty. equiva-
~ lent of the farmer for his ent1re crop, and the marginal value of land using
. rules associated w1th each distribution. It should be emphasized -that, under
both d15tr1but1onal assumptions, the mean and variance of the distribution are
the same. The results are presented in figures 1 and 2, Flgure 1 shows that
the amount of land allocated to cotton will always be at least as great under
the gamma distribution as under the normal Indeed, in this case the alterna~'
tive crop (corn) was not sufficiently attractive to induce allocation of land
to it at any considered level of risk avers1on. This is not surpr151ng when
the nature of the gamma distribution is considered. Since the gamma distribu-
‘tion is always pos1t1ve1y skewed, a greater amount of the risk is above the
- meant for a gamma dlstr1but1on as opposed to a normal d15tr1but1on. This posi- -
t1ve skewness offsets the increased variance (cf., Tsiang).

Figure 2 shows that land values generally will be much higher under the
gamma distribution than under normality. Thus, if yielngarevgamna dis-

tributed and the major source of risk, farmers who make their choices based

-~
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_on.an assumptlon of normality will undervalue their operet1ons and the land

. thCh they farm. Thus correct identification of the underlylng dlstrlbutlon
of crop yields rather than the degree of risk aversion could account for the
success or fa11ure of farmlng operatlons in a competitive environment since 1t
has 51gn1f1cant implications for resource valuatlon.. Similarly, we calculated
the certalnty equ1va1ents of one year's production given decisions beSed on |
underlylng assumpt1ons of gamma and normally distributed ylelds. Siﬁce:the'

gamma d1str1but10n is p051t1ve1y skewed and risk averters prefer positive -

skewness (Tsiang), afdecision4maker who Delieves yields are gamma distributed

will outbid another decision-maker with equivalent risk'preferences who be-
~ lieves yields ate normally distributed. This will occur even though both - -

decision-makers agree on the value of the first two moments of each yield -

__distribution and their covariance.

' The Selection of the Best Representation
of the Distribution of Returns

One problem in applylng the methodology suggested here is the selectlon of

appropriate statistical distributions to characterize the 301nt dlStleUthHi

‘of returns to crops planted. A decision-maker. may consider several alterng-
tive specificatione, for example, assuming returns follow either a bivariate
normal or gamma distribution. One'possibie way to select dmong them is Qithh
traditional classical statistical tests such as the chi-square or Kolmolgorov-
'Smirnov ‘tests. These tests, however, do not explicitly. consider the- actual
use of the data giving the same welght to deviations at the low and hlgh end
of the assumed” dlstrlbutlon. If the decision-maker is risk averse, however,
he will want to weigh deviations in the lower;tail more heavily than devia-

tions elsewhere in the range of the distribution.

T A e
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Rather than taklng the class1ca1 stat15t1ca1 approach of comparlng the fit

‘of the emp1r1ca1 dlstrlbutlon to a given analytical distribution, we suggest

here a more Baye51an approach ThlS approach entails an examination of the
1mpact of the dec131on rule derlved from a given assumptlon regarding the
underlylng_stat;stlcal distribution of ylelds on the expected ut111ty of the
decision-maker. In order to determlne this 1mpact a dec151on rule ‘is calcu—
1ated for each stat15t1ca1 assumptlon (in this case blvarlate normal and
gamma) Observed outcomes are then used to estlmate the expected ut111ty

associated w1th each dec151on rule at a range of risk-aversion levels. The’

fexpected ut111t1es from each rule are then tested to determlne if there is a

statistically significant dlfference between them at each level of risk

~aversion. This process is described formally below. The results are pre-

sented for the case of cotton and corn in the lower Mississippi drainage.

“Suppose we have K assumptions regarding yields distribution. Let k be an”
index of an assumed distribution, k =1, K. Each distributional assumption

has its own land allocation rule. Thus, let 1¥ denote land allocation under

| ssumptlon k for act1v1ty 1--for example, land allocated to cotton under the

assumptlon that returnslfollow a gamma distribution. Under the kth distribu-

tional assumption, one can construct for.each vector of observed yields,

and, hence,
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Slnce the Y 's are random var1ab1es, both nk and’ U(n ) are themselves

"random varlables.; leen a sample of observations on yields, the dec151on—
“maker éaﬁ constcht a sample of observations on U(X) for each'k. The

: decision—maker can use the utility samples to infer the relative mégnitudes of
the.expected-utilitiés associated with each of the land allocatioﬁ rules.

Assuming-that’thére are T obServations and using the decision rules as-

~ sociated with two different distributional assumptlons k =k, k , the decision-

maker can construct a test stat1st1c, z, as follows:

u(xd) - ).

T g

If T is sufficiently large by the central limit theorem, z will follow a-

’7nqrma1 distribution with mean EU(n ) - EU(n ) and varlance 1/T = viu( k) -

U( )]. Using this statistic, the dec151on—maker‘can test the null hy-
poth351s that the fhnct1ona1 form chosen to represent the distribution of re-
turns makes no dlfference as against the alternative hypothesis that maklng
decisions assuming dist;ibution k will yield a higher expected'utlllty than
making"deciSibns assuming disfribution k'.. Note that it is the actual his- *
‘tofiCal outcomes and how they are related to the functional form chosen to
represenf the distribuiions of returns and not the nature of the functional
forms alone which determine the results of the statistical test. Thus, the
fact that the gamma distribution has pésiti#e skewness [which risk avertérs
wi}l prefer over the‘nonskéwed normal}distribution when the méan and va;ianéét
are held constant (Tsiang)]'dogs not guaraﬁtee-that the gamma distribution.

~will be chosen over the normal diétribution by this test.

~

gy T
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We applied this test to the ch01ce of the normal or gamma distributions to

ﬂr&f?represent returns 1n ‘the example problem of allocatlng land between corn and

k‘cotton. The values of T, the expected utility under each assumptlon, and the
test statistic are presented in table 2. The value of the test statistic
v’ranges from zero for low levels of risl aver51on, since the. optima1 choice is
the same for both assumptlons, to 3 10 for moderate levels of risk aversion
"and then back to 2.10 for higher levels of risk aversion. The dec11ne in the
'_jvalue of the test statistlc 1s caused by the variance of the expected utility

under the gamma assumption becoming very small relative to the variance of

s expected ut111ty under the normal assumption as r 1ncreases. It is concluded

that, for moderate and higher level rlsk avers1on, assuming gamma distribu-

tions of yields is superlor to assuming normal yield distributlons. Thus, for

risk averse farmers, the skewness of the distribution can have a statlstically»

51gn1f1cant impact on expected utillty and should be taken into account in

normative models of land allocation.

' Conclusion’ S - e .f i . : I S /)J
- In this paper, we haVe extended.the application of the expected utility-moment
generating function approach to a problem with a continuousbchoice:variable.’
.We have demonstrated analytic solutions to this problem under:two'important
distributional assumptions, i.e., normality and gamma. Our approach is a
practical and easily implemented alternative to currently used ‘methods. The
advantages of this method of choice under uncertainty over the popular linear
form of the mean-variance paradigm include that:

>

1. 1t allows us to relax the restriction that yields are normally
- distributed without changing the Standard-assumptions with re-

spect to the utility function.




Table 2. Test for Difference in Expected Utility Given Decisions Based on
Normal or Gamma Distributions for Various Levels of Risk Aversion

Risk
Aversion

Expectéd'Utility Given
Decision Based On:

Gamma

Normal

Test -
-Statistic,

9.21e-07

2.55e-06
5.81e-06"

1.07e-05

-0.649
©-0.326

-0.101

-2.403e-02

-0.649
-0.326
-0.101
-3.894e-02

1.72e-05
. 2.58e-05
 3.52e-05

4.66e-05
© 5.96e-05

7.43e-05 -

9.06e-05

1.09e-04

24.862e-03
-8.529e-04
-1.307e-04

-1.748e-05
~1.977e-06
-1.813e-07
' -1.308¢-08
-7.323e-10

~2.603e-02

-1.652e-02

-1.012e-02

-6.042e-03

-4.644e-03
-4.644e-03

-4.644¢-03

-4.644e-03

*'vSignificant at- the 5 percent level.

*% Significénf at the 1 perceht'ievei.

>
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It does not'require the‘assumption of a particular underlying

dlstr1but10n of returns for its va11d1ty nor does it requ1re
that all marg1nal dlstrlbutlons be from the same family. Thus,
although we have not demonstrated more complex cases, the first-

order conditions are appl1cab1e to a wide range of multivariate

distributions for which MGF ex1st. The analytical tractability

‘of such problems w111 depend on the nature of assumed distribu-

tlons and the1r 1nteract10ns.

It allows for the selectlon of the best statlst1ca1 distribu-

':'tlon of returns based on the 1mprovement in the dec151on makers'

obJectlve functlon.

In addltlon, we have used this method to show that the empirically unwarranted

assumption of normality can lead to utility loss for the decision-maker and

“"cause him to undervalue his land under reasonable assumptions.
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