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Abstract

Generalized linear mixed models are used to model clustered and longitudinal data

in which the distribution of the response variable is a member of the exponential

family. This thesis introduces a novel method for simultaneous clustering of such

data and estimation of parameters of the underlying generalized linear mixed models.

Clustering has been extensively studied for both cross-sectional and longitudi-

nal data. In longitudinal data, one has to take into account the association

between observations taken on the same individual. This has found applications

in epidemiology, genetics, biology, market research, economics, and many other areas.

Generalized linear mixed models consist of two sets of parameters: fixed ef-

fects parameters that associate covariates to the response at the population level,

and random effects parameters that associate covariates to the response at the

individual level. We introduce a method that identifies homogeneous groups in

the data based on similarities among random effects parameters that are obtained

when homogeneous groups are modeled using generalized linear mixed models. We

achieve this by placing a Dirichlet Process prior on random effects parameters, which

induces clustering of random effects and subsequently the clustering of profiles. As a

result, our method simultaneously groups profiles into clusters and estimates model
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parameters of each cluster without assuming that the number of clusters is known

in advance . The fixed effects parameters are shared by all clusters. However, each

cluster has its own random effects parameter that is shared by all profiles in it.

We have tested our method on both simulated data and data from public

health domain. In simulations, we have shown that the method manages to recover

the correct number of clusters, successfully clusters profiles and correctly estimates

model parameters. In public health clustered data, our method produces parameter

estimates that are very close to those obtained by a frequentist maximum likelihood

method, while identifying groups of homogeneous health regions that reveal certain

properties of the underlying survey population that cannot be easily obtained using

other methods.

Similar methods have been proposed for longitudinal data with continuous re-

sponses. This thesis extends these models in novel ways to clustered and longitudinal

data, where the distribution of the response variable can be any member of the

exponential family.
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Chapter 1

Introduction

In this chapter, we first introduce the basic concepts of longitudinal data as a special

type of clustered data. We then introduce the clustering of profiles, where we define

a profile as a collection of correlated variables. These could be profiles in longitudi-

nal data or clusters in clustered data. Following that we present our statement of

problems, and outline how the rest of the thesis is organized.

1.1 Longitudinal Studies

A longitudinal study is a type of study in which a set of units (or individuals)

are followed for a period of time, and multiple observations are recorded on each

individual. Different numbers of observations may be taken on each individual,

and the time at which those observations are taken may be different across individuals.

The defining characteristic of longitudinal studies is that they allow the study

of change in response over time, with potentially some covariates (other than time)

also changing. This within-subject change can only be captured by longitudinal

studies. Observations recorded from the same individuals are not independent, and

1
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this association needs to be taken into account in order to produce valid results.

Observations taken from the same individual may be considered as belonging

to the same cluster. We can say that longitudinal data are a type of clustered data,

with the main difference being that the observations in longitudinal data must have

temporal order while observations in clustered data need not be ordered. In fact,

longitudinal data is the most common type of clustered data. Our method applies

to all types of clustered data, though for clarity we will address in most chapters a

longitudinal problem.

There are two types of longitudinal models [2]: marginal models and mixed-

effects models. Marginal models capture population-averaged mean structure, while

mixed effects models capture conditional mean structure (conditional on the subject-

specific random effect). The models considered in this thesis are mixed-effects models.

We next describe the notation that we use throughout this thesis. Let Y be

the response variable, and let X and Z be a vector or a matrix of covariates

associated with fixed and random effects, respectively. We denote fixed effects

parameters by β and random effects associated with an individual i by bi. The

general form of our model is E(Y |X,Z) = f(Xβ + Zb), where f(·) is a given

function (identity function in case of linear mixed models or an inverse of a suitable

link function in generalized linear mixed models). Let yij denote the jth observation

of the ith individual, i = 1, 2, . . . , N and j = 1, 2, . . . , n, and let yi = (yi1, yi2, . . . yin)t

be the vector of all observations from individual i. Then y = (yt1,y
t
2, . . . ,y

t
N)t is

the vector of all observations in the study. Let X ij be a p × 1 vector of covariates

linking the fixed effect parameter β to yij, and let X i be a matrix, of n × p size,
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of all covariates associated with the individual i. Similarly, let Zij denote a q × 1

vector of covariates linking the random effect parameters bi to yij, and let Zi be

a matrix of n × q size of all covariates associated with an individual i. Then X

and Z are matrices of all covariate linking fixed and random effects parameters of

individuals to response variable. The mean structure of a linear mixed effects model

is E(Y |X,Z) = X tβ + Ztb, where b is the vector of all random effects parameters

for N individuals. i.e., b = (b1, b2, . . . , bN)t.

1.2 Grouping or Clustering Data

Clustering has been an active area of research in both computer science and statistics

for a long time. It is a process of grouping similar objects so that objects in the same

group are as similar (homogeneous) as possible, while objects in different groups

are as dissimilar (heterogeneous) as possible. There are different ways of classifying

clustering methods. We can classify them as distance-based methods, in which

similarity between objects is determined using some distance-based function, and

model-based clustering methods, which assume that the data have been generated

by some probabilistic model.

Many, especially earlier, methods were distance-based, such as [3] and [4],

with some of them extended to specifically accommodate longitudinal data [5], [6].

This of course makes sense as it is the most common type of clustered data.

Model-based clustering methods assume that the population from which the

data is sampled is heterogeneous, and that it can be modeled using a mixture
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model [7] consisting of a finite number of mixture components, where each mixture

component models a homogeneous subpopulation. A model of a mixture component

can be as simple as a distribution (most often a multivariate normal distribution),

or as complex as any other statistical model may be. In a simple case when a model

of a mixture component is multivariate normal, clustering often proceeds by decom-

posing the covariance matrix and imposing certain constraints on the new matrices.

Common decompositions include the modified Cholesky decomposition [8], [9] and

the eigen-decomposition of the matrix [10], [11].

Methods in which a number of clusters is not known in advance often fit more than

one model, using different numbers of clusters, and then perform model comparison

to find a model that is most plausible given the observed data.

Methods based on Bayesian nonparametric statistics do not assume that the

number of clusters is known in advance. Recently, a few methods have been proposed

for clustering longitudinal data in which the response variable is continuous and

therefore can be modeled using the mixture of linear mixed models [12], [13], [14].

In these methods, the data are clustered as a consequence of putting Dirichlet

Process [15] prior on unit-specific parameters, which induces clustering of unit-

specific parameters, and by that, also clustering of units and their respective profiles.

We extend these methods to clustered data in which the response variable has a

distribution that is a member of the exponential family and the model contains both

fixed and random effects parameters.
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1.3 Statement of the Problems

In this thesis, we propose a novel method that we call the Generalized linear

mixed model clustering using Dirichlet Process (GLMM-DP), that allows one to

simultaneously cluster profiles in generalized linear mixed models and estimate

parameters of such models. The method allows the complexity of the model to grow

as more data become available, without over-fitting the model. It differs from the

existing methods in that it is the first method of its kind that allows one to cluster

profiles in which the distribution of the response variable can be any member of the

exponential family, while the existing methods allow clustering of profiles with only

continuous outcome.

There are many cases when the entirety of a data set is heterogeneous, and

the number of homogeneous groups contained within it is not known in advance.

In many cases, identification of homogeneous groups is the first step in the study,

followed by model building at some later time. This is done in practice because a

model built on homogeneous subgroups of data should be more parsimonious since

units in an homogeneous group exhibit more similar behavior as compared to those

in a heterogeneous group.

Although most analyses include both steps, researchers often treat these two

steps independently. In this thesis we approach the two problems simultaneously.

First, we derive technical details of the GLMM-DP method in a case where a single

univariate response is recorded for each unit, possibly at different time points. Then,

we evaluate our method with a simulated data set using two models: one with a

continuous response and another with a count response.
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Next, we apply the GLMM-DP method to a real data set and compare the

results to those obtained from an existing method in a frequentist domain. We

show that the GLMM-DP method, when used alone or in combination with other

methods, can provide insight into the data that may not be available otherwise.

Finally, we extend the GLMM-DP method to multivariate setting, where more than

one outcome may be observed at each time point, and evaluate it with a simulated

data set.

1.4 Organization of Thesis

This thesis is organized as follows. Because of combination of Bayesian and classical

statistics that our work is based on, the first three chapters provide background

information for the reader. In Chapter 2, we review the basic ideas behind linear

models, generalized linear models, linear mixed models and generalized linear

mixed models, from the perspective of their use and application in longitudinal

studies. Next, in Chapter 3, we review the basic concepts and ideas in Bayesian

nonparametric statistics, and approximation methods of estimating the posterior

distribution of model parameters. We review the rationale and advantages behind

the Bayesian nonparametric statistics, with the focus on Dirichlet Process and

Dirichlet Process mixture models.

The mathematical approach devised in this thesis is contained in Chapter 4,

where we present the details of the GLMM-DP method. We derive the details of

the method, including specification of its prior and posterior distributions of the

model parameters. We also describe a label switching solution that is necessary in
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order to be able to perform inference on a mixture component level. Without this

solution, it is impossible to correctly identify cluster parameters. Next, we evaluate

the GLMM-DP method on simulated data in Chapter 5, using two models: one with

a continuous response and another with count response. We simulate a number of

different scenarios with varying values of mixed effects parameters and numbers of

observations recorded on each individual.

In Chapter 6, we apply the GLMM-DP method to a public health survey

data set. We compare the results to those obtained from a frequentist (glmmML)

method. We obtain very similar parameter estimates. However, in addition to

obtaining results that are very similar to those obtained from a frequentist method,

we show that the GLMM-DP method also identifies three distinct clusters in the

data, which reveal certain properties of the underlying survey population that could

not be obtained using only ordinary ML method. Then, we extend the GLMM-DP

method to a multivariate settings in Chapter 7 and evaluate its performance on a

simulated data set in which the response variable consists of two outcomes: one

of continuous type and the other of count type. Finally, we close this thesis with

Chapter 8 in which we summarize our conclusions and provide some advice for future

research.



Chapter 2

Overview of Linear and Generalized

Linear Models

In this chapter we first introduce general linear models and generalized linear models.

Next, we describe general linear mixed models as an extension of general linear

models. Finally, we introduce generalized linear mixed models by comparing them

to previous models and outlining properties in which they differ.

We present these models only as they apply in the study of longitudinal data.

Similar models that may have been used historically in analyzing longitudinal data

(due to computational convenience), such as ANOVA, are not discussed in this

chapter. The main reason being is that ANOVA imposes unrealistic restrictions on

longitudinal data and clustered data in general. These include oversimplification

of covariance matrices, enforcing the same covariance matrix on all units, and/or

inability to handle unbalanced or incomplete data [2].

8
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2.1 General Linear Models

General linear models are statistical models in which the mean of the response vari-

able Y is assumed to be a linear function of parameters β, which represent the

effects of predictors X. If Y i is a vector of n observations of an individual i,

Y i = (Yi1, Yi2, . . . , Yin)t, and X i is a matrix of corresponding covariates, then the

model may be written as

Y i = X iβ + εi, (2.1)

where εi = (ε1, ε2, . . . , εn)t is a vector of random errors in the regression model.

The response vector Y i is said to consist of two components: the systematic

component (X iβ) which describes linear relationships between the response variable

and the predictors, and the random component (εi), which specifies the distribution

of the error and hence the distribution of the response vector Y i. We assume that

the response vector Y i is distributed according to a multivariate normal distribution

with the mean µi and covariance matrix Σi, which is written as Y i ∼ MVN(µi,Σi),

where

µi = E(Y i|X i) = X iβ (2.2)

and

Σi = Cov(Y i|X i). (2.3)

In longitudinal studies, observations from the same individual are typically not

independent. The dependence between observations may be captured by the above

covariance matrix Σi, in which the off-diagonal elements would not be equal to zero.

The case where all off-diagonal entries are equal to zero would correspond to inde-

pendent observations from the same individual. This is very unlikely in longitudinal
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studies. In general, the covariance matrix Σi embeds different association levels

among observations from the same individual (note its index i), and in general, it

may depend on covariates X i.

Here, the model consists of two parameters: β and Σ, where β is generally the main

focus of the study, while Σ is often considered a ”nuisance” parameter - we need to

take it into account in order to produce valid inferences but may not be interested

in its estimates.

Two common ways of modeling the covariance matrix are: 1) by explicitly

specifying the covariance matrix [16] (such as the compound symmetry, Toeplitz co-

variance pattern, autoregressive, banded, exponential or other); or 2) by introducing

random effects parameters which induce a covariance structure in the model. The

models discussed in this thesis have their covariance structure induced by random

effects parameters.

When the model is fully specified, the most natural estimation method for the

model parameters is the maximum likelihood method. Here, the likelihood of the

model parameters, given the observed data set consisting of n dependent observations

on each of N units, is given by

L(β,Σ1, . . . ,ΣN |y1, . . . ,yN) =
N∏
i=1

f(yi|β,Σi) (2.4)

where

f(yi|β,Σi) =
1√

(2π)n|Σi|
exp

{
−1

2
(yi − µi)tΣ−1i (yi − µi)

}
. (2.5)

In this case, it can be seen that the dependence between observations from the same

individual are captured by multivariate normal distribution.
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The maximum likelihood estimates of β and Σi are obtained by maximizing the log-

likelihood of the data (Eq.(2.4)). In these models, the covariance matrix Σi is often

a function of some parameters θ, called the dispersion parameters, Σi ≡ Σi(θ), and

is estimated by first estimating the parameters θ and then plugging their estimates

into the matrix Σi, i.e., Σ̂i = Σi(β̂). The estimates of θ are obtained numerically.

Then in these parametric models, the maximum likelihood estimate of β is given by

β̂ =

{
N∑
i=1

(
X iΣ̂

−1
i X i

)}−1 N∑
i=1

(
X iΣ̂

−1
i yi

)
, (2.6)

and is an unbiased estimate of β.

The asymptotic distribution of β̂ is multivariate normal with the mean being the true

value of β and the covariance given by

Cov(β̂) =

{
N∑
i=1

(
X iΣ̂

−1
i X i

)}−1
. (2.7)

It has been shown, however, that Eq.(2.6) is a valid estimate of β even when the

normality assumption does not hold. This is true as long as the data is complete [2].

In longitudinal studies in particular, the main disadvantage of the maximum

likelihood method is that it produces biased estimate of the covariance matrix

Σi. This shortcoming may be addressed using the restricted maximum likelihood

method [17], which produces unbiased estimates of both β and Σi.

As with other parametric methods, once the estimates of β and Σi are obtained, the

inference on β often proceeds with the Wald test or the likelihood ratio test [18].
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2.2 Generalized Linear Models

General linear models, introduced in the previous sections, are models that are based

on three core assumptions: independence of responses, linearity of responses relative

to regression parameters, and a constant variance of the error term. Generalized

linear models ( [19], [20]) relax the last two assumptions in the following way: (1) the

mean of the response is not a linear function of regression parameters but rather, it

is associated with a linear function of parameters through some non-linear function,

called the link function; and (2) the variance of response is not constant but is now a

function of the mean. The independence assumption remains in both type of models.

That is, neither model is suited for problems with multicollinearity or clustered data.

Linear models assume independence between responses. Multiple responses

from the same unit could be stacked up into a vector and its distribution (in case of

normal) would be completely defined. This is not the case with generalized linear

models: univariate distributions of vector components do not translate to equivalent

multivariate distribution (other than in case of normal). This makes traditional

generalized linear models not well suited for the analysis of longitudinal data. We

consider an extension of generalized linear models later in this chapter that addresses

this difficulty. In the remainder of this section, we introduce the exponential family

of distributions and then mention some of the basic concepts from generalized linear

models.

2.2.1 Exponential family of distributions

A univariate random variable Y is said to have a distribution that is a member of

an exponential family of distributions [18], if its distribution may be written in the
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following form

f(y; θ, ν) = exp

{
yθ − q(θ)

ν
+ k(y, ν)

}
, (2.8)

where θ is the canonical parameter of the distribution, q(·) and k(·) are distribution

specific functions. Exponential family of distributions includes both continuous

distributions(i.e. normal, gamma, beta, Dirichlet, chi-squared), and discrete dis-

tributions(i.e. binomial, negative binomial, multinomial, Poisson, geometric). For

example, the Poisson distribution with mean µ may be represented in the above form

with θ = log(µ), q(θ) = exp(θ), and ν = 1, while for the normal distribution with

mean µ and variance σ2, the exponential representation would have θ = µ, q(θ) = θ2

2

and ν = σ2.

Using the maximum likelihood theory, we obtain general expressions for both

mean and variance of Y . In fact,

E(Y ) =
∂q(θ)

∂θ
(2.9)

and

Var(Y ) =
∂2q(θ)

∂θ2
ν. (2.10)

In this modeling framework, it is common to define ∂2q
∂θ2

as the variance function V(·),

which is a function of the mean µ, so that Var(Y ) = V(µ)ν, where V(µ) = ∂2q
∂θ2

.

The following table shows a few common distributions from an exponential

family, and their parameterization in the above form.

The exponential family of distributions is a conjugate family [18] for the same class

of distributions. Moving forward with our work, we will make note that in Bayesian
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Table 2.1: Common distributions in exponential family of distributions

Normal(µ, σ2) Poisson(µ) Binomial(n, µ)

θ µ log(µ) log( µ
1−µ)

ν σ2 1 1

b(θ) µ2

2
µ −nlog(1− µ)

k(y, ν) −[ y
2

2σ2 + log(
√

2πσ)] −log(y!) log
(
n
y

)
V(µ) 1 µ µ(1− µ)

settings, this means that the posterior distribution of the parameter θ, denoted here

by f(θ|y), is a member of the exponential family, assuming that the prior of the same

parameter, denoted by f(θ), as well as the sampling distribution of the data, f(y|θ),

are also members of the exponential family.

2.2.2 Overview of Generalized Linear Models

The full specification of generalized linear models consists of three components: (1)

a random component; (2) a systematic component; and (3) the link function.

The random component specifies that the distribution of the response variable

belongs to the exponential family, as is described in the previous section. The

systematic component or linear predictor specifies the linear form of the relationship

between predictors and a function of the mean of the response variable. Finally, the

link function specifies how one can use a transformation of the mean of the response

to relate to the linear predictor component.

To illustrate this, suppose we want to explain a response Y using p predictors

X1, . . . Xp using a generalized linear model. Given N observations (y1, y2, . . . , yN) of

Y and N p−dimensional vectors X i = (Xi1, Xi2, . . . , Xip)
t, one for each response yi,
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the systematic component of the model, or linear predictor, may be written as

ηi = X t
iβ = β1Xi1 + β2Xi2 + · · ·+ βpXip, (2.11)

where β is a vector of fixed effects. The canonical link function h(·), which is a one-

to-one continuous differentiable function, describes the relation between the above

systematic component and the mean of Yi, µi = E(Yi | β,Xi), i.e.,

h(µi) = ηi. (2.12)

Common canonical link functions include the identity function for the normal

distribution, log-function for the Poisson distribution and logit function for the

Bernoulli distribution, as shown in Table 2.1.

Similar to general linear models, given that the distribution of the response is

fully specified, maximum likelihood is the most natural estimation method. However,

unlike in general linear models, there is no closed form solution for parameter esti-

mates, and one often resorts to numerical methods. One such method is based on the

Fisher scoring technique [21], an iterative method which states that the parameter

estimate at the current iteration (θ(m+1)) is obtained by using the parameter estimate

in the previous iteration (θ(m)), or a starting value of the parameter (θ(0)) in the first

iteration, and updating it by the product of the inverse Fisher information matrix

and the score equation vector, both evaluated at θ(m), i.e.,

θ(m+1) = θ(m) + [I(θ(m))]−1
∂l

∂θ

∣∣∣∣
θ(m)

, (2.13)
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where (i, j)th element of the Fisher information matrix I(θ) is defined as

I(θ)[i, j] = −E
( ∂2l(θ)

∂βi∂βj

)
. (2.14)

In case of generalized linear models, the above expression becomes [22]

β(m+1) = β(m) + (X ′WX)−1X ′W∆(y − µ), (2.15)

where β are parameters being estimated, X is the matrix of explanatory variables, y

is the vector of responses, µ is the mean of the response y, W is a diagonal matrix

in which the ith diagonal entry is (V (µi)h(µi)
2)−1 and ∆ is a diagonal matrix in

which the ith diagonal entry is h(µi).

2.3 General Linear Mixed Models

In the case of the general linear models and generalized linear models, we have seen

that there are limitations due to the assumptions that need to be altered so as to be

able to model clustered or longitudinal data. In this section, we introduce general

linear mixed models as an extension of general linear models and then describe some

of the most common estimation methods.

2.3.1 Description

In the first section of this chapter, we introduced general linear models, which

are simple models that describe the response variable as a linear function of

regression parameters. In the first section we noted that there was only one random

component that was associated with the error. The response is modeled at the
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population level and is equally applicable to all units in the population. In the

model, E(Y |X) = Xβ, there is only one parameter vector β. The model implicitly

assumes that the population of interest is homogeneous. However, that may not

always be the case. When the population is not homogeneous, the change in the

response variable may not be the same for all units.

We can now consider the case where in order to attempt to deal with this

heterogeneity, we divide regression parameters into those that are common for all

individuals, and those that vary across individuals. While the former are considered

fixed effect in general linear models, the latter are considered random and are

described by some probability distribution. This leads to general linear mixed

models [23], [24] which extend general linear models by introducing random effect

parameters, as in the following

Y i = X iβ +Zibi + εi, (2.16)

where X i and β are as in the first section, bi is a vector of random effects, and Zi

is a matrix of covariates linking bi to Y i. Here, the column space of Zi is often

taken to be a subset of the column space of X i. Further assumptions include:

E(bi) = 0, Cov(bi) = G, E(εi) = 0 and Cov(εi) = Ri, where G and Ri are suitable

positive definite matrices. The error εi is assumed to be normal and independent of

random effects parameters bi. The distribution of bi is most often assumed to be

normal (this leads to special type of linear mixed models called the Gaussian linear

mixed models), though in practice that assumption may not always hold [25]. The

assumption of the mean of bi being zero vector, leads to nice representation of the

model parameters: β represents the effect of covariates X on the response Y at the
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population level (as with general linear models), while bi models deviation of the ith

unit from the population mean.

So we can see that with the additional random component, unlike general lin-

ear models, general linear mixed models allow one to make inferences both at the

population level and at the individual level. The mean structure at the population

level is captured by the marginal mean E(Y i) = X iβ, which is obtained by averaging

out conditional means over all individuals, where the conditional mean is defined as

E(Y i|bi) = X iβ + Zibi. Additionally, we can note that the two mean structures

also have different covariances: the conditional variance of Y i is Cov(Y i|bi) = Ri

and the marginal covariance of Y i is V i(θ) ≡ V i = Cov(Y i) = ZiGZ
t
i +Ri, where

we parameterize the covariance matrix V i by some parameter vector θ.

We can see from this that the random effects induce covariance structures

among the components of Y i, and allows for explicit analysis of both within-subject

variation (Ri) and between-subject variation (G).

2.3.2 Parameter Estimation

The most common method of estimating fixed effects parameters in Gaussian linear

mixed models is the maximum likelihood method, first used by Hartley [26]. Here,

the log-likelihood function is given by

l(β,θ) = const−
N∑
i=1

1

2
log(|V i(θ)|)− 1

2
(yi −X iβ)tV i(θ)−1(yi −X iβ). (2.17)

The point estimates of β and θ (and therefore the variance V i(θ)) are obtained by

differentiating the log-likelihood with respect to β and θ and solving the following
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equations

∂l

∂β
=

N∑
i=1

{
X t

iV i(θ)−1yi −X t
iV i(θ)−1X iβ

}
= 0,

∂l

∂θr
=

N∑
i=1

n

2
log(|V i(θ)|)−

1

2

{
(yi −X iβ)tV i(θ)−1

∂V i(θ)

∂θr
(yi −X iβ)− tr

(
V i(θ)−1

∂V i(θ)

∂θr

)}
= 0

(2.18)

for r = 1, 2, . . . , q. The point estimate of β is the same as in Eq.(2.6), and the point

estimates of V (θ) depends on its parametrization of θ and the point estimates of θ,

but in general is biased and inconsistent [27]. Using restricted maximum likelihood

methods [28] corrects the bias, and leads to consistent and asymptotically normal

estimates.

2.3.3 Parameter Prediction

It is well known in classical statistics that one cannot use the same approach for the

random and fixed effects parameters. While fixed effects parameters are estimated,

the random effects parameters are predicted. It is easy to show that the best linear

unbiased predictor (BLUP) of random effects parameter bi is its conditional mean

given β̂ and response Y i

b̂iBLUP = E(bi|Y i) = GZt
iV
−1
i (θ)(Y i −X iβ̂), (2.19)

where V i is defined in the previous section. Using the MLE or restricted MLE

estimate of V i(θ), we obtain the empirical best linear unbiased predictor or EBLUP,

as

b̂iEBLUP = E(bi | Y i) = GZt
iV̂
−1
i (θ)(Y i −X iβ̂). (2.20)
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2.4 Generalized Linear Mixed Models

In this section, we introduce generalized linear mixed models in terms of how they

compare to the previous models, and then describe some of the common estimation

methods.

2.4.1 Description

Generalized linear mixed models extend generalized linear models by adding random

effects parameters to this linear predictor, or equivalently, they extend general linear

mixed models by loosening the distributional and linearity assumptions. The linear

predictor in generalized linear mixed models, for jth response of ith unit, is defined as

ηij = X t
ijβ +Zt

ijbi. (2.21)

As with general linear mixed models, the rationale for introducing random effects

parameters into generalized linear models (to get generalized linear mixed models)

is to address the case where there is heterogeneity in the data.

However, unlike in general linear mixed models, fixed effects parameters β do

not have the same interpretation in the conditional model E(Y i|bi) = X iβ + Zibi

as in the marginal model E(Y i) = X iβ. This is due to the fact that the expectation

operator is a linear operator and the link function in generalized linear models is

non-linear function (except in trivial case when it is an identity transformation). It

is well known that the sum of a nonlinear function is not the same as a nonlinear

function of the sum. Therefore, parameters in generalized linear mixed models have

subject-specific interpretation, and are most useful when the main objective is to

make inferences at the subject level, as opposed to the whole population. Models
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that are targeted for population-level inferences, of which there are multiple types

(called marginal models) are not discussed in this thesis.

2.4.2 Parameter Estimation

Unlike general linear mixed models, parameter estimation in generalized linear

mixed models is computationally very challenging. Several classes of methods

have been proposed. Numerical integration is often used in low-dimensional

parameter spaces [29]. However, many generalized linear mixed models include

high-dimensional parameter spaces which makes numerical integration techniques

quite challenging. For these other situations, Monte Carlo Expectation Maximization

(MCEM) method [30] is used. The MCEM method is an estimation method based

on the maximum-likelihood. It uses Monte Carlo method to approximate the

conditional expectation in the expectation step of the expectation maximization

(EM) [31] algorithm. Additionally, estimation by parts [32] can be used as another

likelihood-based estimation method.

As an estimation method based on approximation, one often uses penalized

quasi-likelihood (PQL) [33] that is based on an approximation of the marginal

quasi-likelihood [20] using the Laplace approximation [34].

2.5 Summary

In this chapter, we have reviewed four large classes of statistical models. We started

off by introducing general linear models. We described their main characteristics

and the most common estimation methods, including the maximum likelihood and

restricted maximum likelihood. We then introduced generalized linear models as
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an extension to general linear models. In the context of generalized linear models,

we described exponential family of distributions and the important role it plays in

generalized linear models.

Following the introduction of two fixed effects models, we introduced two classes

of models that include random effects parameters, and are often referred to as the

mixed effects models, since they contain both fixed and random effects parameters.

These include general linear mixed models and generalized linear mixed models.

We started by introducing general linear mixed models as an extension of general

linear models, and described how its estimation actually consists of two parts:

estimation of fixed effects parameters and prediction of random effects parameters.

We described how optimal predictions of random effects are obtained. Lastly, we

introduced generalized linear mixed models as an extension of general linear mixed

models and described how they differ from the other three classes of models.



Chapter 3

Bayesian Nonparametric Statistics

In this section, we first introduce the basic concepts of Bayesian nonparametric statis-

tics, with the main focus on Dirichlet Process and Dirichlet Process mixture models.

Then, we review two classes of methods of approximating posterior distribution of

model parameters: the simple Monte Carlo and Markov chain Monte Carlo methods.

Finally, we review few common sampling algorithms in both Bayesian parametric and

nonparametric statistics.

3.1 Introduction

To summarize a set of N observations y = {y1, y2, . . . , yN}, statistics (as a disci-

pline) uses probability theory to describe the underlying mechanism that could have

generated the observations. In parametric statistics, design based or classical, the

probability model is fully specified by a family of probability distributions and a pa-

rameter vector Θ. One of the main objectives in frequentist statistics is to accurately

estimate the subset of the parameter space which identifies the plausible probability

distribution of the model that could have generated the observed data. Knowing

the parameters of the distribution equates to knowing everything one needs to know

23
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about the data, assuming that the assumption of the parametric family describing

the probability model is correct.

In the next section, we introduce the basic concepts in Bayesian (parametric) statistics

that are relevant to this thesis.

3.1.1 Bayesian Parametric Statistics

Unlike frequentist statistics in which unknown parameters are considered fixed,

Bayesian parametric statistics describes unknown parameters through their prob-

ability distributions. In fact, in different stages of a statistical process, more than

one probability model may be used to describe the same set of unknown parameters.

In Bayesian statistics, one views the statistical inference as a process of updating

uncertainty about parameters.

Prior to observing the data, the knowledge about unknown parameters may

be encapsulated by a probability distribution called the prior distribution P (Θ).

Data generation mechanism specifies uncertainty of observing realizations of a vari-

able Y through another probability model, called the likelihood and is denoted by

L(Θ|y). After observing the data, we update the uncertainty about the parameters

of interest through another distribution called the posterior distribution P (Θ|y).

These three probability models are linked through the Bayes’ theorem [35], as

follows:

P (Θ|y) =
P (Θ,y)

P (y)
=
P (Θ)× P (y|Θ)

P (y)
∝ P (Θ)× L(Θ|y), (3.1)

which says that the posterior probability of parameters is fully determined by the

prior distribution of the parameters P (Θ) and the likelihood function L(Θ|y) (also

called the sampling distribution).
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The prior probability P (Θ) encapsulates one’s knowledge about the parameters of

interest before observing the data. Common types of priors include non-informative

priors, informative priors and weakly informative priors. Non-informative priors, such

as Jeffrey’s prior [36], “provide little information relative to data” [37]. Informative

priors deliberately insert knowledge about parameters into the model, using subject

matter knowledge or perhaps using results from previous experiments in which case

they are also called the power priors [38]. Weakly informative priors contain some

information about the prior but “without attempting to fully capture one’s scientific

knowledge about the underlying parameter” [35].

All summaries in Bayesian statistics are carried out using the posterior distri-

bution. This may include the location and dispersion of parameters Θ. Parameters

may also be summarized through credibility regions. A region S is 100(1 − α)%

credibility region if ∫
S

P (Θ|y)dΘ = 1− α. (3.2)

A region S which satisfies the above property, and which does not contain “smaller”

regions that satisfy the same property, is called the Highest Posterior Density (HPD)

region. When Θ is univariate, we call this region the HPD interval, which is much

closer to everyday interpretation of results of inference than are confidence intervals

in frequentist statistics [39].

In Bayesian parametric statistics, the family of probability distributions is as-

sumed to be known. Depending on the support of the variable of interest (defined

as the subset of its domain of positive probability), this could be the normal, beta,
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gamma, Poisson or some other well-known distribution. Only parameters of these

distributions are assumed unknown, and in Bayesian statistics, the uncertainty of

the knowledge about them is described by a probability distribution. This makes

the parameter space in Bayesian parametric statistics very simple - most often it is

either a vector space, such as the space of all vectors or matrices, and probability

distributions over these spaces are assumed to be well known.

In Bayesian statistics we assume that the observations are exchangeable. This

is a weaker assumption than independence and assumes that the order in which data

are observed is not important. In other words, the joint distribution of the data

is the same for any permutation of it. Independence implies exchangeability but

exchangeability does not imply independence.

3.1.2 Bayesian Nonparametric Statistics

Bayesian nonparametric statistics, like frequentist nonparametric statistics, relaxes

the assumption that the probability distribution comes from a known family. Here

the probability distribution is an unknown entity, and in spirit of Bayesian statistics,

it needs to be described by some probability distribution. Therefore, we need a

probability distribution to describe another probability distribution.

As an example, consider again a sample y = {y1, y2, . . . , yN} consisting of N

observations. In Bayesian parametric statistics, one may assume that each observa-

tion yi comes from the normal distribution with unknown mean and variance, i.e.,

Y ∼ N(µ, σ2), and would proceed by describing the uncertainty about the parameters

θ = (µ, σ2) with a prior distribution. However, in Bayesian nonparametric statistics,

one may assume that the distribution of Y is unknown, i.e., Y ∼ F , where F

may be an arbitrary probability distribution. We don’t have a general probability
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distribution that can be any distribution out there. But we could express some

preference (or indifference) about some class of probability distributions for our F

and would need a mechanism to describe an uncertainty about this (as we do with

all unknowns in Bayesian statistics). Probabilities are a good way to do describe

uncertainties. Therefore, we need some kind of a probability distribution Λ that

describes an uncertainty about F , i.e., F ∼ Λ. This is the case where a distribution

becomes a random object - it is random because there is a process/mechanism out

there (in this example it is Λ) that generates these distributions probabilistically.

The space of all probability distributions is very large, and setting a probabil-

ity distribution on that space is not as easy as setting probability distribution

on vector spaces of finite dimension. The main difficulty is that the space of all

probability distributions is of infinite dimension, while a vector space in Bayesian

parametric statistics has a finite dimension.

To illustrate this further, consider again the above example where F is now a

discrete distribution. Modeling this distribution using the standard Bayesian

approach would be very easy if the number of different categories that a random

variable may take was known in advance. Dirichlet distribution would be a natural

choice for its prior. But what if we do not know in advance the number of categories

a variable may take? One option would be to fit different models, assuming a known

number of categories for each model, and then compare model fits and find the

most plausible model. Another approach would be to place a prior (Λ in the above

example) on all discrete distributions, without specifying the number of categories

in advance, and letting the data choose the most appropriate model. There is a

prior in Bayesian nonparametric statistics that can do exactly that, and is called the
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Dirichlet Process prior [15]. We describe it in the next section.

Now, consider a case when our distribution F is continuous. In Bayesian non-

parametric settings, a prior Λ would be required on all continuous distribution

functions, and to make this prior practical, we need to be able to update the prior

with the evidence presented with the observed data. The space of all continuous

distribution functions is quite rich and Bayesian nonparametric statistics presents

many priors for modeling continuous distribution functions, one of which is the

Dirichlet Process mixture prior [40], also presented in the next section.

The unknown entities in our models need not be constrained to only probabil-

ity distributions. They could be more complex structures, such as continuous

functions [41], binary matrices with infinite number of columns [42], or even

graphs [43]. Whatever it is, we need to specify a probability model on these spaces.

This is quite challenging. It is also the reason why we have so many different types

of priors in Bayesian nonparametric statistics, because each structure may require

more than one type of a prior.

The above does not mean that we do not use parametric distribution func-

tions in our models. In fact, we do, and we may use infinitely many of them

(theoretically). We use parametric models to build nonparametric models. In that

sense, Bayesian nonparametric statistics is a Bayesian parametric statistics with

infinite number of parameters. The number of parameters are determined by the

data - we let the data decide the complexity of the model, instead of us imposing

model restrictions on the data.
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3.2 Dirichlet Process

In this section, we first review the Dirichlet distribution, which is the core ingredient

of the Dirichlet Process. In fact, the Dirichlet Process may be considered as a

generalization of the Dirichlet distribution to an infinite dimensional spaces. Then,

we introduce the Dirichlet Process and describe some of its key properties. Finally,

we introduce three different representations of the Dirichlet Process, which are often

used in sampling in Dirichlet Process and Dirichlet Process mixture models.

3.2.1 Dirichlet Distribution

A Dirichlet distribution [1] is a continuous multivariate generalization of the Beta

distribution [1]. To see this, let θ1 have beta distribution with shape parameters

α = {α1, α2}. Then the density function of θ1 is

P (θ1|α) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
θα1−1
1 (1− θ1)α2−1,

where Γ(θ) it the standard gamma function. The support of θ1 is (0, 1). Equivalently,

by introducing a “dummy” variable θ2 such that θ1+θ2 = 1, we can express the above

univariate probability density function as a bivariate density function of θ = (θ1, θ2)
t

as follows

P (θ|α) =
Γ(
∑2

i=1 αi)∏2
i=1 Γ(αi)

2∏
i=1

θαi−1i .

Extending the above bivariate variable θ to a D-variate variable θ = {θ1, θ2, . . . , θD},

such that θi ≥ 0,
∑D

i=1 θi = 1, with parameters α = (α1, α2, . . . , αD), we get the
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probability density function of the Dirichlet distribution with parameter α, given as

P (θ|α) =
Γ(
∑D

i=1 αi)∏D
i=1 Γ(αi)

D∏
i=1

θαi−1i , (3.3)

and we write θ ∼ Dirichlet(α). We say that the support of θ is a D − 1 simplex.

Assuming (θ1, . . . , θD) ∼ Dirichlet(α1, . . . , αD), the expected value and variance of

the ith component of θ are

E(θi) =
αi
α
, and Var(θi) =

αi(α− αi)
α2(α + 1)

, (3.4)

where α =
∑D

i=1 αi is often referred to as the concentration parameter and determines

how much the distribution varies around its expected value. Dirichlet distribution is

often re-parameterized so that α = αα
α

= αp. where p is new parameter whose

components sum to one. This is useful when working with probabilities and will be

used in this thesis in such context.

Figure 3.1, borrowed from [1], shows densities of Dirichlet distributions with different

parameter values.

The Dirichlet distribution may be constructed using the gamma distribu-

tion: if θi ∼ Gamma(αi, 1) are independent, then θ =
∑D

i=1 θi ∼ Γ(α), where

α = α1 + α2 + · · ·+ αD, and

(
θ1
θ
, · · · , θD

θ

)
∼ Dirichlet(α1, . . . , αD).
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Figure 3.1: Density of Dirichlet distribution (D = 3), with different parameter
values: (i) α1 = α2 = α3 = 2; (ii) α1 = 1, α2 = 5, α3 = 10; (iii) α1 = 10, α2 =
3, α3 = 8; (iv) α1 = 2, α2 = 10, α3 = 4. Figure from [1].
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The above property may be used to prove the following two properties of the

Dirichlet distribution: agglomeration and decimation. If θ = {θ1, θ2, . . . , θD} ∼

Dirichlet(α1, α2, . . . , αD), then for any partition (P1, P2, . . . , PK) of {1, 2, . . . , D}, the

agglomeration property holds:

(∑
i∈P1

θi, . . . ,
∑
i∈PK

θi

)
∼ Dirichlet

(∑
i∈P1

αi, . . . ,
∑
i∈PK

αi

)
. (3.5)

Additionally, for (η1, η2) ∼ Dirichlet(α1δ1, α1δ2), where δ1 + δ2 = 1, the decimation

property holds:

(θ1η1, θ1η2, θ2, . . . , θD) ∼ Dirichlet(α1δ1, α1δ2, α2, . . . , αD).

One of the key properties of the Dirichlet distribution is that it is a conjugate prior

of the multinomial distribution. The multinomial distribution is a generalization of

the binomial distribution - it models the probability of counts of each of D possible

outcomes, where the total number of counts (n) if fixed. Its probability mass function

is given by the following expression

P (Y = (y1, y2, . . . , yD)|θ) =
n!

y1!y2! . . . yn!
θy11 θ

y2
2 . . . θyDD ,

when
∑D

i=1 yi = n and 0 otherwise.

Following the above notation, if Y |θ ∼ Multinomial(θ) and if θ ∼ Dirichlet(α),

then the posterior distribution of θ is also Dirichlet but with updated parameters:

θ|y ∼ Dirichlet(y + α) ≡ Dirichlet(α1 + y1, α2 + y2, . . . , αD + yD). We see that

the parameter of the kth component of the Dirichlet distribution αk is updated by

adding to it the total number of observations that have fallen into the kth category,

k = 1, 2. . . . , D. Due to this property, the components of the parameter vector α are
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often called pseudo counts.

3.2.2 Dirichlet Process

In this section, we first describe the intuition behind the Dirichlet Process,

followed by a more formal definition of it. We also introduce a few main prop-

erties of the Dirichlet Process that are used in the rest of the section and in the thesis.

A histogram, first introduced by Karl Pearson in 1895 [44], is a simple non-

parametric method of estimating density of continuous probability distributions.

When used in Bayesian settings, which is then known as Bayesian histogram [45],

it may lead to adequate approximation of the true density, though it suffers from

sensitivity due to the number of bins used as well as the placement of knots that

define their boundaries.

Figure 3.2: Partition of a parameter space



34

Consider an unknown distribution function G with the density function f(·). To

estimate this distribution in frequentist setting, we could partition the range of

the parameter space as in Figure 3.2, count the number of observations that fall

into area Ai (we denote these counts by ni, i = 1, . . . , 10) and then approximate

G(Ai) =
∫
Ai
f(θ)dθ by ni/n, where n is the total number of observations. Assuming

we can get as much data as needed, this approximation may be obtained at an

arbitrary level of precision [46].

In Bayesian settings, if G is a random probability distribution, then the vec-

tor (G(A1), . . . , G(A10)) is a random vector. A natural choice for the prior on the

given partition would be the Dirichlet distribution (due to its conjugacy with the

multinomial distribution). Then, the posterior distribution of G given the data would

also be Dirichlet. We would like this to hold for any partitioning of the parameter

space, which is required if there was to be a distribution of G. Ferguson [47] showed

that such distribution of G exists by proving that the Kolmogorov’s consistency

theorem holds [48]. That distribution of G is called the Dirichlet Process.

It is immediately clear how the agglomeration property of the Dirichlet distri-

bution in Eq.(3.5) plays an important role in the Dirichlet Process. This is so since

the distribution of (G(A1), . . . , G(A10) is Dirichlet, as is the distribution of any vector

that is constructed after two or more subsets of the partition have been merged. The

decimation property guarantees that the same would hold if the existing partitions

are subdivided into smaller partitions.

More formally, the Dirichlet Process is a special type of a stochastic process,

the realization of which is a probability distribution. Stochastic processes are often
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defined in terms of probability distribution they induce on a finite subset of random

variables. For example, a stochastic process (Y1, Y2, Y3, . . . ) is called the Gaussian

process [49] if a subset of D random variables (Yi1, Yi2, . . . , YiD), D > 0, has a

D-dimensional normal distribution. Similarly, the Dirichlet Process is a type of a

stochastic process which induces a D-dimensional Dirichlet distribution on any finite

subset of D random variables (Yi1, Yi2, . . . , YiD).

To summarize, given a base probability distribution G0, and a positive scalar

α, a probability distribution G is Dirichlet Process distributed, denoted by

G ∼ DP(α,G0) if the marginal distribution of any finite partition of the parameter

space {A1, A2, . . . , An} has Dirichlet distribution, i.e.,

P (G(A1), G(A2), . . . , G(An)|α,G0) ∼ Dirichlet(αG0(A1), αG0(A2), . . . , αG0(An)).

(3.6)

The two parameters α and G0 that define the Dirichlet Process have an important

conceptual interpretation. The base distribution is the mean of the Dirichlet Process

- it is our best guess at the unknown distribution G, while the scalar parameter α con-

trols the variability of the realized distribution function around the base distribution

G0. For any subset Ai of the parameter space, we have

E(G(Ai)) = G0(Ai) (3.7)

and

V ar(G(Ai)) =
G0(Ai)(1−G0(Ai))

α + 1
. (3.8)
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Figure 3.3: Empirical cumulative distribution functions from DP(α,N(0, 1)) (ten
for each value of α), for four different values of α = 1, 5, 10, 50. The true
cumulative distribution function is shown in blue.
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This clearly shows why α is also called the precision parameter.

Figure 3.3 shows 10 empirical cumulative distribution functions in each plot, based

on draws from a Dirichlet Process with the precision parameter taking one of the

following four values: 1, 5, 10, and 50. The base distribution is set to N(0, 1). We

see that for smaller values of α, the distribution G varies a lot around the base

distribution G0, while for larger values of α, distributions drawn from DP(α,G0)

resembles more to G0.

Dirichlet Process is a conjugate prior to itself. For illustration of this prop-

erty, let G be a probability distribution drawn from the Dirichlet Process with

the base distribution G0 and scalar parameter α, i.e., G ∼ DP (α,G0). Having

observed the distribution G, we may draw observations from it. Assume we have

drawn a sample of size N from G, y = {y1, y2, . . . , yN}. The observed sample gives

us information about the unknown distribution G, and we may use it to estimate

G. To estimate G, we start with an arbitrary partition of the sample space. Let

{A1, A2, . . . , An} be one such partition. Then, due to conjugacy of the Dirichlet and

the multinomial distribution, we have

P (G(A1), . . . , G(An)|y) ∼ Dirichlet (αG0(A1) + n1, . . . , αG0(An) + nn) , (3.9)

where ni is the number of data points in the sample y that fall into the set Ai. Since

the above holds for any partition of the parameter space, it follows that

G(y)|α,y, G0 ∼ DP(α +N,
α

α +N
G0(y) +

1

α +N

N∑
i=1

δyi(y)), (3.10)

where δyi(y) = 1 if y = yi and zero otherwise. The above expression shows that

the posterior distribution of a probability distribution G is also Dirichlet Process
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distributed but with updated parameters. This shows that the Dirichlet process is a

conjugate prior to itself. The new value of the concentration parameter of updated

Dirichlet Process is incremented by the number of observations taken from the random

distribution G, while the base distribution of the updated Dirichlet Process is a

weighted average between the base distribution of the initial process (G0) and the

empirical distribution
∑N

i=1 δyi(y)/N , since the Eq.(3.10) may be written as

G(y)|α,y, G0 ∼ DP
(
α +N,

α

α +N
G0(y) +

N

α +N

∑N
i=1 δyi(y)

N

)
. (3.11)

Using the expression in Eq.(3.7), the expected probability of any subset A of the

parameter space is

E(G(A)|α,y, G0) = P (yn+1 ∈ A|α,y, G0) =
1

α +N

(
αG0(A) +

N∑
i=1

δyi(A)
)
, (3.12)

which clearly shows that the posterior distribution of the base distribution of updated

Dirichlet Process is also the predictive distribution of the new observation. This

is an important property of the Dirichlet Process that may be used in sampling.

Given any subset A of the parameter space, and using Eq.(3.12), we have

limN→∞E(G(A)|α,G0,y) =
∞∑
i=1

πiδy∗i (A)

where y∗i are unique values of yi, and πi is the limiting empirical frequency of y∗i . The

above expression shows that probability distributions drawn from a Dirichlet Process

are discrete with probability one [50].
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3.2.3 Representations of the Dirichlet Process

In the previous section we introduced the Dirichlet Process and described few of its

key properties. However, in order to use it, we need to be able to generate a random

distribution from it. Given parameters of the Dirichlet Process (the concentration

parameter α and the base distribution G0), how do we generate a random distribu-

tion from it? Furthermore, in order to be able to use a random object in Bayesian

statistics, we need to be able to derive the posterior distribution of the object given

the observed data. We also need to be able to sample from the posterior distribu-

tion. In the previous section, we showed that some of these tasks may be simple in

case of Dirichlet Process. However, as will be seen in the remainder of this chapter,

Dirichlet Process is used in construction of more complex probabilistic models, and

updating posterior distributions in these models, or performing other Bayesian tasks,

may be quite challenging. Therefore, in the remainder of this section, we introduce

three common representations of a Dirichlet Process. Each representation leads to a

specific sampling method.

Stick-breaking representation

Stick-breaking representation of the Dirichlet Process was first introduced by Sethura-

man [51]. To generate an instance of a random distribution G from a Dirichlet Process

with base distribution G0 and positive scalar α, Sethuraman suggests generating two

sequences of random variables:

• Draw Wi from Beta(1, α), i = 1, 2, . . . , where Wi is independent of Wj, i 6= j;

and

• Draw Yi independently from G0, i = 1, 2, . . . .
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Then, letting πi = Wi

∏i−1
j=1(1 − Wj), i = 1, 2, . . . , we can express G as an infinite

mixture of discrete distributions (each defined at a single atom from G0), i.e.,

G(y) =
∞∑
i=1

πiδyi(y) (3.13)

where δyi(·) is the point mass at yi. The atoms yi are determined by the support of

the base distribution, and the probability of sampling an atom yi is determined by

the mixing probability π1, π2, . . . . So, for example, if we want a prior for distributions

whose support is the real line, then the candidate for the base distribution G0 might

be the normal distribution or the t-distribution. However, if we want a prior for a

distribution whose support is the set of only positive real numbers, then the gamma

distribution might be a good candidate.

The metaphor behind the stick-breaking representation is that if we consider

a stick of length one, we can break it into two pieces: the location where we break

the stick is determined by W1 and the length of the first piece is π1. Then we

repeatedly break the remaining part of the stick, at (a relative) location determined

by Wi, and assign the weight πi to the part of the stick being broken off (we continue

braking the stick from the same side). This process may continue indefinitely. In

practice though, it is often stopped at some point where the accuracy of the resulting

distribution G is deemed good enough.

Using Eq.(3.4) and the above construction process, we have

E(Wi) =
1

1 + α
,

which shows that smaller values of alpha will result in fewer atoms from G0 being
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assigned larger probabilities, while for larger values of α, these probabilities will be

spread out over larger set of atoms from G0.

Polya Urn representation

Taking into consideration that the draws from a Dirichlet Process are going to result

in duplicates, Eq.(3.10) may be expressed in terms of unique observations y∗i , as

follows

G(y)|α,y, G0 = DP(α +N,
α

α +N
G0(y) +

1

α +N

K∑
k=1

Nkδy∗k(y), (3.14)

where Nk is the number of observations that are equal to y∗k. In the above notation,

out of N observations, only K are unique.

Using the results from the previous section in Eq.(3.12), we may express the

predictive distribution of y∗N+1 as follows

y∗N+1 = y|y∗1, . . . , y∗K , α,G0 ∼
1

α +N

(
αG0(y) +

K∑
k=1

Nkδy∗k(y)

)
. (3.15)

The predictive distribution of the new observation specifies that its value is equal to

one of the existing observations with probability that is proportional to the number

of observations (Nk) that have the same value as that observation, or its value

will be drawn from the base distribution G0 and this will happen with probability

proportional to the concentration parameter α. This representation is known as the

Polya Urn representation of the Dirichlet Process [52].

The above is analogous to a Polya Urn scheme, and can be described as fol-

lows: we start with an empty urn. First, we draw a color from G0, paint a ball with
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the chosen color and place the ball into the urn. Then, at each subsequent step, we

either select a new color from G0, paint a new ball with that color and drop it into

the urn, or we select a ball from the urn, observe its color and then return it into the

urn along with another ball that we paint with the same color. We perform these

two steps (the choice of selecting a color from G0 or picking a ball from the urn)

with probabilities α
α+n

and n
α+n

, respectively.

Polya Urn scheme produces an exchangeable sample.

Chinese Restaurant Process representation

The previous section shows that samples from a distribution that is drawn from the

Dirichlet Process will have duplicates. This process induces clustering: a sample

of size N will be partitioned into K clusters, where all observations in the same

cluster will have the same parameter values. Introducing a latent variable c for

each observation, we may denote this as ci = k, which means that ith observation is

allocated to cluster k.

Given a sample of N observations, clustered into K unique clusters, the new

observation yN+1 will be allocated to cluster c according to the following probability

P (cn+1 = c|c1, c2, . . . , cN , α) =
1

α +N

( K∑
i=1

Nkδy∗i (c) + αδy∗K+1
(c)
)
, (3.16)

where δy∗i (c) = 1 if y∗i is allocated to cluster c and 0 otherwise. The (n + 1)st item

will be assigned to one the existing clusters with probability proportional to the

number of observations in the given cluster, or it will be assigned to a new cluster

with the probability proportional to the concentration parameter α. This process

exhibits the rich-gets-richer scheme, since larger clusters will keep getting larger
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The above representation of the Dirichlet Process was first introduced by Pit-

man [53]. It is a metaphor for sitting arrangement at a Chinese restaurant, which

is assumed to have infinite number of tables, each table being able to serve infinite

number of customers, and all customers at the same table ordering the same dish.

Customers are analogous to observations, the tables are analogous to clusters of

observations, and table dish is analogous to a parameter of the cluster. So, a

customer entering a restaurant will sit at one of the existing tables with probability

proportional to the number of customers who have already chosen that table. A new

customer may also choose to sit at a new table with probability proportional to α

and order a new dish.

Joint distribution of seating arrangements (or partitions) is invariant to the

order of customer arrivals, and therefore, the Chinese Restaurant Process induces an

exchangeable distribution over partitions. Asymptotically, as N → ∞, the number

of occupied tables approaches to αlog(N) almost surely.

3.3 Dirichlet Process Mixture

A Dirichlet Process mixture is a type of mixture model in which the number of mixing

components may be infinite, and the parameters of the model are distributed accord-

ing to a Dirichlet Process. So, if y follows Dirichlet Process mixture distribution, and

the underlying Dirichlet Process is DP(α,G0), then

f(y) =
∞∑
k=1

πkf(y|θ∗k)
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where θ∗k ∼ G0, k = 1, 2, . . . ,∞ and the mixing weights πk are probability weights

sampled according to the DP (α,G0), as described in Eq.(3.13). An infinite mixture

model does not mean that there are indeed an infinite number of mixture compo-

nents. This is obviously impossible - we cannot have more components than we have

data points. What we mean by “infinite” number of mixture components is that the

upper limit on the number of mixture components is not fixed. Given any model

derived from N data points, the number of mixture components may grow as more

data points are added to the model.

Dirichlet Process is not well suited for modeling continuous distribution func-

tions, primarily because realizations of probability distributions from it are discrete

with probability one [47]. However, a continuous density function of y may be

obtained as a general kernel mixture model

f(y|P ) =

∫
K(y|θ)dP (θ),

where P is a mixing distribution and K(·) is a kernel function. Lo [54] has suggested

that continuous distribution functions may be modeled as mixture distributions in

which the Dirichlet Process is used as the prior of the mixing distribution. Therefore,

by convolving a known kernel function with a Dirichlet Process, we obtain a Dirichlet

Process mixture distribution, and it allows us to approximate any continuous density

function to an arbitrary degree of precision.

The following is an equivalent representation of a Dirichlet Process mixture



45

model but in a hierarchical form

yi ∝ F (yi|θi),

θi ∝ G,

G ∝ DP(α,G0),

(3.17)

where the unique values of θi (these are θ∗k in Eq.(3.3)) are independently and

identically distributed from G0.

It is sometimes useful to include an explicit allocation of observations to clus-

ters, using the latent variable ci for observation i, as described in Section 3.2.3.

Then the Dirichlet Process mixture model may be represented as the limit of finite

mixture of K components, where K →∞, as follows

yi|ci,θ∗ ∝ F (yi|θ∗ci),

ci|π ∝ Multinomial(π1, π2, . . . , πK),

θ∗ci ∝ G0,

(π1, π2, . . . , πK) ∝ Dirichlet(
α

K
, . . . ,

α

K
),

(3.18)

where π is the vector of mixing weights distributed according to the Dirichlet distri-

bution, and α and G0 are the parameters of the Dirichlet Process, as described in the

previous sections.
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3.4 Review of Stochastic Approximation Tech-

niques

Many problems in Bayesian statistics come down to evaluating integrals in high di-

mensional spaces. For example, the posterior distribution of a parameter θ given the

data y,

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

=
p(y|θ)p(θ)

m(y)

involves evaluation of the marginal likelihood of y, m(y) =
∫
p(y|θ)p(θ)dθ. While in

some cases we may get away without evaluating m(y), there are cases where we have

to evaluate it. For example, under the quadratic loss function, the optimal estimator

of some function h(·) of θ, is the expected value of h(θ) with respect to the posterior

distribution of θ given y, i.e., the optimal Bayes estimator of h(θ) is
∫
h(θ)p(θ|y)dθ.

Another example where one may have to evaluate the marginal likelihood of y is

in evaluating the Bayes factor when performing model comparison. Bayes factor is

defined as

B(y) =

∫
p1(y|θ1)p1(θ1)dθ1∫
p2(y|θ2)p2(θ2)dθ2

,

where pi(·) is the probability in model Mi. Basically, an expectation of any

function, with respect to the posterior distribution of θ, would require evaluating

the expression m(y).

Monte Carlo simulation techniques are a class of techniques that generate ran-

dom samples in order to approximate integrals in high-dimensional spaces [55]. We

briefly review two approximation techniques: simple Monte Carlo integration in

which the generated random variables are independent and identically distributed,

and Markov chain Monte Carlo techniques in which the generated random variables
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are dependent.

3.4.1 Simple Monte Carlo Methods

In this section, we use univariate notation since simple Monte Carlo methods are

most commonly applied in low dimensional spaces.

To see how simple Monte Carlo methods work, we consider an integral of function

h(y) for which there is no analytic solution. Assume we can decompose h(y) into a

product of f(y) and p(y), where p(y) is a probability density function from which we

can easily generate random samples. Then the integral of h(y) is the expected value

of f(y) where the expectation is taken with respect to p(y), i.e.,

∫
h(y)dy =

∫
f(y)p(y)dy = Ep(f(Y )).

Simple Monte Carlo approximation methods are based on the idea that by taking a

sample of N independent and identically distributed random variables Yi from p(y),

y = {y1, y2, . . . , yN}, we may approximate Ep(f(Y )) with the sample average ĥ(y),

where

ĥ(y) =
1

N

N∑
i=1

f(yi).

By Strong Law of Large numbers, ĥ(y) converges almost surely to
∫
h(y)dy. Further-

more, if the expectation of f 2(Y ) is finite with respect to p(y), then the variance of

ĥ(y) may be approximated by

V(ĥ(y)) =
1

N2

N∑
i=1

[
f(yi)− ĥ(y)

]2
.
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Evaluating the integral of h(y) when p(y) is one of the standard distributions

is very easy, since most of software packages have implementation of generating

random samples from p(y). However, when p(y) is not a standard distribution

function or when it is not possible to sample directly from it (using standard

techniques), then other sampling methods may need to be used. This may include

inverse transform sampling, importance sampling [55], rejection sampling [55], or

some other type of sampling that facilitate generation of independent sample.

3.4.2 Markov Chain Monte Carlo Methods

Markov chain is a type of a stochastic process that models a sequence of random

variables. The sequence of random variables {θi : i ∈ T}, indexed by some

index set T , describes the transition between different states of the underlying

parameter space, and is formalized by the transition kernel. Transition kernel is the

conditional probability of moving from state (i−1) to state (i), denoted by f(θi|θi−1).

Markov chain is a stochastic process that satisfies the Markov property, which

states that the probability of moving to the future state θi depends only on the

current state θi−1, that is,

f(θi|θ1,θ2, . . . ,θi−1) = f(θi|θi−1), for i ≥ 2.

The transition kernel f(θi|θi−1) along with the probability at the initial state θ1,

defines the joint distribution of any finite subset of the sequence of {θi : i ∈ T}, since
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for a subset of size N we have

f(θ1 θ2, . . . ,θN) = f(θ1)f(θ2|θ1) . . . f(θN |θN−1).

There are several properties of a Markov chain that are particularly important for

the study of Markov chain Monte Carlo (MCMC) methods. First, a Markov chain is

said to be Harris recurrent if, given a particular state, the probability that the chain

visits it infinitely often is one, regardless of what the initial state was. Second, a

Markov chain is periodic if it returns to an initial state at regularly spaced intervals;

otherwise, it is aperiodic. A chain is said to be ergodic if it is aperiodic and Harris

recurrent. Finally, a Markov chain is said to be stationary, if its transition probability

does not depend on the particular value of the index.

Robert [55] defines Markov chain Monte Carlo as any method that produces

an ergodic Markov chain whose stationary distribution is the target distribution

of interest. This target distribution is most often the posterior distribution of the

model parameters.

In the above notation, a state θi is an arbitrary state in a Markov chain.

However, when this state represents a value of a parameter θ at iteration i, then we

denote it by θ(i). To refer to a particular component, say kth component, of vector θ

at iteration i, we use notation θ
(i)
k , 1 ≤ k ≤ K.

Given a chain with N samples of parameter θ, and a real-valued function

h(θ), we define the ergodic average of h(θ) as
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ĥ(θ) =
1

N

N∑
i=1

h(θ(i)).

The key theorem in Markov chain Monte Carlo methods is the Ergodic Theorem [56]

which states that if the chain is ergodic with stationary distribution f and with finite

first moment of h(θ) with respect to the stationary distribution f , then the ergodic

average of h(θ) converges almost surely to expected value of h(θ) under the same

distribution, i.e.,

ĥ(θ) −→ Ef (h(θ)) as N →∞ a.s.

In the remainder of this section, we describe two of the most commonly used

families of MCMC sampling algorithms. We describe these methods in the context

of sampling from the posterior distribution of θ.

3.4.3 Gibbs Sampling

In most practical problems, a parameter vector θ = {θ1, θ2, . . . , θK} may be high di-

mensional. Gibbs sampling [57] method draws samples from the posterior distribution

of θ by iteratively sampling one parameter component θi, 1 ≤ i ≤ K, at a time. A

parameter θi is sampled from its conditional distribution (denoted by fi(θi|·) below),

assuming all remaining parameters (denoted by θ−i) are constant. Therefore, the

sample of θ’s is built one parameter component at a time, as the following algorithm

shows:
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Initialize a starting value of θ as θ(0) ;

for i=1 to M do

Sample θ(i) as follows:

Sample θ
(i)
1 ∼ f1(θ1|θ(i−1)−1 ,y);

Sample θ
(i)
2 ∼ f2(θ2|θ(i−1)−2 ,y);

...

Sample θ
(i)
K ∼ fk(θK |θ(i−1)−K ,y);

end

Algorithm 1: Gibbs sampling from f(θ|y)

Algorithm 1 shows pseudo code steps of sampling from posterior distribution

using Gibbs algorithm. It is immediately clear that in order to be able to use Gibbs

sampling, one needs to derive conditional distributions of parameters of interest and

these conditional distributions have to have a known form.

Sampling one parameter at a time may be very inefficient [58], especially when the

parameters are highly correlated. A common workaround to improving efficiency

is to sample multiple parameters at a time - this technique is known as Blocked

Gibbs sampling and has been known to improve convergence [59]. Integrating out

some parameters is also common - this technique leads to Collapsed Gibbs sampling

algorithms.

Gibbs sampling is often the first choice of Markov chain Monte Carlo sam-

pling methods. However, many posterior distributions in practice do not have a

known conditional distribution of either some or any parameters of interest, in which
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case, other sampling methods need to be used. One of the more common alternative

sampling methods is the Metropolis-Hastings method, described in the next section.

3.4.4 Metropolis-Hastings Sampling

Similar to Gibbs sampling method, the Metropolis-Hasting method is not a single

method but rather a class of methods. These methods are based on papers of

Metropolis [60] and Hastings [61]. They sample parameters from the distribution

using the full joint density of the target distribution. To draw samples from the

target distribution f(θ|y), we use a proposal distribution q(θ) to draw a candidate

parameter θ(cand) representing a state where the Markov chain may move next. Then

we move probabilistically to the new state.
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Initialize starting value at θ(0) ∼ q(θ) ;

for i=1 to M do

1: Propose θ(cand) ∼ q(θ|θ(i−1));

2: Calculate acceptance probability as:

α(θ(cand),θ(i−1)) = min
(
1, q(θ

(i−1)|θ(cand))f(θcand|y)
q(θ(cand)|θ(i−1))f(θ(i−1)|y)

)
;

3: Sample u ∼ Uniform(0, 1);

if u ≤ α(θ(cand),θ(i−1)) then

4: Accept proposal: θ(i) ← θ(cand);

else

5: Reject proposal: θ(i) ← θ(i−1);

end

end

Algorithm 2: Metropolis-Hastings sampling from f(θ|y)

The proposal distribution is chosen so that is has the same support as the target

distribution and is easy to sample from. Its variance controls the acceptance rate

and is often tuned [62] so that the acceptance rate is between 20% and 50% - a

suggested rate in practical applications [63], [64].

There is huge literature on many types of Metropolis-Hastings algorithms.

Some (very simple) examples include: symmetric Metropolis-Hastings algorithms in

which the proposal distribution is symmetric, Random Walk algorithms in which the

current state is perturbed by an independent and identically distributed offset from

the proposal distribution, independence chains in which the proposal distribution is

independent of the current state, and many others. Common proposal distributions
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include the Normal distribution [65], t-distribution [66], or an approximation of the

posterior distribution using the normal distribution [63], [67], [68].

It is also common to use a combination of Gibbs and Metropolis-Hastings al-

gorithms: those parameters which have a known conditional distribution are sampled

using the Gibbs sampling, and those that do not, are sampled using more powerful

sampling methods, including some type of Metropolis-Hastings algorithm.

3.5 Sampling in Dirichlet Process Mixture Models

In this section, we describe several common sampling methods in Dirichlet Process

mixture models, which are either based on Gibbs sampling or Metropolis-Hastings

sampling method.

After having observed the data y = {y1, y2, . . . , yN}, we would like to derive

the posterior distribution of θc, f(θc|y), where c is the allocation vector as defined

in Section 3.2.3. We basically want to sample from the conditional distribution of

θci , given the remaining θ parameters (denoted by θ−ci), and given the observed

data y and the other model parameters - these are not shown in the expressions below.

The posterior of θc is just the product of its prior and the likelihood

f(θc|y) ∼ f(θc)f(y|θc).

The first part of the above expression may be written as the product of conditional

distributions of its unique parameters (θ∗ci), given all other model parameters, which,

due to the exchangeability of θ and Polya Urn representation, as described in Section
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3.2.3 and Eq. (3.15), can be written in the following form

f(θci|α,y, G0) ∼ αG0 +
K∑
k=1

Nkδθ∗ck . (3.19)

Then multiplying the above priors with the likelihood f(y|θc) we get the posterior

distribution of θci as

θci|θ−ci ,y ∝ κ

{∑
j 6=i

f(yi|θcj)δθcj (θci) + α
( ∫

f(yiθ)dG0(θ)
)
Hi(θci)

}
, (3.20)

where κ is the normalizing constant, α is the concentration parameter of the Dirichlet

Process G(α,G0), and Hi(θ) is the posterior distribution of the parameter θ given

the prior distribution G0 and a single observation yi. The above method was used

by Escobar [69] and Escobar [70], and while easy to implement in conjugate case, it

suffers from poor mixing and slow convergence.

Sampling the concentration parameter α of the Dirichlet Process prior is ex-

plained in the next chapter.

The above expression Eq.(3.20) shows how to sample parameters associated

with each observation from their posterior distribution. Using similar approach with

model (3.18), we can sample allocation variables ci associated with each observation

i, instead of parameters associated with those observations, as we have done above.

Then instead of using Polya Urn representation of the Dirichlet Process to formulate

the prior of parameters θ, we use the Chinese Restaurant Process to formulate the

prior of allocation vector c, p(c), and derive the posterior distribution of ci given all

other model parameters [71], [72]. The expressions of these posterior distributions
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are as follows

p(ci = c|c−i, yi,θ−ci) =


κ

n−i,c
N−1+αf(yi|θ∗c ), if c = cj for some j 6= i;

κ α
N−1+α

∫
f(yi|θ)dG0(θ), if ci 6= cj for all j 6= i.

(3.21)

Similar to Eq.(3.20), the above posterior probabilities are very easy to derive

when the prior distribution is conjugate to the likelihood. Few methods have been

proposed to handle non-conjugate cases, the most common of which is Algorithm 8

in [73]. We use this method in this thesis and provide detailed explanation of it in

the next chapter.

Exploring the posterior sample space is challenging. Samplers may get stuck

in local maximum and fail to properly explore the whole space. To break from the

local maximum, extensions to the above algorithms have been proposed in both

conjugate [74] and non-conjugate cases [75]. However, these methods may not be

very efficient in high dimensional spaces.

Other common sampling methods include slice sampling [76], [77], retrospective

sampling [78], or methods based on approximating the stick breaking representation

of the Dirichlet Process [79], [80].

3.6 Summary

This section provides a short overview of the Bayesian nonparametric statistics with

the focus on the Dirichlet Process and Dirichlet Process mixture models. We first

describe advantages and rationale for using the Bayesian nonparametric methods,

and then review the basic distributions that are related to the Dirichlet Process.
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We describe the Dirichlet Process, including its basic properties and advan-

tages, and disadvantages leading to the Dirichlet Process mixture models. We then

do a short overview of different representations of the Dirichlet Process and show

how they are used in sampling in Dirichlet Process mixture models. We also briefly

review the basic concepts in simple Monte Carlo and Markov chain Monte Carlo

approximation techniques.



Chapter 4

Clustering Profiles in Generalized Linear

Mixed Models

In this chapter, we first review the literature related to clustering longitudinal

profiles. The most relevant work related to our thesis includes clustering profiles

in Bayesian nonparametric settings with continuous response only. We propose a

novel method, called the Generalized linear mixed model clustering using Dirichlet

Process (GLMM-DP), which allows one to cluster profiles in which the distribution

of an outcome is any member of the exponential family. We model the response

using a mixture of GLMM models without pre-specifying the number of mixture of

components. The number of mixture components and complexity of the model is

fully data-driven, leading to simple non-linear models as in GLMM when only one

mixture component is produced, and non-linear models in much broader sense when

more than one mixture component is produced. After introducing the GLMM-DP

method, we derive details of the posterior distributions of model parameters. We

conclude the chapter with the presentation of a label switching solution, which is

needed in order to be able to make inferences at a component level. A performance

evaluation through a simulation study will be presented in the following chapter.

58
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4.1 Introduction to clustering

Clustering is a process of organizing a set of objects into groups so that objects

within the same group exhibit high degree of similarity while objects between

different groups are as dissimilar as possible. This problem has been extensively

studied in both statistics and computer science, and is often known as segmentation,

numerical taxonomy or unsupervised classification [81]. There is a vast literature

on clustering [82]. It is supported by solid implementations in various software

packages, and has numerous applications in many areas in industry, including market

research [83], astronomy [84], biomedical research [85], and social media [86].

There are many ways to group clustering methods. Clustering methods may

be divided into hierarchical and partitioning methods [87]. Hierarchical clustering

methods are tree-based methods that describe how the final clustering is obtained.

They can be either agglomerative or divisive. Agglomerative methods start by

placing each object in its own cluster and then recursively merge two closest clusters

(creating a parent node in the tree hierarchy) until only one cluster is left. Divisive

clustering methods, on the other hand, place all objects into one cluster and then

recursively partition clusters (creating child nodes in the tree) until no further

partitioning is possible (based on some objective function). K-means algorithm [3]

is a well-known example of this type of clustering. A close relative to it that we

use in this thesis is the K-medoids method [4]. The K-means method clusters

objects around centroids, where a centroid is a center of a set of objects, which

does not have to correspond to any particular object in the set. The K-medoids
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method, on the other hand, clusters objects around medoids, which are objects

from the set whose dissimilarity with the other objects in the same cluster is minimal.

Most of clustering methods were originally developed for cross-sectional data,

where observations are assumed to be independent. In longitudinal studies, or more

generally, in clustered data studies, independence does not hold, which makes most

of early clustering methods not suitable for these types of studies. Attempts have

been made to adopt these methods in longitudinal settings [5], [6].

Model-based clustering methods assume that data are observed from a hetero-

geneous population, and try to model such a population using mixture models.

Each data item is assumed to come from one (homogeneous) subpopulation. For

example, assuming that there are K different subpopulations, each subpopulation

being modeled by the density function f(y|θk), the mixture model may be written as

f(y|Θ) =
K∑
k=1

πkf(y|θk), (4.1)

where Θ is the set of all model parameters, Θ = {θ1, . . . , θK , π1, . . . , πk}. In the

above case, we say that Y has a finite mixture distribution, consisting of K mixture

components, each component used to model one homogeneous subpopulation. Pa-

rameters θk, 1 ≤ k ≤ K, index the component mixture distribution functions, while

the mixture weight πk denotes the probability that a data item comes from the kth

subpopulation, and hence πk > 0. Since a point must come from one of the existing

subpopulations, we also have
∑K

k=1 πk = 1. Model-based clustering may produce

results that are practically more meaningful than distance-based methods [88].
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In many problems, the number of mixture components is known in advance.

However, in many other problems, the number of components is not known in

advance. In such cases, it is common to fit multiple models, with different numbers

of mixture components, and then compare model fits in order to find a model with

the most plausible number of components.

Model-based clustering methods and are well suited for clustering both cross-

sectional and longitudinal data. In longitudinal data, multiple observations from

the same individual may be stacked up as a single multivariate response, and then

multivariate statistics may be used to model the data. The advantage of multivariate

statistics is that it allows one to capture association between responses from the

same individual, while treating responses from different individuals still independent.

For example, assuming that y contains n responses from the same individual, with

y ∈ Rn, we may model it using the multivariate normal distribution with parameters

θ = (µ,Σ), i.e.,

f(y|µ,Σ) =
1√

(2π)n|Σ|
exp

{
−1

2
(y − µ)tΣ−1(y − µ)

}
.

Some constraints of the covariance matrix are often imposed. For example, using

the modified Cholesky decomposition [8], for a given Σ, we may find a unique lower

triangular matrix T and a unique diagonal matrix D, such that Σ−1 = T tD−1T .

These matrices (T and D) have nice interpretations in longitudinal data. For

observations that are assigned to the same cluster, T represents association between

observations taken at different time points. The matrix D represents association

between observations taken at the same time. McNicholas [9] builds on these

properties and suggests eight different types of covariance structures, based on
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different restrictions of matrices T and D (constrained vs. unconstrained). This

method is implemented in software [89]. McNicholas [90] further extends the task of

clustering longitudinal data with missing observations.

Eigen-decomposition is another common type of decomposition of covariance ma-

trix [10], [11] and obviously leads to different types of constraints of new matrices.

Most of the methods assume that the distribution of mixture components is multi-

variate normal. The multivariate t-distribution is sometimes used as well [91], [92],

though less often.

A mixture model may have any model associated with a mixture component,

not only a distribution function as alluded above. It could be a linear model [11] or

linear mixed model [93], [94], [95]. It could also be a non-linear model [96]. It could

be as advanced as any statistical model may be.

The above clustering methods assume that the number of mixture components

is either known in advance, or they fit multiple models, each with a different number

of components, and then perform a challenging task of model comparisons to find the

most plausible model. The most common method of model comparison is performed

using the Bayesian information criterion (BIC) [97] and Akaike’s Information

Criterion (AIC) [98]. Attempts to remove the restriction of a known number of

mixture components has led to development of new methods.

Methods based on Dirichlet Process mixture models do not assume that the

number of mixture components is known in advance. Yan He [12] models the

response variable within the linear mixed models setting, and clusters profiles
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based on similarity between profile parameters. These two steps are performed

simultaneously. Profiles with similar parameters are assigned to the same clus-

ter, where similarity is determined by the underlying Dirichlet Process prior.

Sun [14] proposes a similar method for clustering gene expression profiles, while

applying the factor analysis to reduce dimensionality of parameter space (which

can be quite large as more and more gene profiles are analyzed). The most

common estimation method in mixture models is the Expectation-Maximization

(EM) method [31], while MCMC techniques are methods of choice in Bayesian

domain. Heinzl [99] however, models random effects in linear mixed models using

Dirichlet process but uses the EM method for parameter estimation. This is

possible with the stick-breaking representation of the Dirichlet process which can

be truncated after certain precision in its representation is achieved, as shown by [79].

The main advantage of using Bayesian nonparametric statistics in grouping

clustered or longitudinal data is that we do not have to set the number of mixture

components in advance, and that way we can avoid selecting the most appropriate

number of mixture components [7]. We let the data determine the complexity

of the model (number of components, component parameters and other common

parameters). This does not mean that all model parameters can always be easily

obtained in Bayesian nonparametric statistics. Marginal parameters or parameters

that are common for all components can be easily estimated; however, estimating

component level parameters may still be quite challenging. This is due to the

label switching problem that we discuss at the end of this chapter. In Bayesian

nonparametric statistics, we build a single model only once, and then apply a label

switching solution to determine the most plausible number of mixture components

and their parameters. Bayesian parametric statistics, on the other hand, may build
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many different models before choosing one that best fits the data.

4.2 Profile Clustering in Generalized Linear

Mixed Models

In this section we introduce the GLMM-DP method and describe how it differs from

other methods in the literature. We then describe how to estimate model parameters.

This includes specifying prior distributions of parameters and deriving their posterior

distributions.

4.2.1 Model Description

We assume that a response variable Y , observed at two levels (i = 1, 2, . . . , N, j =

1, 2, . . . , n) has a distribution that is a member of an exponential family. For each

observation Y , we have two sets of predictors, X and Z, and correspondingly two

sets of parameters, the first of which we refer to as “fixed” effects parameters and the

second as “random” effects parameters. Given a link function h(·), we may define the

linear predictor as

h(E(Yij|β, bi)) = ηij = X t
ijβ +Zt

ijbi. (4.2)



65

The linear predictor in Eq.(4.2) and the following distributional assumptions complete

the model specification

yij|β, bi, ν ∝ exp

{
yijηij − q(ηij)

ν
+ k(yij, ν)

}
,

bi|G ∝ G,

G|α,G0 ∝ DP(α,G0),

β|µβ,Σβ ∝ MVN(µβ,Σβ),

ν−1|αν , βν ∝ Gamma(αν/2, β
−1
ν /2),

β−1ν ∝ Gamma(αβν , ββν ),

α ∝ Gamma(aα, bα),

G0 ≡ MVN(µb,Σb),

(4.3)

where DP(α,G0) is the Dirichlet Process with the concentration parameter α and

the base distribution G0, as described in Section 3.2.2. Placing a Dirichlet Process

prior on the random effects parameters bi ensures that there would be duplicates

among the parameters, resulting in clustering of profiles that share the same random

effects based on their cluster assignment.

In the model specified by Eq.(4.3), profiles are grouped by their random ef-

fects parameters. This means that all profiles allocated to the same cluster have the

same random effect parameter. Therefore, knowing a random effect parameter of a

profile is the same as knowing a random effect parameter of a mixture component

to which it is assigned. Similar modeling design step was adopted in [12] though in

linear mixed models setting. An extension to this method in which random effects

may be grouped without enforcing that all of profiles assigned to the same clus-

ter share the same value of the parameter, is discussed in the last chapter of this thesis.
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As in Komarek [100], we place the Gamma(α, β) prior on the dispersion pa-

rameter ν, and gamma prior on the inverse of its rate hyper-parameter, where

Gamma(α, β) is the standard Gamma distribution with the density function given

by

f(y|α, β) =
βα

Γ(α)
yα−1e−βy. (4.4)

4.2.2 Fixed vs. Random Effects Parameters

In frequentist statistics, fixed effect parameters are assumed constant and their

estimation is of direct interest to the researcher, while random effects are considered

a random sample from the larger population of values and have a distribution

associated with them [21]. In linear mixed models and generalized linear mixed

models, random effects may also be of direct interest to the researcher (when

subject-based inference is the objective of the study).

In Bayesian statistics, all parameters are considered random and are described

with a probability distribution. Our interpretation is similar to that of Kreft [101]:

fixed effect parameters are parameters that are common across all units, while

random effect parameters may vary across units. Therefore, β assesses the effect

of predictors at the population level and bi assesses the effect of predictors at the

lower-unit level (ith individual). Hence we have only one vector of β parameters,

while there may as as many as N different vectors in b = {b1, b2, · · · , bN}.

Identifiability is a property of a model which guarantees that the parameters

of the model, or any function of them, may be correctly estimated from the data, to

an arbitrary level of precision assuming that we may obtain an arbitrary amount of



67

data. For example, in case of linear models, if the expected means of two models are

the same, then the parameters of those models must be the same [102]. Parameters

in non-identifiable models cannot be correctly estimated regardless of the amount of

data one may have.

In order to avoid non-identifiability issues in models with both fixed and ran-

dom effects parameters, it is common to impose a constraint in which the column

space of the covariate matrix Z is a subset of the column space of the matrix X .

Random effects in such models are interpreted as a deviation (at unit level) from

the population mean. We do not impose such constraints. Instead, we require that

the two column spaces must have no (non-zero) elements in common. This means

that predictors used to explain the outcome Y at two different levels must be differ-

ent. Komarek [100] uses fixed and random effects parameters in exactly the same way.

In most general linear mixed models and generalized linear mixed models, random

effects are used as a device to model the correlation structure between observations

within the same level (such as individuals), and are not to be estimated (other than

their variance). The objective of our model is to simultaneously estimate model

parameters at both levels and cluster profiles based on random effects estimates.

This is a natural approach in Bayesian statistics, in which random effects parameters

are treated as unknown parameters like fixed effects parameters [103]. There is no

need to integrate them out.

4.2.3 Parameter Estimation

We first re-parametrize the model to bring it into a more convenient form. Let the

vector c = (c1, c2, . . . , cN) be a vector of allocation of individual profiles to mixture
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components, so that ci = k means that individual profile i is allocated to mixture

component k. Further, given that the parameters bi in model (4.3) have duplicates,

let φ be the vector of their unique values, i.e., φ = {φ1,φ2, . . . ,φr}, where r ≤ N .

Then model (4.3) may be written as

yij|ci,φ,β ∝ F(yij|β,φci)

ci|p ∝ Multinomial(p1, . . . , pK),

p1, . . . , pK ∝ Dirichlet
( α
K
, . . . ,

α

K

)
,

β ∝ MVN(µβ,Σβ),

φci ∝ G0,

ν−1|αν , βν ∝ Gamma(αν/2, β
−1
ν /2),

β−1ν ∝ Gamma(αβν , ββν ),

α ∝ Gamma(aα, bα),

G0 ≡ MVN(µb,Σb),

(4.5)

with K → ∞. In the above model, F (yij|φci ,β) represents any member of the

exponential distribution function, indexed by fixed effects β and random effects

parameters φ = {φ1,φ2, . . . ,φr}.

In model defined in Eq.(4.5), let the set of all parameters be Θ = {α,β,φ, c, ν, βν} =

{α,β,φ1, . . . ,φr, c1, . . . , cN , ν, βν}. The posterior distribution is expressed as the

product of the prior distribution P (Θ) and the likelihood function L(Θ) = F (y|β,φ)

P (Θ|y) ∝P (Θ)× L(Θ)

∝P (α,β,φ, c)× L(Θ)

∝P (α)× P (c|α)× P (β)× P (φ|c)× P (ν|αν , βν)× P (βν)× L(Θ).

(4.6)
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In the above expression, the likelihood function L(Θ) is

L(Θ) =P (y|Θ)

=P (y|α,β,φ, c)

=
N∏
i=1

P (yi|β,φci)

=
N∏
i=1

n∏
j=1

P (yij|β,φci)

=
N∏
i=1

n∏
j=1

exp

{
yijηij − q(ηij)

ν
+ k(yij, ν),

}
(4.7)

where the linear predictor has been re-parameterized, i.e., ηij = X t
ijβ+Zt

ijφci . Using

the notation in Section 1.1, the above expression becomes

L(Θ) =
N∏
i=1

n∏
j=1

exp

{
yijηij − q(ηij)

ν
+ k(yij, ν)

}

=
N∏
i=1

exp

{
yi × ηi − 1× q(ηi)

ν
+ 1× k(yi, ν)

}
=exp

{
yt × η − 1t × q(η)

ν
+ 1t × k(y, ν)

}
,

(4.8)

where 1 is a unit vector of dimension of either N or n, depending on the context.

Given the expression (4.7) and (4.8), we need to sample from the posterior

distribution

P (Θ|y) ∝P (Θ)× L(Θ)

∝P (α)× P (c|α)× P (β)× P (φ|c)× P (ν|αν , βν)×

P (βν)× exp

{
yt × η − 1t × q(η)

ν
+ 1t × k(y, ν)

}
.

(4.9)
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4.2.4 Choosing Prior Distributions

For simplicity, we assume the parameters of prior distribution of both β and b are

known. More specifically, we set µb = 0, and also we set the covariance matrices

Σβ and Σb to be diagonal matrices with very large variances. This will allow us to

explore the large support of both parameters. So, for β, we have

P (β|µβ,Σβ) ∝ |Σβ|−
1
2 × exp

{
− 1

2
(β − µβ)tΣβ

−1(β − µβ)
}
. (4.10)

The prior of b has also multivariate normal distribution with mean µb and covariance

matrix Σb.

It is common to use the gamma distribution for the prior of the concentration

parameter α of the Dirichlet Process. For simplicity, we assume that the parameters

of this distribution are known, i.e., α ∝ Gamma(aα, bα), where aα, bα are fixed. For

our simulation study (next chapter) we set both parameters to 1. This would draw,

on average, a concentration parameter that is close to 1, resulting in smaller number

of mixture components. In practice, however, one may try building the model with

different values of aα and bα and then choose the values that produce the most

plausible number of components.

For the prior and hyperprior parameters of dispersion parameter ν in Eq.(4.5), we

set αν = 2, αβν = 0.2 and ββν = 5. This corresponds to a weakly informative prior

and has been used by other authors [100].
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4.3 Sampling from Posterior Distributions

In this section, we describe how to sample parameters from the posterior distribution

outlined in (4.9).

4.3.1 Sampling concentration parameter of Dirichlet Process

The number of distinct values of random effects, which in the paragraph surrounding

Eq.(4.5) we denote by r, is random and has its own distribution, derived early on by

Antoniak [104]. The posterior distribution of α depends on its prior distribution and

the likelihood but only through the number of distinct values of bi random effects (r

of them). We use the method of West [105] to sample α, which is a mixture of two

Gamma distributions as follows

P (α|x, r) ∼πx ×Gamma(aα + r, bα − log(x))

+ (1− πx)×Gamma(aα + r − 1, bα − log(x)),

(4.11)

where x is an auxiliary variable with values between 0 and 1. The mixture weights

are determined from the following expression

πx
1− πx

=
aα + r − 1

N(bα − log(x))
. (4.12)

All the remaining parameters are fixed.

4.3.2 Sampling allocation variables

We sample allocation variables using the posterior distribution P(c|y) ∝

P (c|α) × L(Θ). The allocation variables c1, . . . , cN are not independent, and

each has to be sampled conditionally on other allocation parameters.
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Without loss of generality, we may assume that the allocation vector c con-

tains values between 1 and r, where r is the number of distinct mixture components,

each component having at least one profile allocated to it. To sample allocation

variables, we follow Algorithm 8 of Neal [73]. Profiles are allocated to mixture

components one at a time. After each allocation, the number of mixture components

may remain the same, it may increase by one or it may decrease by one. Let c−1 be

the vector of all component allocations as in c but excluding the component i. Given

the current r distinct mixture components, let ri denote the number of distinct

components when unit i is removed from its currently allocated component. If

profile i was the only profile allocated to its mixture component, then after removing

the ith profile from it, the mixture component would be empty. We remove empty

components and update the allocation vector c so that other profiles (excluding

profile i) are correctly allocated to the remaining components (no gaps in label values).

According to [73], the current component may be allocated to one of the re-

maining ri components or to one of the m new components, where m is an auxiliary

variable (we set it to 3 in our simulations, as suggested by [73]). The probability of it

being allocated to an existing component depends on the number of profiles currently

allocated to it and parameters (φci) of that component. For new components,

the parameters are drawn from the prior distribution. The posterior distribution,

according to [73] may be expressed as
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P (ci = c|c−i,yi,φ) =


κ

n−i,c
N−1+αL(yi|φc), for 1 ≤ c ≤ ri,

κ α/m
N−1+αL(yi|φc), for ri ≤ c ≤ ri +m.

(4.13)

In the above expression, κ is the normalizing constant, n−i,c is the number of pro-

files allocated to the component c excluding the current profile, and L(yi|φc) is the

contribution of the likelihood by the profile i.

4.3.3 Sampling random effects parameters

From (4.9), we have

P (φ|y) ∝P (φ|c)× L(Θ)

∝
r∏
i=1

P (φr|c)× L(Θ).
(4.14)

Given that we select multivariate normal distribution as the base distribution of our

Dirichlet Process, i..e, φc ∝ MVN(µb,Σb), the posterior distribution of φv, 1 ≤ v ≤ r

is given by
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P (φv|y) ∝P (φv)×
∏

u:cu=v

exp

{
ytuηu − 1tq(ηu)

ν
+ k(yu, ν)

}
∝exp

{
−1

2
(φv − µb)tΣ−1b (φv − µb)

}
×∏

u:cu=v

exp

{
ytuηu − 1tq(ηu)

ν
+ k(yu, ν)

}
∝exp

{
−1

2
(φv − µb)tΣ−1b (φv − µb)

}
×

exp

{
1

ν

[ ∑
u:cu=v

ytuηu − 1t × q(ηu)
]

+
∑
u:cu=v

1t × k(yu, ν)

}
,

(4.15)

where the index u goes over all profiles which are allocated to the mixture component

with label v.

To sample from the above posterior distribution we use the Metropolis-Hastings

algorithm. As a proposal distribution, we use the multivariate normal distribution

based on a second-order approximation using the Newton-Raphson procedure with

one step only.

Before deriving the expressions for the mean and variance of the proposal dis-

tribution, we introduce the following notation. Let q′ij ≡ q′(ηij) =
∂q(ηij)

∂ηij

and let q′′ij ≡ q′′(ηij) =
∂q′(ηij)
∂ηij

. Then let q′i = (q′i1, q
′
i2, . . . , q

′
iN)t and let

q′ =
(

(q′1)
t, (q′2)

t, . . . , (q′N)t
)t

. Similarly, let q′′i = (q′′i1, q
′′
i2, . . . , q

′′
iN)t and let

q′′ =
(

(q′′1)t, (q′′2)t, . . . , (q′′N)t
)t

. Finally, let q′(φ) and q′′(φ) be vectors evaluated for

a particular value of φ parameter.

Assuming that the current value of the parameter φi at iteration m − 1 is

φ
(m−1)
i , the proposal distribution for sampling φi at the next iteration will be
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multivariate normal distribution MVN(µpi , ωΣpi), i = 1, 2, . . . , r, where

Σpi =
[ 1

ν2
Zt
iq
′′(φ

(m−1)
i )Zi + Σ−1b

]−1
(4.16)

and

µpi = φ
(m−1)
i + Σpi

[1

ν
Zt
i(y − q′(φ

(m−1)
i ))−Σ−1b

(
φ

(m−1)
i − µb

)]
, (4.17)

and ω is a multiplication factor that allows us to control the acceptance rate of the

sampler. This is often the ratio between the number of times certain parameter

has been updated and the total number of iterations; however, in our case the

number of mixture components (each of which is associated with a unique random

effect parameter) changes and counting the number of times a random parameter

is updated would overestimate the acceptance rate. Instead, the calculate the

acceptance rate as the average rate (over the number of iterations) of average number

of times random effects have been updated (per iteration). The value of ω is set so

that this value is between 30% and 40%.

In expressions (4.16) and (4.17), Zi is a matrix containing subset of covari-

ates of all profiles which were allocated to component i. This matrix is a proper

subset of the original Zi matrix specified on the full model. The size of vectors q′

and q′′ equals the number of profiles allocated to the current mixture component.

4.3.4 Sampling fixed effects parameters

To sample fixed effects parameters β, we follow the same steps as in the previous

section. The expressions are almost the same, except that the indexes are not
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restricted in Eq.(4.15) to only those profiles allocated to a particular component.

Note that in the previous step, we have to sample multiple random effect parameters

(one for each mixture component), while in this section we have to sample only one

fixed effect parameter.

Given that the prior of β is multivariate normal with mean µβ and covariance matrix

Σβ, the posterior distribution of β is

P (β|y) ∝exp

{
−1

2
(β − µβ)tΣβ(β − µβ)

}
×

exp

{
1

ν

(
ytη − 1t × q(η)

)
+ 1t × k(η, ν)

}
.

(4.18)

Similar to sampling random effects parameters, the proposal distribution to the above

posterior distribution is multivariate normal with MVN(µγ , ωΣγ), where

Σγ =
[ 1

ν2
X tq′′(β

(m−1)
i )X + Σ−1β

]−1
(4.19)

and

µγ = β
(m−1)
i + Σγ

[1

ν
X t(y − q′(β(m−1)

i ))−Σ−1β

(
β

(m−1)
i − µβ

)]
, (4.20)

where ω is a multiplication factor that allows us to control the acceptance rate of the

sampler. Unlike in the random effects parameters case (as outlined in the previous

section), ω here is calculated as the ratio of number of times a fixed effect parameter

has been changed over the course of all iterations.
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4.3.5 Sampling dispersion parameters

The posterior distribution of both dispersion parameter and its hyper-parameters can

be shown to have gamma distribution. For the posterior of ν, we have

ν−1 ∝ Gamma
(αν + n

2
,
β−1ν + (y − η)t(y − η)

2

)
, (4.21)

where N is the total number of observations, and y is the vector of all responses

in the data set, and η is the vector of all linear predictors. The parameter β−1ν is

updated according to the following gamma distribution

β−1ν ∝ Gamma
(
αβν +

α

2
, ββν +

ν−1

2

)
. (4.22)

4.3.6 Summary of steps in GLMM-DP

The following algorithm summarizes the main steps in GLMM-DP method.
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Data: Response vector y, covariate matrices X and Z

Result: For each MCMC sample: component alloctions

c = {c1, cn, . . . , cN}, estimates of β and bi, i = 1, 2, . . . , N ,

estimate of concentration parameter α, acceptance rate for

fixed and random parameters in Metropolis-Hastings sampler

Initialization:

Assign each profile to its own cluster, and set β̂
0

and b̂
0

i to a value

from their respective prior distributions;

STEP 1: Allocate profiles to clusters using Eq.(4.13);

STEP 2: Update component parameters using Eq.(4.15);

for each mixture component do

1. Derive proposal distribution using Eq.(4.16) and Eq.(4.17);

2. Sample new random effect parameter using Metropolis-Hastings

algorithm;

3. Update the acceptance rate for random effects parameters;

end

STEP 3: Update fixed effect parameters as per Section 4.3.4 ;

STEP 4: Update the acceptance rate fixed effects parameters;

STEP 5: Update concentration parameter as per Eq.(4.11);

STEP 6: Update dispersion hyper-parameter as per Eq.(4.22), and its

parameter as per Eq.(4.21);

Algorithm 3: Processing steps of the GLMM-DP method

The GLMM-DP method produces parameter estimates at each iteration. The

number of parameters may differ from one iteration to the next, as the number of
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mixture components changes. The final estimates are produced in the post-processing

phase - this is described in the next section.

There are other steps performed in the algorithm that are considered too low-

level and are not mentioned above, such as adding new mixture component when a

profile is allocated to a new component, and/or removing an existing components

when the last profile allocated to it is removed.

4.4 Label Switching

Label switching is a well-known problem in Bayesian inference in mixture models. It

occurs due to the non-identifiability of mixture components.

4.4.1 Introduction

Let y = {y1,y2, . . . ,yN} be a data set consisting of N profiles, each profile being

modeled as a mixture distribution

P (yi|Θ) = π1P (yi|θ1) + · · ·+ πKP (yi|θK).

Here Θ = {π1, π2, . . . , πK ,θ1,θ2, . . . ,θK}. The likelihood is given as

L(Θ|y) =
N∏
i=1

[
π1P (yi|θ1) + · · ·+ πKP (yi|θK)

]
.

Let V K be the set of all permutations on (1, 2, . . . , K). Then for νi ∈ V K , let

ν(Θ) = (πν(1), πν(2), . . . , πν(K),θν(1),θν(2), . . . ,θν(K)). The label switching problem
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occurs because the likelihood

L(ν(Θ)|y) =
N∏
i=1

[
πν(1)P (yi|θν(1)) + · · ·+ πν(K)P (yi|θν(K))

]
is the same for any permutation ν ∈ V K . This is due to the fact that the likelihood

function is invariant to the order of components. However, the order of the

components may change during the sampling process, but the parameter estimation

using the MCMC relies on the order of components being consistent across all

iterations. For example, assuming that we have K components in our model, to

estimate the parameter of the kth component, we would average the parameters of

all kth components, across all iterations. However, what was the kth component

in one iteration may become the mth component in the next iterations, k 6= m.

Therefore, averaging parameter estimates across all iterations may not produce valid

results, because the posterior surface may consist of up to K! different modes, each

corresponding to a different permutation νk ∈ V K , unless this symmetry is broken

by the parameter prior.

The label switching problem may not be an issue if we are primarily inter-

ested in estimating population or unit level parameters. Population level parameters

do not depend on mixture components and can be estimated by averaging their

estimates over all iterations, while unit level parameters may depend on mixture

component but can be estimated easily since their value can be uniquely identified

in each iteration. However, estimating component level parameters requires that the

label switching issue be resolved.
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Label switching problem has been extensively studied in finite mixture mod-

els, and various solutions have been proposed. These solutions could be divided into

three different types [106]. The first type imposes identifiability constraints on the

prior and that way breaks the symmetry in the posterior [7]. For example, given

Θ = (θ1,θ2, . . . ,θK), an identifiability constraint may be just

θ1 < θ2 < · · · < θK ,

where inequality operator is appropriately defined on vectors.

This leads to the correct marginals (as N →∞), but for finite N , it may over-estimate

difference between parameters [107]. Another type of label switching solutions, called

the deterministic relabeling algorithms, treat two permutations as one if the char-

acteristic of interest has similar values under the two permutations. Stephens [108]

uses the matrix allocation probabilities of the observations as the characteristic of

interest, while [109] uses closeness of allocation vectors ci. Finally, the last class of la-

bel switching solutions places probabilities over permutations of mixture components.

The above solutions apply to mixture models with finite number of compo-

nents. In infinite mixture models, Yan He [12] proposes a solution based on

hierarchical clustering of longitudinal profiles. Our implementation is based on a

similar approach proposed in [110]. We describe it in the next section.

4.4.2 Finding a Reference Clustering

In this section, we describe the process of finding the clustering of profiles that is

best representative of the posterior sampling.
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Each MCMC iteration produces a cluster assignment vector c = {c1, c2, . . . , cN},

where ci = k if the ith profile is assigned to the mixture component k. This vector

induces a partitioning of profiles. We denote the partitioning of profiles at iteration

g by P g = {p1,p2, · · · ,pK}, where pk = {j : cj = k}. Here pk contains indices of all

profiles which were allocated to cluster k.

Not only can the component assignment change from one iteration to the next, but

the number of mixture components may also change. So we cannot compare cluster

assignments across iterations. The best we can do is to build the similarity matrix

between all profiles [111]. This is a matrix M of size N × N , where ij(th) element

specifies the percent of iterations in which profiles i and j were allocated to the same

component, i.e.,

mij =
# of samples after burn-in for which ci = cj

# of samples after burn-in

Then based on the similarity matrix, we use the partitioning around medoids (PAM)

method [4] to cluster profiles. The PAM method requires a number of clusters to

be provided in advance, and it requires a dissimilarity matrix, which in our cases is

1 −M . We may run the method N times, and for each N , we cluster profiles and

choose the clustering with the highest average silhouette width. A silhouette width

of a profile i is defined as

s(i) =
minCd(i, C)− d(i)

max
[
d(i),minCd(i, C)

] ,
where the index C goes over all profile clusters, d(i, C) is the average dissimilarity

between profile i and all other profiles in cluster C, d(i) is the average dissimilarity
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between profile i and all other profiles assigned to the same cluster as profile i.

4.4.3 Estimating Component Parameters

Let P r be the reference partition produced by the algorithm described in the previous

section. The reference partition P r may be different for all partitions P i, 1 ≤ i ≤M ,

where M is the total number of MCMC iterations. Even if P r matches one of the

existing partitions, chances are that there may be too few such partitions in order to

make valid estimates based only on them. This is especially true for large datasets or

data sets that come from subpopulations that are not well separated, a pattern that

many real-world data sets exhibit. The method described in this section is based

on [112].

The GLMM-DP method assigns a random effect bi to profile i, which in turn

is assigned to a particular cluster that is a part of the partition. Let the reference

partition P r consist of k clusters, i.e., P r = (pr1 ,pr2 , . . . ,prk). Then parameter

estimate for cluster j at iteration i, b
(i)
j , 1 ≤ j ≤ k, 1 ≤ i ≤ M is the average of

random effects parameters bu of all profiles which were allocated to a cluster for

which cu ∈ prj , i.e.

b̂
(i)

j =
1

nrj

∑
cu∈prj

bu,

where nrj is the number of profiles in jth partition of the reference partition P r.

Basically, the estimate of bi at the jth cluster is the average over all bj that

were assigned in the same cluster in the reference partition but may have been

allocated to different clusters in the partition of the current iterations.
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Based on the above estimates, we may estimate the density of component parameters.

Flat density functions would indicate inconsistent profile clustering across different

iterations, and would require that the label switching solution be re-examined.

The following algorithm summarizes the above steps:

Data: MCMC output from the processing phase

Result: Estimates of β and bi, i = 1, 2, . . . , N , the optimnal clustering

of profiles (P )

STEP 1: Derive the similarity matrix as described in Section 4.4.2;

STEP 2: Derive the final clustering of profiles (P ) as described in

Section 4.4.2;

K ← number of clusters in P

STEP 3: Derive estimates of bi, i = 1, 2, . . . , K as described in Section

4.4.3;

STEP 4: Derive fixed parameter estimates by taking mean of β̂
(m)

for

each MCMC sample m;

Algorithm 4: Post-processing steps in the GLMM-DP method

4.5 Summary

In this chapter, we have introduced the GLMM-DP method which facilitates

clustering of longitudinal profiles in generalized linear mixed models and estimating

model parameters at the same time. We have fully defined the model, including the

(type of) prior of its parameters and have derived posterior distributions of all model
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parameters - the actual values of prior parameters are data specific and would need

to be specified by a data analyst. We have also described a label switching solution

in order to be able to draw inferences at the component level. Similar methods

have been proposed recently, but only in longitudinal studies in which the response

variable is continuous and the underlying model is a Dirichlet Process mixture of

linear mixed models. The GLMM-DP method is the first method of its kind that

extends the scope of the response variable to any type with a distribution that is a

member of the exponential family.

There are many ways to cluster longitudinal data. For example, one may

cluster profiles by grouping response values, separately or together with the values

of explanatory values. One could cluster profiles based on the similarity of their

patterns of change over time. The GLMM-DP method provides a mechanism

to estimate model parameters and cluster profiles based on similarity of model

parameters, without imposing a number of clusters in advance.

It is important to put this method in the right context. Clustering data in

which observations are not independent is a challenging task. Clustering profiles

is even more challenging because profiles may evolve over time in different ways.

Attempting to solve this problem while relaxing constraints such as the number of

clusters or distribution of parameters, makes the clustering even more challenging.

It is easy to come up with a scenario in which this method would work very well

(well-separated clusters of model parameters), and other scenarios in which it may

not perform as well.

Therefore, the user would always need to verify the result of clustering, and
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may have to override the results produced by this method. The user may use the

GLMM-DP method to identify homogeneous groups in the data, but sometimes the

method may produce grouping that the user is either not interested in, or that don’t

quite make sense. For example, two or more clusters may represent a subpopulation

that does not differ in a significant way, or clusters may contain very few profiles

that the user may verify to be outliers (or perhaps of no interest). In such cases, the

user could re-run the method, with different values of the concentration parameter of

the Dirichlet Process prior (forcing the number of clusters to be smaller/larger (but

still unknown)), the user may remove profiles before re-running the method, or the

user may discard some clusters. Whatever the case, the user may be more likely to

override results produced by the GLMM-DP method than with other methods. The

main reason for this is that the GLMM-DP method tries to solve a very challenging

problem, the general solution to which may always require at least some human input.

The proposed method is not meant to replace existing methods. Rather, it

may be considered as an additional tool in data analyst’s arsenal that may be used

in combination with other tools and methods to get insight into the data that one

may not be able to obtain using any other single method out there.



Chapter 5

Simulation Study

In this chapter, we evaluate the performance of the proposed GLMM-DP method

using simulated data. We perform simulations on models with two different types of

responses: one with continuous and another one with count response.

We organize this chapter as follows. First, we describe the process of simulating data

sets. Then, we briefly walk through the process of verifying convergence of posterior

distributions on a single model. Finally, we generate 100 replicates of data sets for

each type of the model and under different values of input parameters, and summarize

the performance characteristics of the GLMM-DP method.

5.1 Simulating Data Sets

We simulate a data set with N = 100 units, with n observations taken on each unit (n

can be one of the following three values: 5, 10 or 20). We assume that all observations

are taken at a fixed set of time points t = 1, 2, . . . , n (i.e., we have a balanced design).

The distribution of the response variable Y is either normal or Poisson distribution,

making our link function either the identity function (in case of normal) or a log

function (in case of Poisson distribution). The linear predictor consists of three fixed

87
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effects and one random effect parameter:

ηij = Xij1β1 +Xij2β2 +Xij3β3 + bi. (5.1)

In the above equation, Xijk is the value of the kth predictor observed at time j

on unit i. We simulate the values of predictors so that predictors of successive

observations on the same individual are highly correlated. Values of the first and

second predictors at time j are linear combinations of their values at a previous

time (t = j − 1) and some random component. More specifically, we set Xij1 to

Xi(j−1)1 ∗ 0.78 +N(0, 0.1), and similarly, we set Xij2 to Xi(j−1)2 ∗ (−0.78) +N(0, 0.1).

Values of the first and second predictors at time zero are drawn randomly from the

normal distribution with means 0.1 and 0.9, respectively, and a standard error of 0.5.

Finally, the last predictor Xij3 represents the time at which the observations were

taken, Xij3 = j. We standardize Xij3 so that its mean is 0 and standard deviation is 1.

For simplicity, we take the random effect bi to be an intercept only. The only

constraints we have to be aware of, for identifiability purposes, is to ensure that

the intersection of column space of fixed effect covariate matrix X and random

effect covariate matrix Z is non-empty. This is guaranteed with the above model by

including an intercept in Z and not including it in X. The random effects matrix Z

has only one column - with all its entries set to one.

We simulate a dataset that consists of two clusters. Each cluster is of the

same size. The first half of the units are assigned to the first cluster and the second

half of units are assigned to the second cluster. The random effects parameters are

generated from the normal distribution, with the mean in the first cluster being
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equal to one of the following values: −0.5, 0.5, 0.75, 1.15, 1.65, 2.2, and a standard

deviation of 0.1. The mean of the random effects in the second cluster is set to 1.15,

and its values are generated from the normal distribution with the same standard

deviation. Therefore, each unit is initialized with different (but very similar) random

effect parameter, while the GLMM-DP method assumes that units in the same

cluster have the same random effect parameter. Hence, we refer to the true value of

a parameter through its mean (such as µb) and its estimate as b̂.

The fixed effect parameters do not vary in our simulation study and are fixed at

β = (0.8, 0.6, 0.3).

Given the values of the linear predictors generated according to the above

scheme, we simulate values of the responses either from the normal distribution with

mean Xβ+ b and a standard deviation of 0.1, or from the Poisson distribution with

the mean exp(Xβ + b).

5.2 Simulation on a Single Data Set

In the previous section, we provided detailed description on how we simulate a data

set. Before creating multiple replicates of data sets under different scenarios, which

we do in the next section, in this section we walk through the process of verifying

the convergence of posterior distributions of model parameters. Once we establish

that the posterior distributions converge to stationary distributions, we derive the

point estimates of model parameters and their respective credible intervals. We

approximate the posterior distribution of model parameters using 20,000 Markov

chain Monte Carlo iterations.
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To test if the posterior distribution converges to the stationary distribution,

we use the Geweke’s convergence diagnostic [66], as implemented in coda pack-

age [113]. This diagnostic compares the mean of the parameter in the first part

of the chain (10% of iterations, by default) with the mean of the same parameter

using the last part of the chain (50% of iterations, by default). If the distribution

converges to the stationary distribution, the two means should be very close, and the

absolute difference between them should be asymptotically normal. That allows us

to use the standard Z-score statistics to test the hypothesis that the two means are

indeed the same. We conduct the test at 5% level of significance.

Table 5.1: Geweke’s statistic for fixed and random effect parameters for the model
with count responses

Parameter Geweke’s statistic

β1 0.6599

β2 -0.3405

β3 -0.4670

b1 0.3721

b2 -0.9883

Table 5.1 shows values of the the Geweke’s statistic when the first part of the

chain is set to 0.2 or 20% of the total number of iterations. We see that all values

are well within [−1.96, 1.96]. Therefore, the Geweke’s diagnostic indicates that using

the first 20% of the chain as a burn-in period is reasonable.

Figure 5.1 shows that the target state space of the fixed effect parameters is

explored well (we have good mixing) and that the densities of the parameters are
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fairly peaked, though the density of β3 does not have a bell shape as nice as those of

β1 and β2.

Figure 5.1: Trace and density plot of fixed effect parameters in the model with
count response

Figure 5.2 shows that the target state space of the random effect parameters is ex-

plored well and that the distribution of the parameters is not too flat. This indicates

that out label switching solution is performing well.

Figures 5.3 and 5.4 show the autocorrelation between successive samples of fixed and

random effects parameters, respectively. We see that in both cases the autocorrelation
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Figure 5.2: Trace and density plot of the fixed effect parameters

drops fairly quickly, indicating that the trace plots in Figure 5.1 (for fixed effects

parameters) and Figure 5.2 (for random effects parameters) are fairly good diagnostics

of convergence. Strictly speaking, the plot in Figure 5.4 is not an autocorrelation

plot between successive random effects parameters, as they are generated during the

MCMC procedure. Instead, it is the autocorrelation plot of random effects parameters

as produced by the label switching procedure. It is impossible to trace a random effect

parameter through the MCMC procedure, and the autocorrelation between these

“calculated” random effects seems to be the best we can have. We continue referring

to them as autocorrelation plots of random effects parameters in the rest of the thesis,

but it is important to keep in mind that they are not the true autocorrelation plots

of random effects parameters as produced by the MCMC.
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Figure 5.3: Autocorrelation between successive fixed effects parameters of the model
with count response
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Figure 5.4: Autocorrelation between successive random effects parameters of the
model with count response

The above diagnostic results indicate that the posterior distributions of our model

parameters converge to the stationary distributions, and that we may proceed with

parameter estimates. We get the point estimates of the fixed effects parameters

as β̂ = (β̂1, β̂2, β̂3) = (0.6710,−0.5772, 0.2887), with the highest posterior density

interval (0.4820, 0.8461) for β1, (−0.4800,−0.6703) for β2, and (0.2474, 0.3318) for

β3. The true values of the fixed effects parameters are β = (0.8,−0.6, 0.3)

We get the point estimate of the random effect for the first cluster as 0.4994, with

its 95% highest posterior density (HPD) interval being (0.4215, 0.5720). The point

estimate of the random effect for the second cluster is 1.1733 and its 95% HPD

interval is (1.1164, 1.1.2276). The true value of the random effects for the first

cluster is 0.5 and for the second cluster 1.15. These results show that the point es-

timates of both fixed and random effect parameters are within the 95% HPD interval.

The above shows that to approximate the posterior distributions of the model
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parameters, it suffices to generate 20,000 MCMC samples. After discarding the first

4,000 samples, considered to be part of the burn-in period, we use the remaining

16,000 samples for parameter estimation. We use these numbers in the following

section, in which we generate data sets with different model parameters and

perform their estimations at the end of each simulation, without explicitly checking

convergence of their posterior distributions. We do so because we have shown in this

section that 20,000 samples approximate posterior distributions fairly well.

5.3 Simulation Results

We repeat the above experiment 100 times under three different conditions. In the

first condition, we vary the mean of the random effect parameter of one of the two

clusters (with the mean of the random effect parameter of the other cluster being

the same in all settings). We choose 6 different values for this mean: -0.5, 0.5, 0.75,

1.15, 1.65 and 2.2. In the second condition, we vary the number of observations

per individual. We choose three cases: 5, 10 and 20 observations per individual.

Finally, in the third condition, we change the type of the response variable. We

test the model with both continuous and count response. The primary focus of

the thesis is the count response and the continuous response is used mostly as a

reference case, especially given that the clusters in continuous response are well

separated when the difference between the means of their random effects param-

eters is greater than 0.5, while the clusters in count response are not as well separated.

Similar to other studies [114], we evaluate the performance of the GLMM-DP

method using several metrics. This includes the number of times in which the

correct number of clusters was recovered, the percent of profiles that were classified
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correctly, and the mean squared error (MSE) for random effects parameters. For

each run, we evaluate these metrics and provide their point estimates with their

standard errors. For MSE of random effects, we take the square root of the difference

between the true and the posterior mean of random effect parameter. Note that in

frequentist statistics this would make no sense (since random effects are predicted

not estimated), however, in Bayesian statistics, the two parameter types are treated

the same way.

5.3.1 Simulation Results with Continuous Response

Table 5.2 shows the number of times (out of 100) in which two clusters were recovered

from the data. It is clear from the table that the GLMM-DP method successfully

recovers the true number of mixture components (or clusters) in almost all cases,

except in the case when both clusters are initialized with the same random effect

parameter (µb1 = µb2). We observe that our proposed method produces better results

for larger sample sizes, as expected.

Table 5.2: Data with continuous response: number of times in which two clusters
were recovered from the data (µb1 = 1.15)

µb2 ni = 5 ni = 10 ni = 20

-0.5 99 100 100

0.5 100 100 100

0.75 98 100 100

1.15 81 82 95

1.65 100 100 100

2.2 100 100 100
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The current version of the GLMM-DP method can infer no less than two clusters

in the data. This is due to the label switching solution, as outlined in Section 4.4.

More specifically, this is due to the fact that the PAM method [4] produces at least

two clusters. Even with this fact, we see in Table 5.2, that there are many runs in

which more than 2 clusters were inferred (although better results were obtained with

larger number of observations per individual). This is also due to the PAM method:

the similarity matrix is very dense and the method identifies too many clusters.

However, a visual inspection of the results can detect this anomaly, since the values

of the estimated random effects parameters in each cluster are very similar. For

example, one of the runs (with ni = 20) produces three clusters with the following

estimates of random effects parameters: 1.15015322, 1.150151145, 1.15015109.

Table 5.3 shows the percent of correctly classified profiles for each value of the

random effects parameter (that varies in the simulation), and for each number of

observations per individual. Note that these results are calculated only for those

cases in which the correct number of mixture components were estimated (as shown

in the previous section). It is clear from the table that the model fully recovers

profiles in all conditions except when both clusters are given the same mean of the

random effects. Again, this is due to the label switching solution, as described in the

previous section.

Table 5.4 shows the mean squared errors (MSEs) for random effects parameters

when the response variable is continuous. The MSE is calculated as the square root

of the difference between the true value and the posterior mean of random effects

parameters. In Bayesian statistics, fixed and random effects parameters are treated

the same way, while in frequentist statistics fixed effects are estimated and the
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Table 5.3: Data with continuous response: classification accuracy of profiles

µb2 ni = 5 ni = 10 ni = 20

-0.5 100.00 100.00 100.00

0.5 100.00 100.00 100.00

0.75 100.00 100.00 100.00

1.15 59.93 62.41 63.31

1.65 100.00 100.00 100.00

2.2 100.00 100.00 100.00

random effects are predicted. We observe that the smallest overall MSE is obtained

Table 5.4: Data with continuous response: MSE of random effects parameters

µb2 ni = 5 ni = 10 ni = 20

-0.5 0.0056 0.0042 0.0031

0.5 0.0058 0.0042 0.0029

0.75 0.0222 0.0040 0.0032

1.15 0.0036 0.0029 0.0022

1.65 0.0066 0.0047 0.0031

2.2 0.0054 0.0038 0.0031

when the data set is simulated with two clusters and each cluster is given the same

random effects mean. We also observe that the MSE decreases as more observations

are recoded on each individual.

Table 5.5 shows the average value of point estimates of fixed effect and ran-

dom effect parameters over 100 runs. The first column shows the true value of one

random effect parameter (this is constant for all runs). The second column shows the
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Table 5.5: Data with continuous response: estimates of fixed and random effects
parameters. (simulation standard errors of random effects parameters are shown
in parentheses)

µb1 µb2 β̂1 β̂2 β̂3 b̂1 b̂2

ni = 5

1.15 -0.5 0.7992 -0.5998 0.2994 1.1498(0.0061) -0.4996(0.0065)

1.15 0.5 0.8025 -0.6003 0.3003 1.1483(0.0059) 0.4999(0.0069)

1.15 0.75 0.8015 -0.6002 0.2999 1.1283(0.0095) 0.7716(0.0083)

1.15 1.15 0.7985 -0.5994 0.2995 1.1495(0.0043) 1.1495(0.0043)

1.15 1.65 0.7997 -0.5998 0.2997 1.1520(0.0068) 1.6474(0.0074)

1.15 2.2 0.7983 -0.6009 0.3005 1.1494(0.0061) 2.1995(0.0064)

ni = 10

1.15 -0.5 0.8000 -0.6016 0.3006 1.150(0.0048) -0.5002(0.0048)

1.15 0.5 0.8004 -0.5998 0.3002 1.1513(0.0045) 0.5000(0.0049)

1.15 0.75 0.7995 -0.599 0.3002 1.1496(0.0038) 0.7507(0.0035)

1.15 1.15 0.8006 -0.5995 0.2998 1.1499(0.0027) 1.1499(0.0027)

1.15 1.65 0.8000 -0.5997 0.2998 1.1501(0.0052) 1.6493(0.0051)

1.15 2.2 0.8003 -0.5999 0.3002 1.1507(0.0044) 2.2002(0.0041)

ni = 20

1.15 -0.5 0.8026 -0.5994 0.3001 1.1495(0.0033) -0.5005(0.0038)

1.15 0.5 0.8004 -0.5998 0.3000 1.1510(0.0032) 0.4998(0.0033)

1.15 0.75 0.7995 -0.599 0.3002 1.1496(0.0038) 0.7507(0.0035)

1.15 1.15 0.8006 -0.5995 0.2998 1.1499(0.0027) 1.1499(0.0027)

1.15 1.65 0.7974 -0.5999 0.3003 1.1501(0.0033) 1.6498(0.0036)

1.15 2.2 0.8003 -0.5999 0.3002 1.1496(0.0035) 2.1996(0.0035)
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second random effect parameter, varying from -0.5 to 2.2. The next three columns

show the estimates of fixed effect parameters. The true values of these parameters

are set as follows: β1 = 0.8, β2 = −0.6, β3 = 0.3. The last two columns show

the estimates of the first two columns, with simulation standard errors shown in

parentheses.

Table 5.5 shows that estimates of both fixed and random effects parameters

are very close to their true values. We provide standard deviations only for estimates

of random effects parameters since, in general, one would expect their precision to

be smaller. The reason for this is that fixed effects parameters are estimated using

all available data, while random effects parameters are estimated using only data

(profiles) that is allocated to a particular cluster. However, the results seem to

indicate that the precision of random effects parameters is indeed very high.

5.3.2 Simulation Results with Count Response

In this section, we present the results of the GLMM-DP method when applied on

longitudinal data in which the response variable is of count type. We compare the

results in this section with those obtained in the previous section.

The GLMM-DP method produces exactly the same results for the true num-

ber of clusters when the response variable is count as it does when the response

variable is continuous, as shown in Table 5.6.

Table 5.7 shows the percent of correctly classified profiles when the response

variable represents counts. The results are obtained by considering only those runs

in which two clusters were recovered (even in the case where both clusters have
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Table 5.6: Data with count response: number of times in which two clusters were
recovered from the data

µb2 ni = 5 ni = 10 ni = 20

-0.5 99 100 100

0.5 100 100 100

0.75 98 100 100

1.15 81 82 95

1.65 100 100 100

2.2 100 100 100

the same random effects parameter and the method should have recovered a single

cluster). First, we see that the method cannot cluster profiles as successfully as it did

Table 5.7: Data with count response: classification accuracy of profiles

µb2 ni = 5 ni = 10 ni = 20

-0.5 98.87 99.93 100.00

0.5 87.93 93.50 98.93

0.75 80.28 84.57 92.80

1.15 74.09 76.13 77.67

1.65 89.13 94.80 99.20

2.2 99.90 100.00 100.00

in the case when the response variable was continuous. This is expected. However,

the results are still very good. In many cases, the method manages to cluster profiles

correctly with more than 90% accuracy rate. Second, we observe that the lowest

accuracy rate is obtained when the two clusters are initialized with the same random

effects parameter. This is so for the same reason as explained in the previous section.

Finally, we see that the overall accuracy rate improves as the number of observations
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per individual increases, and as two two clusters get more separated.

Table 5.8 shows the mean squared error (MSE) for each condition (specific

value of random effects parameter and number of observations per individual).

Table 5.8: Data with count response: MSE of random effects parameters

µb2 ni = 5 ni = 10 ni = 20

-0.5 0.0622 0.038 0.0257

0.5 0.0941 0.0466 0.0210

0.75 0.1228 0.0693 0.0363

1.15 0.0392 0.0302 0.0140

1.65 0.0721 0.0341 0.0167

2.2 0.0273 0.0156 0.0126

We observe that the MSE decreases as the number of observations per individual

increases (as expected). Also, the MSE increases as the distance between centers

of the two clusters decreases. For example, the largest MSE is obtained when the

random effect parameter is 0.75. We also observe, that the MSE is quite bigger than

the corresponding MSE with continuous response (by approximately 10 times).

Table 5.9 shows the point estimates of both fixed and random effects parameters.

We see that the number of observations taken on an individual does not affect the

estimates of fixed effect parameters as it affects random effect parameters. We also

see that the estimates of random effects parameters are better (in terms of precision

and bias) when ni = 10 than those when ni = 5, and also are better when ni = 20

than those when ni = 10.
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Table 5.9: Data with count response: estimates of fixed and random effects param-
eters. (simulation standard errors of random effects parameters are shown in
parentheses)

µb1 µb2 β̂1 β̂2 β̂3 b̂1 b̂2

ni = 5

1.15 -0.5 0.8047 -0.6031 0.3029 1.1279(0.0439) -0.5278(0.0834)

1.15 0.5 0.8031 -0.5972 0.3016 0.9878(0.1767) 0.6321(0.1979)

1.15 0.75 0.8035 -0.5892 0.3020 0.9851(0.0835) 0.9215(0.1577)

1.15 1.15 0.8015 -0.6058 0.3021 1.1457(0.0315) 1.1241(0.0759)

1.15 1.65 0.8041 -0.6015 0.3013 1.2570(0.1259) 1.5384(0.1459)

1.15 2.2 0.8080 -0.5987 0.3019 1.1427(0.0369) 2.1923(0.0230)

ni = 10

1.15 -0.5 0.806 -0.5984 0.3022 1.1506(0.0284) -0.5143(0.0529)

1.15 0.5 0.8022 -0.6020 0.2996 1.1007(0.1049) 0.5493(0.1114)

1.15 0.75 0.7910 -0.6006 0.3002 1.0494(0.1015) 0.8418(0.1166)

1.15 1.15 0.8088 -0.6022 0.2972 1.1493(0.0213) 1.1307(0.0693)

1.15 1.65 0.8068 -0.6006 0.3000 1.1917(0.1037) 1.6006(0.1038)

1.15 2.2 0.7966 -0.5992 0.3005 1.1442(0.0209) 2.1988(0.0140)

ni = 20

1.15 -0.5 0.8027 -0.6009 0.3029 1.1512(0.0212) -0.5064(0.0351)

1.15 0.5 0.7947 -0.6012 0.3018 1.1354(0.0605) 0.5095(0.0658)

1.15 0.75 0.807 -0.6042 0.3010 1.0959(0.0923) 0.8048(0.0993)

1.15 1.15 0.805 -0.6065 0.3008 1.1467(0.0124) 1.1488(0.0231)

1.15 1.65 0.8026 -0.6011 0.2991 1.1537(0.0204) 1.6432(0.0145)

1.15 2.2 0.7966 -0.5992 0.3005 1.1490(0.0177) 2.1994(0.0110)
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Table 5.9 also shows that the standard errors of random effects parameters

are the smallest in the case when the clusters perfectly overlap. This is in line with

the observations on accuracy and the MSE discussed in the previous section.

The estimates of both fixed and random effects parameters are very similar to

those obtained in normal cases (previous section). The precision of estimates of

random effects parameters are significantly better in normal case (by an order of

magnitude of 10) than they are in the Poisson case. This could be due to the

sampling method (being approximate in the Poisson case and exact in the normal

case).

The results clearly indicate that the GLMM-DP method manages to recover

two clusters in the data (in all but the case when two clusters perfectly overlap), and

assigns profiles to the correct clusters with high probability, while simultaneously

estimating both fixed and random effects parameters.

5.4 Summary

In this chapter, we have evaluated the performance of the GLMM-DP method using

simulated data. We have performed the simulation with different conditions. This

includes two different types of response variables (continuous and count), different

numbers of observations recorded on each individual, and different (mean) values

of random effects parameters, which control how separated two clusters are. We

have evaluated the GLMM-DP method using several evaluation criteria: number

of clusters correctly recovered from the data, classification accuracy of profiles, the
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mean squared error of the random effects parameter (that varied in simulations) and

using point estimates of all parameters.

In all scenarios (except when the two clusters perfectly overlap), and in terms of

all evaluation criteria mentioned above, the GLMM-DP method performs very well.

As expected, the results are better on data with continuous response than on data

with count response. This is because sampling parameters using Metropolis-Hastings

algorithm, which uses an approximation of the posterior distribution as the proposal

distribution, can never be as good as directly sampling parameters from the posterior

distribution when it has a known form, as is the case when the response is continuous.

The GLMM-DP method is not able to recognize when there is only one clus-

ter in the data. This is a limitation of the PAM method, which is used in label

switching solution and which can produce no less than two clusters. This problem

could be further investigated. However, given that the estimates of cluster parameters

are very similar, as shown in the case of a continuous response, the results could be

visually inspected and easily overridden by a data analyst.



Chapter 6

Analysis of Public Health Data

In this chapter, we apply the GLMM-DP method on a dataset consisting of asthma

patients, as collected in the Canadian Community Health Survey in 2013 [115]. The

dataset is grouped by health regions. As expected, the GLMM-DP method produces

results that are similar to those obtained by a frequentist method [116] based on the

maximum likelihood estimation technique. In addition to being able to estimate the

model parameters, the GLMM-DP method also identifies clusters of health regions

that are more homogeneous in nature and on which other frequentist methods

produce results that are different from those results obtained on the full dataset.

6.1 Canadian Community Health Survey

The Canadian Community Health Survey (CCHS) [115] is a large cross-sectional

survey that is jointly designed by the Canadian Institute for Health Information,

Statistics Canada and Health Canada, and is run by Statistics Canada. The main

objective of the survey is to collect health-related information on Canadians and

provide data that may be used for research, health surveillance (such as disease

106
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monitoring), and utilization of health care programs and services.

The CCHS target population is the Canadian population who are 12 years of

age or older. The target population excludes the institutionalized individuals, per-

sons living on Aboriginal settlements or reserves, full-time members of the Canadian

Forces, and two regions in Quebec (Nunavik and Terres-Cries-de-la-Baie-James), and

therefore, the results of this or any other method, cannot be used to make inferences

on this excluded population.

The objective of the survey is to provide data at a community level, where a

community or health region is a geographic area that is defined by provincial

ministries of health. A health region most often consists of several neighboring

census subdivisions that are the responsibility of the same regional health authority.

A census subdivision is an “area that is a municipality or an area that is deemed

to be equivalent to a municipality for statistical reporting purposes” [117]. In 2015,

Canada was partitioned into 112 different health regions. However, the number of

health regions, as well as their boundaries, may change from one year to another, as

may be required per provincial jurisdictions.

The CCHS survey uses a two-stage sampling design, with the first stage being

at the province level, and the second stage being at the health region level. Gener-

ally, models for complex survey data are considered with survey weights; however,

for the purpose of this thesis to illustrate the application of the GLMM-DP method,

we do not consider survey weights.

In this chapter we consider a subset of CCHS dataset obtained from 2013.
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The dataset includes only asthma patients. Our objective is to identify subgroups of

asthma patients who exhibit similar behaviors with respect to the number of times

they visit a doctor’s office, and to explain what predictors affect the number of visits

and how.

6.2 Model Description

We analyze the aforementioned survey data using the proposed GLMM-DP method,

as described in previous chapters. The results of the GLMM-DP method are

compared with those obtained by ordinary maximum likelihood (ML) method [116].

We consider the number of consultation with a medical doctor (CHPGMDC)

as our response variable. There are 97 health regions in the data, where the number

of respondents per health region ranges from 14 to 1025, with an average of 44

respondents and a standard deviation of 19. Observations in different health regions

are considered independent; however, observations within the same health regions

we treat as dependent. Therefore, we are dealing with clustered data, where health

regions are treated as clusters.

We consider the following explanatory variables: sex of the respondent (DHH SEX),

type of smoker (SMK 202), an indicator of whether a respondent has had any asthma

symptoms (CCC 035) within the last 12 months of the survey, and the Body Mass

Index or BMI class level (HWTGISW). All variables are categorical, and are coded

as follows (variable names in capital letters are the original variable names, while the

names of variables used in the model are provided in brackets):

• DHH SEX (sex) = 1 for male and 0 for female;
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• SMOKE1 (smoke daily) = 1 for a daily smoker and 0 otherwise, while SMOKE2

(smoke occas) = 1 for an occasional smoker and 0 otherwise;

• CCC 035 (symptoms) = 1 if an asthma patient has had asthma symptoms

within the last 12 months of the survey and 0 otherwise;

• HWTGISW1 (bmi low) = 1 if a patient is underweight (based on their BMI

class) and 0 otherwise, HWTGISW2 (bmi high) = 1 if the patient is overweight

and 0 otherwise, and HWTGISW3 (bmi high) = 1 if the patient is obese and 0

otherwise;

All records in which one of the above predictors does not contain the actual value

have been removed. We define an actual value as a variable value that is different

from one of the following: ‘Not Applicable’, ‘Refusal’, ‘Not Stated’ or ‘Don’t know’.

A total of 86 records were removed due to response variable (CHPGMDC) not

having an actual value. The CCC 035 predictor did not have an actual value in 18

records, while a total of 31 records were removed due to missing data in SMK 202

predictors. Additionally, a total of 941 records were removed due to BMI class

predictor (HWTGISW) not having the actual value: 333 of these records had a

missing value, while the question about the BMI class level did not apply to 607

asthma patients.

There is a potential, as with all real data, that the data is not missing com-

pletely at random (MCAR) [118]. This is especially true given that the answers are

self-reported. For example, refusing to give one’s BMI class level may not be treated

the same way as when the given question is not applicable. However, for illustrative

purposes, and with the objective of comparing the GLMM-DP method with the

existing methods, we treat all missing data as MCAR.
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Our choice of coding scheme makes a female patient, who does not smoke,

has a normal BMI class level and who has not had any asthma symptoms within the

last 12 months of the survey, a baseline or a reference case.

Figure 6.1: Box plot of the number of doctor visits per health region

Figure 6.1 shows the distribution of the number of visits to a doctor’s office by

asthma patients across different health regions. It can be seen visually that there

are groups of health regions that have very similar average number of visits. The

presence of these groups are an indication that the generalized linear mixed model

may be suitable to model this data.

A common approach to building a GLMM model in frequentist statistics would
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include fixed effect parameters that describe the change in the mean response at

the population level, and a subset of these parameters as random effects that would

describe the deviation of the mean response at a unit or health region level. Then

the predicted value of the random effect of a particular health region would be used

to estimate the number of visits to a doctor’s office for that particular health region.

In Bayesian statistics, all unknown parameters are described with a probabil-

ity distribution, and both fixed and random effect parameters are treated the same

way. Therefore, we model the average number of visits per health region directly

(as opposed to it being a deviation from the population average). In order to avoid

identifiability issues, as explained in Section 4.2.2, we define our model so that the

column space of X and the column space of Z are disjoint. One way of ensuring

that this is the case is to include the intercept only in random effects parameters.

We use the GLMM-DP method to group the health regions with a similar re-

lationship between the average number of visits to a doctor’s office and the predictors

described above, as defined by the parameters of the underling generalized linear

mixed model. The average number of visits is taken for a reference case, which in

our model is a female patient, who does not smoke, has a normal BMI class level and

who has not had any asthma symptoms within the last 12 months of the survey. The

average number of visits in a health region is represented by a (random) intercept,

and the GLMM-DP method carries out the clustering based on these values. In

addition to clustering, the method also estimates the parameters of the model for

each cluster. Grouping health regions allows us to borrow strength across different

units and improve the precision of the estimates.
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Let yij be the number of visits to a doctor’s office by the jth asthma patient

in the ith health region, i = 1, 2, . . . , 97 and j = 1, 2, . . . , ni. As indicated in the

previous section, ni ranges from 14 to 102. The conditional mean of yij depends on

both fixed and random effects parameters via the following log-link function and

linear predictor:

log(E(yij|β, b)) = ηij = X ijβ +Zijbi, (6.1)

where β are fixed effects parameters and bi are random effect parameters associated

with the ith health region, and X ij and Zij are vectors of explanatory variables

associated with the fixed and random effects, respectively. For each observation yij,

we collect multiple predictors for fixed effects, and include only one predictor for

random effect parameters. Therefore, Zij = 1 for all i, j. This is often referred to as

the random intercept model.

To impose the grouping over health regions, we place a Dirichlet Process prior

on bi, i.e.,

bi|G ∼ G,

G|α,G0 ∼ DP(α,G0).

(6.2)

To complete the model, we place a multivariate normal prior on the fixed effect

parameters given by MVN(µβ,Σβ) and a gamma prior for the concentration pa-

rameters with hyper-parameters aα and bα, i.e., α|aα, bα ∼ Gamma(aα, bα). The full

specification is similar to that of Eq.(4.3) except that this model does not include

the dispersion parameter ν since our response variable is modeled using the Poisson

distribution.
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6.3 Estimation and Convergence

In this section, we describe how we choose the priors of our model, and investigate

the convergence of posterior distributions of the model parameters.

6.3.1 Choosing prior parameters

Setting prior parameters is a difficult task, and needs to be approached with care.

This is especially true for the concentration parameter α of the Dirichlet Process

prior, which allows for great flexibility in building a model with different number of

mixture components. As per Hastie [110], we built the model with different values

of hyper-parameters of the prior for the concentration parameters (aα and bα),

and each time we got the model with the same average number of mixture compo-

nents, which is 3. Therefore, we set the hyper-parameter values as: aα = 2 and bα = 1.

We expect our parameter estimates not to be very large (since they represent

additive effects on the log scale). Therefore, we set the mean of the prior of

fixed effects parameters β to have mean 1 and diagonal covariance matrix with

large variances (all equal to 100). As for random effects parameters, we set

the base distribution of the Dirichlet Process to be (univariate) normal with

mean 1 and variance of 100. Setting the variance to a large value allows one to

explore a large space of the posterior distribution while still being weakly-informative.

6.3.2 Parameter estimation

Given the data y = (yt1,y
t
2, . . . ,y

t
97)

t, where yi = (yi1, yi2, . . . , yini)
t represents a

vector of counts (doctor visits) for the ith health region, the posterior distribution of
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the parameters Θ = {α,β, b1, . . . , b97} is given by

P (Θ|y) ∝P (Θ)× L(Θ)

∝P (Θ)×
97∏
i=1

exp
(yiηi − q(ηi)

ν
+ k(yi, ν)

)
∝P (Θ)× exp

(
yT × η − 1T × q(η) + 1t × k(y)

)
,

(6.3)

where η = (η1, η2, . . . , η97)
t, q(ηi) = exp(ηi), q(η) = (q(η1), q(η2), . . . , q(η97))

t,

k(yij, ν) = log(yij!), k(η, ν) = (k(η1), k(η2), . . . , k(η97))
t. Here P (Θ) is the product of

individual priors of parameters, and is given by

P (Θ) =G(b)×Gamma(α|aα, bα)×MVN(β|µβ,Σβ), (6.4)

where b is Dirichlet Process distributed. The inference proceeds as described in the

Chapter 4.

6.3.3 Checking convergence of posterior distribution

It is a well-established fact that it is difficult to prove that the posterior distribution

converges to the stationary distribution. As a result, we often look for signs that it

does not converge. First, to determine what percent of the chain to use as a burn-in,

we use the Geweke’s diagnostic [66], as described in Chapter 4. It compares the mean

of the first part of the chain (10% by default) to the mean of the last part of the

chain (50% by default). If the posterior distribution has converged to the stationary

distribution, then the difference between these two means would be asymptotically

normal, and checking the convergence of the posterior distribution reduces to testing

if means of the two intervals of the chain are equal. Table 6.1 shows the values of

the Geweke’s statistic for both random and fixed effects parameters.
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All values of the Geweke’s statistics in Table 6.1 were obtained using 20% of

Table 6.1: Geweke’s statistic for fixed and random effects parameters in the CCHS
model

Parameter Geweke’s statistic

symptoms 0.9284

sex 1.6387

smoke daily -0.1732

smoke occas -0.5337

bmi low -0.0767

bmi high 0.0462

bmi obese -0.2848

b1 0.05268

b2 -0.5436

b3 -0.3467

the samples as the first part of the chain, and the last 50% of samples as the second

part of the chain. Since all values are within [−1.96, 1.96] range, we discard the

first 20% of the samples as part of the burn-in interval. Given that we have run

our simulations for 50, 000 iterations, we drop the first 10, 000 samples and use the

remaining 40, 000 for estimation.

Figure 6.2 shows the autocorrelation plot between successive samples of random effects

parameters in their posterior distribution.
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Figure 6.2: Autocorrelation plots for random effect parameters in the CCHS model
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Figure 6.3: Autocorrelation plots for fixed effect parameters in the CCHS model

Figure 6.3 shows the autocorrelation plot between successive samples of fixed effects

parameters from their posterior distribution. In both plots (for fixed and random

effects parameters) we see that the correlation between successive samples drops

fairly quickly, though not as quickly in the case of random effects parameters as fixed

effects parameters.

Figure 6.4 shows trace plots and density plots for random effects parameters. We

see that all random effects parameters exhibit good mixing and that the estimated
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Figure 6.4: Trace and density plots of random effects parameters of clusters in the
CCHS model as identified by the GLMM-DP method
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density function is not flat, which shows that the label switching solution in Section 4.4

produces a good reference partition. Fixed effects parameters show similar patterns.

6.4 Results

We simulate 50, 000 samples from the posterior distribution of the parameters Θ, as

defined in Section 6.3.2. We drop the first 10, 000 samples (as they are considered

part of the burn-in period) and use the remaining 40, 000 samples for estimation, as

described in Section 6.3.3. The overall acceptance rate for the Metropolis-Hastings

algorithm in sampling fixed effects parameters is 37.89% and for random effects

parameters it is 31.94%. The overall acceptance rate for the fixed effects parameters,

which are changed at most once per iteration, gives us a measure of the number of

times the fixed effects parameters were updated, over the total number of iterations.

For random effects parameters, we define the overall acceptance rate as the average

(over all iterations) of the average rate (per iteration) that random effects parameters

have been updated (since we may have different number of mixture components in

each iteration).

The GLMM-DP method identifies three groups of health regions. Their sizes

are 41, 39, and 17. Table 6.2 shows estimates of random effects parameters for each

cluster, as well as their 95% highest posterior density (HPD) intervals.

Table 6.3 shows the estimates of fixed effects parameters, as produced by the

GLMM-DP method.
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Table 6.2: GLMM-DP method: random effect parameter estimates

cluster (size) Mean 95%HPD-Low 95%HPD-Upp

cluster 1 (40) 1.6507 1.6167 1.6856

cluster 2 (39) 1.4263 1.3883 1.4654

cluster 3 (17) 1.2018 1.1443 1.2639

Table 6.3: GLMM-DP method: fixed effect parameter estimates

Parameter Mean 95%HPD-Low 95%HPD-Upp

symptoms 0.2678 0.2407 0.2936

sex -0.3664 -0.3950 -0.3370

smoker daily 0.0846 0.0530 0.1167

smoker occas 0.1425 0.0807 0.2020

bmi low 0.2172 0.1358 0.2947

bmi high 0.0882 0.0557 0.1223

bmi obese 0.2617 0.2295 0.2922
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Table 6.4 shows the results obtained from the ordinary ML method (glmmML)

[116]. We call this the Full Model.

Table 6.4: Parameter estimates using glmmML method (Full Model)

Parameter Estimate Standard Error z value Pr(> |z|)

(Intercept) 1.4983 0.0271 55.241 < 0.0001

symptoms 0.2579 0.0136 18.987 < 0.0001

sex (female) -0.3595 0.0150 -23.904 < 0.0001

smoke daily 0.1276 0.0167 7.616 < 0.0001

smoke occas 0.1390 0.0310 4.481 < 0.0001

bmi low 0.2330 0.0408 5.714 < 0.0001

bmi high 0.0791 0.0168 4.701 < 0.0001

bmi obese 0.2665 0.0156 16.091 < 0.0001

We see that both the GLMM-DP and ML methods produce very similar results.

Both methods find all predictors to be statistically significant. The estimates of

random effects parameters are in line with the estimate of the intercept produced by

the ML method. The weighted average of all random effects parameters is 1.4759,

which is a bit lower than 1.4983 (the intercept of the ML method).

Applying the ML method on each cluster obtained using the GLMM-DP

method produces the results in Table 6.5. We refer to models built on these clusters

as Model 1, Model 2 and Model 3, respectively. All predictors are found to be

significant when applied on the Full Model (by both DP-GLMM and ML methods);

however in Table 6.5 we see that occasional smokers predictor is not significant in

Model 1, and high level of BMI is not significant in Model 3. We see also that daily
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Table 6.5: Parameter estimates from ML method for three different clusters

Parameter (cluster) Estimate Standard Error z value Pr(> |z|)

cluster 1 (σ̂ = 0.0270)

(Intercept) 1.5369 0.0422 36.4611 < 0.0001

symptoms 0.2311 0.0202 11.4345 < 0.0001

sex (female) -0.3676 0.0223 -16.5153 < 0.0001

smoke daily 0.1125 0.0247 4.5441 < 0.0001

smoke occas 0.0340 0.0474 0.7165 0.4740

bmi low 0.1822 0.0608 2.9975 0.0027

bmi high 0.0771 0.0252 3.0651 0.0022

bmi obese 0.2585 0.0249 10.3597 < 0.0001

cluster 2 (σ̂ = 0.0292)

(Intercept) 1.4727 0.0449 32.807 < 0.0001

symptoms 0.2623 0.0210 12.515 < 0.0001

sex (female) -0.3972 0.0231 -17.212 < 0.0001

smoke daily 0.1974 0.0256 7.720 < 0.0001

smoke occas 0.2204 0.0451 4.884 < 0.0001

bmi low 0.1571 0.0643 2.444 0.0145

bmi high 0.1004 0.0258 3.894 < 0.0001

bmi obese 0.3106 0.0253 12.262 < 0.0001

cluster 3 (σ̂ = 0.0334)

(Intercept) 1.4627 0.0567 25.8031 < 0.0001

symptoms 0.3364 0.0385 8.7711 < 0.0001

sex (female) -0.1961 0.0439 -4.4662 < 0.0001

smoke daily -0.1020 0.0511 -1.9972 0.0458

smoke occas 0.2536 0.1005 2.5226 0.0117

bmi low 0.7124 0.01085 6.5682 < 0.0001

bmi high 0.0221 0.0477 0.4634 0.6430

bmi obese 0.1560 0.0466 3.3430 0.0008
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smokers are barely significant (at 5% confidence level) in Model 3.

Clusters in Table 6.2 are ordered by the estimated values of their random ef-

fects (Cluster 1 has the highest and cluster 3 has the lower value), and Table 6.5

shows that this order is maintained in intercepts of the three models, though they

do not seem to be as well separated as the cluster effects.

In all three clusters we see that patients with asthma symptoms are going to

visit doctor’s office more often than patients who have not had any asthma symp-

toms in 12 months prior to the survey, and this ranges from 26% more visits (for

patients in cluster 1 (0.26 = exp(0.2311) − 1) to 40% more visits for patients in

cluster 3 (0.40 = exp(0.3364) − 1). Also, male patients are going to make fewer

visits than female patients across all clusters, with the biggest difference in cluster

1 (30% fewer visits, 0.30 = 1 − exp(−0.3676)) and cluster 2 (32.78% fewer vis-

its, 0.3278 = 1−exp(−0.3972)), while those in cluster 3 make only 17.81% fewer visits.

Both daily and occasional smoking are significant predictors in the full model,

and patients who smoke daily or occasionally will visit doctor’s office 13.61% and

14.91% more often, respectively. However, in cluster 1 we see that occasional smoking

is not significant in explaining the number of doctor’s visits. On the other hand, the

daily smoking predictor was significant in the Full Model and had a positive effect,

while in Model 3 it is barely significant (and has a negative effect on the outcome).

Both the Full Model and all three submodels in Table 6.5 show that the pa-

tients with any-but-normal BMI level will visit doctor’s office more often than

patients with normal BMI level. Patients with low BMI level in cluster 1 and cluster



124

2 will visit a doctor’s office 20% and 17% more often, respectively, than patients

with normal BMI level, while patients with the same BMI level in cluster 3 will

visit a doctor’s office one full visit more often than patients with normal BMI level.

Furthermore, the low level of BMI is not a significant predictor of visits in cluster 3.

Patients in cluster 1 with obese BMI level will visit a doctor’s office roughly the same

number of times as patients with the same BMI level for the Full Model (29.50%

more visits, 0.2950 = exp(0.2585)− 1). Similar results hold for cluster 2 and the Full

Model, while those patients in cluster 3, with the same level of BMI will also make

more visits but less than those patients in cluster 1 and 2.

Figure 6.5 shows the map of health regions in Ontario, colored according to the

cluster to which they belong. Health regions with the smallest average number of

visits (by the reference case) are colored in green, those health regions with higher

number of visits are colored in blue, and the remaining health regions (the largest

group) is colored in red. There does not seem to be an obvious pattern of geographic

aspect that may explain how the number of visits to a doctor’s office may differ

from one region to another. Further study would be required in order to find out

what these aspects may be. It could be a particular industry or perhaps some other

environmental factors.

6.5 Conclusion and Summary

We have shown in this chapter that the GLMM-DP method produces parameter es-

timates that are very similar to those obtained by a frequentist maximum likelihood
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Figure 6.5: Ontario Health Regions, as classified by the GLMM-DP method.

method. However, our method also identifies more homogeneous clusters in the data.

When the same maximum likelihood method is applied on these clusters, the pa-

rameters of the new models may differ significantly from those obtained on the full

dataset. For example, some predictors that were significant in the full model (the

model built on a full dataset), such as occasional smoking, may become insignificant

in some clusters. Also, the parameters in different clusters may show different trends

(across different clusters versus the full dataset). For example, some parameters may

have positive effect on the mean response in the full dataset and negative effect on
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some clusters (though this effect has very small significance level). In addition to

that, parameter estimates on the whole dataset may be different from the parameter

estimates on clusters produced by the GLMM-DP method, and parameter estimates

may differ in models built on different clusters. These insights cannot be obtained

using the existing methods (without considerable effort), which clearly demonstrates

the benefit of the GLMM-DP method.



Chapter 7

Clustering GLMM Profiles in

Multivariate Settings

In this chapter, we extend the GLMM-DP method to multivariate settings. After a

short introduction, we define our model and describe the sampling techniques from

posterior distributions of model parameters. We then test the method on a small

data set, and conclude the chapter with a small simulation study.

7.1 Introduction

In longitudinal studies, one often observes multiple outcomes on the same unit

at each observation time. These are known as multivariate outcomes. Outcomes

associated with the same unit may be of different types. For example, one could

observe one or more outcomes of count type and one or more outcomes of continuous

type. Joint modeling of multiple outcomes are often of direct interest in the analysis.

A common modeling approach is based on mixed models, where each outcome is

modeled separately using general or generalized linear mixed models, and a common

multivariate distribution is assumed on all random effects parameters. These models

127
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are called joint mixed models, and are built on the assumption that outcomes

associated with a unit are conditionally independent given the random effects.

Joint mixed models have also been used in clustering longitudinal data. Outcomes

may be of the same or different types, leading to joint models at the component

level that may be any combination of linear or non-linear types. For example,

Dai [119] proposes a method that jointly models Gaussian and beta distributed

data. Villarroel [120] proposes a method where each component is non-linear mixed

effects model. Qin [121] clusters profiles by grouping parameters of regression models.

Methods proposed by Komarek [100] and Gueorguieva [122] are designed for

clustering multivariate outcomes where each outcome has distribution that is a

member of an exponential family, and are very similar to the method we propose

here. While Gueorguieva [122] estimates parameters using the Monte Carlo EM

method, the method proposed by Komarek [100] is fully Bayesian. However, both

methods require that the number of clusters be known in advance. The GLMM-DP

method does not impose such restrictions on the model.

7.2 Model Description

First, we extend the notation used in the GLMM-DP method to multivariate

settings. We assume there are N units in the study. For unit i, 1 ≤ i ≤ N , at each

observation time j, 1 ≤ j ≤ ni, we record M different outcomes yimj, 1 ≤ m ≤ M ,

and for each outcome yimj we record a vector of covariates X imj associated with fixed

effects parameters, and a vector Zimj of covariates associated with random effects

parameters. Using the same notation as in Section 1.1, we denote by yim the vector
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of all measurements on outcome m for unit i, i.e., yim = (yim1, yim2, . . . , yimni)
t, and

corresponding matrices of covariates by X im and Zim. The vector of all observations

on outcome m from all units at all times is denoted by ym = (yt1m,y
t
im, . . . ,y

t
im)t,

and its corresponding matrices Xm and Zm. Finally, we denote the vector of

all responses in a data set by y = (yt1,y
t
2, . . . ,y

t
M)t, and matrices of associated

covariates by X and Z.

We assume that the response vector y consists of M univariate outcomes, and

the distribution of each univariate outcome is a member of the exponential family,

i.e.,

p(yimj|νm,βm, bim) = exp

{
yimjηimj − q(ηimj)

νm
+ k(yimj, νm)

}
, (7.1)

where ηimj is the linear predictor, defined as

hm(E(Yimj|βm, bim)) =ηimj = X t
imjβm +Zt

imjbim,

i = 1, 2, · · · , N, j = 1, 2, · · · , ni.
(7.2)

In Eq.(7.2), βm is the vector of fixed effects parameters for the mth model (associated

with mth outcome), bim is the random effects parameter for unit i and outcome m,

and hm(·) is a link function for outcome m as defined in Section 2.2. Hence the

response vector may contain both continuous and discrete responses.

We model the dependence of a multivariate response vector Y = (Y1, Y2, . . . , YM)t

on a set of predictors by modeling the mean structure of each individual response

variable, as in Eq.(7.1), and placing a common prior on a vector of random effects

parameters of all individual models. So, for a multivariate model with M outcomes,

each outcome is modeled as a generalized linear mixed model with a specific random
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effect bij, 1 ≤ j ≤ M , where the random effect for the multivariate outcome is

bi = (bi1, bi2, · · · , biM). Dependence between different multivariate outcomes is

modeled by placing a prior on bi, 1 ≤ i ≤ N .

To perform clustering of longitudinal profiles in multivariate settings, we choose the

prior of bi to be a Dirichlet Process G(α,G0), where G0 is the base distribution with

support covering the space of all bi.

The full model is now defined as

yimj | β, bi, νm ∝ exp

{
yimjηimj − q(ηimj)

νm
+ k(yimj, ηimj)

}
,

bi|G ∝ G,

G | α,G0 ∝ G(α,G0),

β | µβ,Σβ ∝ MVN(µβ,Σβ),

(7.3)

where the base distribution (G0) of the Dirichlet Process is MVN(µb,Σb).

Additionally, we place priors on Σ−1b and ν−1m as in [100], and add prior on hyper-

parameters of the dispersion parameters, as follows:

Σb
−1 | ρ,R ∝Wishart(ρ, (ρR)−1),

ν−1m | ζm, ξm ∝ Gamma(ζm/2, ξ
−1
m /2),

ξ−1m | φξ, ωξ ∝ Gamma(φξ, ωξ).

(7.4)

A matrix X of order p, is said to follow the Wishart distribution with ρ degrees of

freedom and scale matrix R, written as Wp(ρ,R), if its density is given by

p(X | ρ,R) =
|X|(ρ−p−1)/2exp(−tr(R−1X)/2)

2
ρp
2 |R|ρ/2Γp(ρ2)

, (7.5)
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where Γp() is a multivariate gamma function, and tr() is the trace function.

7.3 Parameter Estimation

The likelihood of the parameters Θ = (α,β,ν, c) is given by

L(Θ) =P (y | Θ)

=P (y | α,β,φ, c)

=
N∏
i=1

M∏
m=1

P (yim|β,φci)

=
N∏
i=1

M∏
m=1

ni∏
j=1

P (yimj|βi,φci)

=
N∏
i=1

M∏
m=1

ni∏
j=1

exp

{
yimjηimj − q(ηimj)

νm
+ k(yimj, νm)

}

=
M∏
m=1

N∏
i=1

ni∏
j=1

exp

{
yimjηimj − q(ηimj)

νm
+ k(yimj, νm)

}

=
M∏
m=1

exp

{
ym

t × ηm − 1t × q(ηm)

νm
+ 1× k(ym, ν)

}

=exp

{
M∑
m=1

ytm × ηm − 1t × q(ηm)

νm
+ 1t × k(ym, νm)

}
.

(7.6)

The posterior distribution of Θ = (α,β,ν, c,Σb,ν, ξ) may be obtained as

P (Θ | y) ∝P (Θ)× L(Θ)

∝P (α)× P (c | α)× P (β)× P (φ | c)× P (Σb|·)× P (ν)× P (ξ)

exp

{
M∑
m=1

ym
t × ηm − 1t × q(ηm)

νm
+ 1t × k(ym, νm)

}
.

(7.7)
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7.3.1 Sampling from Posterior Distributions

The derivation of the posterior distribution of multivariate model parameters is very

similar to that of the univariate case as shown in Section 4.3. We sample the concen-

tration parameter of the Dirichlet Process (α) as in Section 4.3.1 and the inverse of

the dispersion parameter ν−1m for a model with outcome Ym as in Section 4.3.5. To

sample the allocation variables (φci), we follow the same approach as in Section 4.3.2,

with the likelihood for a given random effects parameter calculated as the product of

all outcome likelihoods. So, the likelihood of profile yi for fixed bi is given by

L(yi | β1, . . . ,βM , bi) =
M∏
m=1

f(yim | βm, bi) (7.8)

The posterior distribution of the precision matrix of the random effects parameters

Σb is given by

Σ−1b ∝Wishart(ρ, (ρR)−1)× L(y | b1, . . . , bM)

∝|Σ−1b |
(ρ−p−1)/2exp

{
−tr

2
(ρRΣ−1b )

}
|Σb|−M/2exp

{
−1

2

M∑
i=1

(bi − µb)Σ−1b (bi − µb)

}

∝|Σ−1b |
(ρ−p−1+M)/2exp

{
−tr

2
(ρRΣ−1b ) +

M∑
i=1

(bi − νb)(bi − µb)tΣ−1b

}

∝|Σ−1b |
(ρ−p−1+M)/2exp

{
−tr

2

(
ρR+

M∑
i=1

(bi − νb)(bi − µb)t
)
Σ−1b

}

∝Wishart(M + ρ,
(
ρR+

M∑
i=1

(bi − νb)(bi − µb)t
)−1

),

(7.9)

which is again the Wishart distribution with updated parameters.

We sample fixed effects parameters from the posterior distributions using the

same approach as in Section 4.3.4. Random effects parameters are sampled as in
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Section 4.3.3, except that in this case, the covariance matrix of the proposal density

(Eq.(4.17)) is a block-diagonal matrix in which each block is a covariance sub-matrix

given by Eq.(4.17), derived according to the sub-model of the given outcome.

7.4 Simulation Study

In this section, we first describe how we simulate the data. Then we run our mul-

tivariate approach on a single data set and investigate the convergence of posterior

distributions. Following that, we run a series of simulations with twelve different

settings and describe the performance of the method.

7.4.1 Generating a dataset

We simulate a data set with N = 50 individuals, ni = 10 observations per individual,

and with a response vector of two outcomes (M = 2), i.e., Y = (Y1, Y2)
t, where Y1 is

of continuous type and Y2 is a count response. For each outcome, we have associated

matrices of fixed and random covariates: X1 and Z1 for y1, and X2 and Z2 for

y2. For simplicity, we assume that the two models share the same predictors, i.e.,

X2 = X1 and Z2 = Z1. Each model has its own fixed effects and random effects

parameters. Also for simplicity, we assume that the components of the vector of

random effects parameters are independent. This allows us to easily simulate the

data by first generating the data for the Poisson sub-model (following the steps

in Section 5.1) and then augmenting it with the normal sub-model by using the

same covariance matrices as in the Poisson model and the given values of the model

parameters.

Table 7.1 shows the true values of the parameters used in the simulation.
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The above simulation generates data with two clusters, each cluster containing the

Table 7.1: Parameters used to simulate data from a joint model with continuous
and count responses

Model Fixed effects (β) Random effects

Poisson β1 = (0.8,−0.6, 0.3) µb11 = −0.5, µb21 = 1.15

Normal β2 = (−0.5, 0.5, 0.4) µb12 = 0.5, µb22 = 1.05

same number of units. For both outcomes, the first half of the units belongs to one

cluster, and the second half of the units belongs to the second cluster. Therefore, we

expect the profiles to be clustered into two groups.

7.4.2 Results on a single data set

We run the simulations for 20,000 iterations, and discard the first 2,000 iterations.

Table 7.2 indicates that the chain may have converged to a stationary distribution

after 2,000 iterations, as the values of the Geweke’s statistic for all parameters are

within [-1.96, 1.96] range.

Table 7.2: Geweke’s statistic for fixed and random effect parameters for a joint
mixture model with continuous and count responses

β1 β2 β3

Normal sub-model 0.9502 -0.4064 -0.9246

Poisson sub-model 0.9395 1.4953 0.6034

b1 b2

Normal sub-model -0.9303 -0.7784

Poisson sub-model -0.5996 1.5041
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Figure 7.1: Trace and density plots of the fixed effects parameters of normal sub-
model in the joint mixture model
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Figure 7.2: Trace and density plot of fixed effects parameters of the Poisson sub-
model in the joint mixture model

Figures 7.1, 7.2 and 7.3 show trace plots and density plots of fixed effects pa-

rameters in the normal sub-model, fixed effects parameters in the Poisson sub-model
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Figure 7.3: Trace and density plot of the random effects parameters in the joint
mixture model
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and the random effects parameters in the joint model, respectively. All plots indicate

that the posterior distribution seems to reach a stationary distribution. The density

plots of fixed effects parameters in the Poisson model seem to imply some correlation

between consecutive samples (Figure 7.2) however, the autocorrelation plot in Figure

7.6 shows that the autocorrelation drops fairly rapidly.

Figure 7.4: Autocorrelation of the fixed effects parameters for the normal sub-model
in the joint mixture model
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Figure 7.5: Autocorrelation of the fixed effects parameters from Poisson sub-model
in the joint mixture model
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Figure 7.6: Autocorrelation of the random effects parameters in the joint mixture
model
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Figures 7.4, 7.5 and 7.6 shows the autocorrelation between successive values of

fixed effects parameters in the normal sub-model, fixed effects parameters in the

Poisson sub-model and random effects parameters in the joint model, respectively.

All plots show that the correlation between successive samples drops fairly quickly,

which indicates that our sampler explores the parameter space efficiently.

The method produces the point estimates of the fixed effects parameters for

the Poisson outcome (β̂11, β̂12, β̂13) = (0.8417,−0.7136, 0.3012), with the following

95% HPD intervals for its components: (0.6027, 1.0801) for β11, (−0.8953,−0.5421)

for β12, and (0.2362, 0.3712) for β13. The point estimates of the fixed effects parame-

ters for the normal outcome are (β̂21, β̂22, β̂23) = (−0.5012, 0.5022, 0.3985), with 95%

HPD interval (−0.5415,−0.4623) for β21, (0.4864, 0.5198) for β22, and (0.3912, 0.4056)

for β23. We see that the 95% HPD intervals contain the true values of fixed effects pa-

rameters for both models. The same is true for the random effects parameters, where

the point estimates are (b̂11, b̂21, b̂12, b̂22) = (−0.5652, 1.1355, 0.4842, 1.0502) and 95%

HPD intervals: (−0.7245,−0.4168) for b̂11, (1.0631, 1.2103) for b̂21, (0.4443, 0.5227)

for b̂12, and (1.0107, 1.0898) for b̂22.

7.4.3 Simulation Results

We repeat the previous experiment under 12 different scenarios, where for each

scenario we generate 100 replicates of data sets. The fixed effects parameters for both

sub-models are the same as in the previous section, as are the random effects param-

eters for the Poisson sub-model. The first random effects parameter for the normal

sub-model, µb12 , takes a value of either 0.5 or 1.05, while the second parameter µb22
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takes a value from one of the following values: −0.5, 0.5, 0.75, 1.15, 1.65, and , 2.2,

resulting in 12 different conditions.

Tables 7.3 and 7.4 show the point estimates of fixed and random effects parame-

ters, along with their simulation standard errors, for a joint model with both count

and continuous outcomes in which the value of random effects parameters of one

sub-model do not change, while the values in the other sub-model are set as follows:

the value of one random effects parameter is set to µb12 = 0.5, and the value of the

other parameter µb22 changes as described at the beginning of this section. In all

cases 95% confidence interval covers the true values of the parameters. We observe

that the standard errors are quite larger for parameters in the Poisson sub-model

than they are in the normal sub-model . This is because parameters in the normal

sub-model are sampled directly from the posterior distribution, while parameters

in the Poisson sub-model are sampled from the approximation of the posterior

distribution.

Tables 7.5 and 7.6 show the estimates of parameters, and their respective simula-

tion standard errors, when the value of one random effects parameter is µb12 = 1.05

and the value of the second random effects parameter µb22 changes as described previ-

ously. We observe results that are very similar to the previous case: 95% confidence

intervals cover the true value of parameters in all cases, and are narrower for pa-

rameters in the normal sub-model than they are for the parameters in the Poisson

sub-model.
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Table 7.3: Multivariate case: estimates of fixed and random effects parameters.
Data are grouped into two clusters. Means of random effects for the Poisson
sub-model are (µb11 , µb21) = (−0.5, 1.15). Means of random effects of the normal
sub-model are µb12 = 0.5 and µb22 = {−0.5, 0.5, 0.75, 1.65, 2.2}. (simulation
standard errors are shown in parentheses)

Parameter Poisson model Normal model

(µb12 , µb22) = (0.5,−0.5)

β̂1 0.8079 (0.1450) -0.5001 (0.0192)

β̂2 -0.5848 (0.0772) 0.5020 (0.0108)

β̂3 0.3011 (0.0343) 0.4000 (0.0049)

b̂1· -0.5344 (0.0552) 0.4996 (0.0068)

b̂·2 1.1478 (0.0385) -0.4736 (0.0413)

(µb12 , µb22) = (0.5, 0.5)

β̂1 0.7848 (0.1290) -0.5014 (0.019)

β̂2 -0.5844 (0.0784) 0.4989 (0.0102)

β̂3 0.3003 (0.0315) 0.4005 (0.0054)

b̂1· -0.5088 (0.0749) 0.5037 (0.0053)

b̂·2 1.1493 (0.0318) 0.4966 (0.006)

(µb12 , µb22) = (0.5, 0.75)

β̂1 0.8159 (0.1555) -0.4986 (0.0211)

β̂2 -0.6042 (0.0931) 0.4993 (0.0108)

β̂3 0.3051 (0.0366) 0.4000 (0.0048)

b̂1· -0.5089 (0.0813) 0.5004 (0.0072)

b̂·2 1.1397 (0.0389) 0.7500 (0.0063)

(µb12 , µb22) = (0.5, 1.15)

β̂1 0.8289 (0.1272) -0.4983 (0.0199)

β̂2 -0.6024 (0.0781) 0.5005 (0.0103)

β̂3 0.2942 (0.0362) 0.4001 (0.0053)

b̂1· -0.5058 (0.0844) 0.4987 (0.0064)

b̂·2 1.1632 (0.0213) 1.1299 (0.0261)
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Table 7.4: Multivariate case: estimates of fixed and random effects parameters.
This is continuation of Table 7.3

Parameter Poisson model Normal model

(µb12 , µb22) = (0.5, 1.65)

β̂1 0.7887 (0.1390) -0.4971 (0.0187)

β̂2 -0.605 (0.0888) 0.5003 (0.0096)

β̂3 0.3067 (0.0405) 0.4000 (0.0047)

b̂1· -0.5079 (0.0796) 0.5003 (0.0063)

b̂·2 1.1450 (0.0413) 1.6501 (0.0069)

(µb12 , µb22) = (0.5, 2.2)

β̂1 0.7957 (0.1243) -0.4991 (0.0181)

β̂2 -0.6022 (0.0845) 0.4977 (0.0116)

β̂3 0.3008 (0.0344) 0.4003 (0.0047)

b̂1· -0.5111 (0.0806) 0.5000 (0.0065)

b̂·2 1.1526 (0.0379) 2.1996 (0.0072)

7.5 Conclusion

In this chapter, we have demonstrated how the GLMM-DP method can be easily

extended to handle clustering longitudinal or clustered data with multivariate

outcomes. We have run simulations in multivariate model with both continuous

and count response, for different sets of random effects parameters. The simulation

results show that the 95% confidence intervals cover true values of both fixed and

random effects parameters in all cases.

A multivariate simulation may be run with many different combinations of

values of fixed and random effects parameters. We have demonstrated here a very

simple case where the clusters are relatively well-separated and have obtained very

good results. These results, however, do not demonstrate that the GLMM-DP
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Table 7.5: Multivariate case: estimates of fixed and random effects parameters.
Data are grouped into two clusters. Means of random effects for the Poisson
sub-model are (µb11 , µb21) = (−0.5, 1.15). Means of random effects of the normal
sub-model are µb12 = 1.05 and µb22 = {−0.5, 0.5, 0.75, 1.65, 2.2} (simulation
standard errors are shown in parentheses)

Parameter Poisson model Normal model

(µb12 , µb22) = (1.05,−0.5)

β̂1 0.8113 (0.1364) -0.4995 (0.0197)

β̂2 -0.5941 (0.0844) 0.5009 (0.0105)

β̂3 0.3044 (0.0371) 0.4001 (0.0049)

b̂1· -0.5377 (0.0540) 1.0497 (0.0074)

b̂·2 1.1478 (0.0390) -0.4717 (0.0421)

(µb12 , µb22) = (1.05, 0.5)

β̂1 0.8022 (0.1324) -0.5031 (0.0189)

β̂2 -0.6035 (0.0854) 0.4999 (0.0105)

β̂3 0.2983 (0.0358) 0.3997 (0.0045)

b̂1· -0.5069 (0.0724) 1.0495 (0.0063)

b̂·2 1.1504 (0.0357) 0.4994 (0.0072)

(µb12 , µb22) = (1.05, 0.75)

β̂1 0.7751 (0.1309) -0.4984 (0.0195)

β̂2 -0.606 (0.0782) 0.5002 (0.0102)

β̂3 0.3026 (0.0364) 0.4005 (0.0044)

b̂1· -0.5232 (0.0858) 1.0491 (0.0065)

b̂·2 1.1504 (0.0384) 0.7482 (0.0067)

(µb12 , µb22) = (1.05, 1.15)

β̂1 0.8141 (0.1328) -0.5000 (0.0185)

β̂2 -0.5877 (0.0825) 0.4991 (0.0110)

β̂3 0.3055 (0.0347) 0.4002 (0.0051)

b̂1· -0.5090 (0.0831) 1.0503 (0.0066)

b̂·2 1.1656 (0.0249) 1.1298 (0.0253)
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Table 7.6: Multivariate case: estimates of fixed and random effects parameters.
This table is continuation of Table 7.5.

Parameter Poisson model Normal model

(µb12 , µb22) = (1.05, 1.65)

β̂1 0.7777 (0.1213) -0.4987 (0.0178)

β̂2 -0.5923 (0.0845) 0.5002 (0.0107)

β̂3 0.2973 (0.0319) 0.4011 (0.0047)

b̂1· -0.5210 (0.0851) 1.0502 (0.0062)

b̂·2 1.1521 (0.0339) 1.6499 (0.0066)

(µb12 , µb22) = (1.05, 2.2)

β̂1 0.778 (0.1474) -0.4983 (0.0175)

β̂2 -0.5938 (0.0793) 0.5007 (0.0121)

β̂3 0.2996 (0.0361) 0.4 (0.0047)

b̂1· -0.5094 (0.0768) 1.0514 (0.0067)

b̂·2 1.1449 (0.0384) 2.1994 (0.0069)

method would always produce such results in all scenarios. We have seen in Chapter

5 that when there is significant overlap between two clusters, the GLMM-DP method

may fail to recover the correct number of clusters, and with it, valid parameter

estimates. We expect the extension of the GLMM-DP method in multivariate case

to exhibit similar characteristics. However, as pointed out in Chapter 5, these

shortcomings may be mitigated easily in some cases.



Chapter 8

Conclusion and Future Research

In this thesis, we have proposed a novel method, Generalized linear mixed models

clustering using Dirichlet Process (GLMM-DP) which facilitates simultaneous

clustering of longitudinal, or more generally clustered, data and estimation of

parameters of the underlying model. The data are clustered based on grouping of

random effects parameters in the generalized linear mixed model.

We have tested our method on simulated data sets in which the response vari-

able is either continuous or count, with varying number of observations recorded on

an individual and with different values of random effects parameters. Our results

show that the method performs well in terms of being able to recover the true

number of clusters, in terms of clustering profiles correctly, and in terms of estimating

model parameters. Existing methods designed to address the same problem domain

(simultaneous clustering of profiles and parameter estimation) are able to handle

only continuous outcomes, while the GLMM-DP is the first method of its kind which

does not assume that the number of clusters is known in advance and which is

able to handle outcomes of any distribution in the exponential family of distributions..

147
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We have also applied the GLMM-DP method on a real data set from a public

health survey domain. We have demonstrated that the GLMM-DP method ob-

tains parameter estimates that are very similar to those obtained by a classical

maximum likelihood method. However, on top of providing comparable parameter

estimates, the GLMM-DP method also identifies three clusters of health regions

that, when the maximum likelihood method is applied on these clusters, we are able

to obtain an insight from the data that is not otherwise available using other methods.

We have also extended the GLMM-DP method to handle profiles with multi-

ple outcomes, and have evaluated its performance using simulated data.

There are several extensions that could be considered on the GLMM-DP method.

First, the focus of our current work has been estimation: we want to simultaneously

estimate model parameters and cluster data so that we can better explain, in the

case of public health data, what affects doctor’s visits and how. The GLMM-DP

method could be extended to be better suitable for prediction. For example,

instead of developing a probability model for the response variable only, one could

extend it to include the probability model for covariates as well. That way, given

covariates and response of a new individual, one may be able to identify the

cluster to which it belongs, and with it, characteristics of the new unit. Similar

work with cross-sectional data was done in [112] and [123]. Note that if the

GLMM-DP method clustered profiles based on values of response and covariates,

then this extension would be expected to work very well. Instead, we cluster data

based on model parameters. However, model parameters are determined by data

(response and covariates) and the assumed model, so units that have similar co-

variates and response would be expected to have also similar parameter values as well.
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Second, the method groups profiles based on them sharing the same value of

random effects parameter. A more flexible approach would be to cluster profiles

based on their ‘similarity’ of random effects parameters, where profiles allocated to

the same cluster would not share the same random effects. The GLMM-DP method

can be easily extended to accommodate this requirement: instead of placing Dirichlet

Process prior on random effects parameters, one may place Dirichlet Process prior

on the mean of normal distribution from which the random effects are drawn. It

would be interesting to see if this would provide different insights with the CCHS

survey data.

Third, it is well established that a label switching is a challenging task in

mixture models using Bayesian statistics. We have used the approach proposed by

Molitor [112] and it seems to perform well. It first identifies the “best” clustering

and then estimates parameters based on the chosen clustering. However, when

looking for the “best” clustering, it uses only binary similarity matrix, but we know

that the profiles are allocated to clusters with certain probabilities. One could

investigate if considering more information in identifying the “best” partitioning

(such as probabilities) would improve the estimates of component-based parameters,

especially when the clusters are not well separated.

Fourth, sampling in high-dimensional spaces is a difficult task, and significant

improvements to the GLMM-DP method might be possible by using more advanced

sampling algorithms for both fixed and random effects parameters. For random

effects parameters, one may consider the slice sampling [77], or a variation of it.
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Finally, implementation the GLMM-DP method in C or C++ [124] would not

only improve the current performance but also allow one to test the method on even

more complex models and larger data sets.
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Appendix A

R Code for GLMM-DP

This Appendix contains the implementation code of the GLMM-DP method. The

code was initially based on the dirichletprocess package [125]. It still has similar

structure (breakdown of the process into functions), and borrows few functions from

it: the function to update concentration parameter, the function to update cluster

labels (as new clusters are added or existing clusters removed), and the high-level

(utility) function that brings all the functions together. The core statistical methods

have been completely rewritten.

The following code is the code that was used in multivariate case. The code for

analysis of models with univariate response is not included - the attached code can

be easily modified to handle univariate case.

A.1 Simulating data

###################################################################

# Simulate longitudinal data with a response of Poisson distribution.

###################################################################

get_poisson_data <- function(units=60, obs.per.unit=3,

beta=c(-1.5, 0.5, -1), bi=list(c(0.2)))

{

#total number of observations
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N <- units * obs.per.unit

#times of ovservations: 1, 2, 3, ..., obs.per.unit

times = seq(obs.per.unit)

#standardize the observation times

times = (times - mean(times))/sd(times)

#times vector (duplicated ny number of observations per unit)

all.times <- rep(times, units)

#value of the first predictor at time = 0

x1.base = rnorm(units, mean = 0.1, sd=0.5)

#value of the second predictor at time = 0

x2.base = rnorm(units, mean = 0.9, sd=0.5)

#vector of the first predictor for all units

first = NULL

#vector of the second predictor of all units

second = NULL

for(i in 1:length(x1.base)){

#current value of the first predictor

x1.current = x1.base[i]

#current value of the second predictor

x2.current = x2.base[i]

for(j in 1:obs.per.unit){

#next value of the first predictor

x1.next = x1.current*0.78 + rnorm(1, 0, 0.1)

#next value of the second predictor

x2.next = x2.current*(-0.78) + rnorm(1, 0, 0.1)

#add next value of the current predictors

first = rbind(first, x1.next)

second = rbind(second, x2.next)

#remember current values of the predictors

x1.current = x1.next

x2.current = x2.next

}

}
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#the complete matrix of fixed effects covariates

x.matrix <- cbind(first,second, all.times)

#re-shuffle the rows of matrix X (the reason for this is that

#one random effect is added to the first half (or first portion)

#of the data, and the second random effect is added to the second

#half) - reshufling the rows prevents the non-identifiability problem.

kk = sample(1:units)

x.mat.temp = NULL

for(i in 1:length(kk)){

x.mat.temp = rbind(x.mat.temp, x.matrix[ ((kk[i] - 1)*obs.per.unit +

1):(kk[i]*obs.per.unit),])

}

x.matrix=x.mat.temp

#number of clusters (is the same as the number of random effects)

clusters.count = length(bi)

#number of units per cluster

clusters.size = units / clusters.count

#random effects (one per unit)

all.rand.effects = NULL

for(i in 1:clusters.count){

random.effects = rnorm(clusters.size, mean = bi[[i]], sd=0.01)

all.rand.effects = c(all.rand.effects,random.effects)

}

#random effects (one per observation)

all.rand.effects = rep(all.rand.effects, each=obs.per.unit)

#this is Z*b_i (with Z being a vector of all 1’s)

z.matrix <- matrix(all.rand.effects, ncol=1)#cbind(uu0, uu1)

#linear predictor

eta <- c(x.matrix %*% beta) + z.matrix

#average of the Poisson model

mu <- exp(eta)

#response

y <- rpois(N, mu)

#response in a matrix form
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y = matrix(y, ncol=1)

return (list(Y=y, X=x.matrix, Z=matrix(1, ncol=1, nrow=N),

t=all.times, t0=times))

}

###################################################################

# Expands the data to include normal submodel. The two models share

# the same fixed effects covariates (but have different parameters).

###################################################################

add_normal_response <- function(X, Y, Z, obs.per.unit = 3,

beta=c(-1.5, 0.5, -1), bi=list(c(0.2)) ){

#number of clusters

clusters.count = length(bi)

#number of units per cluster

clusters.size = nrow(X) / (clusters.count * obs.per.unit)

#random effects (one per unit)

all.rand.effects = NULL

for(i in 1:clusters.count){

random.effects = rnorm(clusters.size, mean = bi[[i]], sd=0.01)

all.rand.effects = c(all.rand.effects,random.effects)

}

#random effects (one per observation)

all.rand.effects = rep(all.rand.effects, each=obs.per.unit)

#this is Z*b_i (with Z being a vector with all 1’s)

z.matrix <- matrix(all.rand.effects, ncol=1)#cbind(uu0, uu1)

#linear predictor of the normal model

eta <- X %*% beta + z.matrix

#response of the normal model

Y2 = rnorm(nrow(X), mean = eta, sd = 0.1)

#response in a matrix form

Y2 = matrix(Y2, ncol=1)

return (list(Y = list(Y, Y2), #response of both models

X = list(X, X), #the two models share the same matrix X

Z = list(Z, Z))) #the two models share the same matrix Z

}
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A.2 Approximating posterior distributions

library(tools)

library(coda)

library(magic)

##################################################################

# Draws n samples from the prior of random effects distribution.

##################################################################

PriorDraw <- function(mdobj, n=1){

#the list to hold the result

theta <- list()

#draw a sample from the prior distribution of fixed effects params

betas = mvtnorm::rmvnorm(n, mean = mdobj$biPriors$mu,

sigma = mdobj$biPriors$sigma)

#format output as 3-dimensional array

theta[[1]]=array(t(betas), dim =c(1,length(mdobj$biPriors$mu), n))

return(theta)

}

##################################################################

# Calculates the likelihood given the observations from the normal

# model.

##################################################################

Likelihood.normal <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(dim(bi))){

eta1 = X%*%beta

eta2 = Z%*%bi

if(ncol(eta2)>ncol(eta1)){

eta1 = matrix(rep(eta1,each=ncol(eta2)),

ncol=ncol(eta2), byrow=TRUE)

}

eta = eta1 + eta2

}else{

if(is.null(beta) || is.null(X)){

eta1 = 0

}else{

eta1 = X%*%beta

}

eta2 = Z%*%bi

eta = eta1 + eta2

}

kk = log(2*mdobj$phi * pi)/2 - Y*Y/(2*mdobj$phi)
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temp = (t(Y)%*%eta - colSums(eta*eta/2))/mdobj$phi + sum(kk)

return (as.numeric(exp(temp)))

}

##################################################################

# Calculates the likelihood of the Poisson model.

##################################################################

Likelihood.poisson <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(dim(bi))){

eta1 = X%*%beta

eta2 = Z%*%bi

if(ncol(eta2)>ncol(eta1)){

eta1 = matrix(rep(eta1,each=ncol(eta2)),

ncol=ncol(eta2), byrow=TRUE)

}

eta = eta1 + eta2

}else{

if(is.null(beta) || is.null(X)){

eta1 = 0

}else{

eta1 = X%*%beta

}

eta2 = Z%*%bi#[[1]][,,]

eta = eta1 + eta2

}

temp = t(Y)%*%eta - colSums(exp(eta)) - sum(lfactorial(Y))

return (as.numeric(exp(temp)))

}

##################################################################

#Calculates the likelihood of the Bernoulli model. (not tested)

##################################################################

Likelihood.bernoulli <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(dim(bi)) ){

if(length(bi)==1){

eta = X%*%beta + Z%*%bi#[[1]][,,] #+ Z*bi

}else{

eta1 = X%*%beta

eta2 = Z%*%bi#[[1]][,,]

eta = eta2

for(i in 1:ncol(eta)){

eta[,i] = eta[,i] + eta1

}
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}

}

temp = t(Y)%*%eta - colSums(log(1+exp(eta)))

return (as.numeric(exp(temp)))

}

##################################################################

# Calculates the log-likelihood given the data from the Bernoulli

# model. (not tested)

##################################################################

logLikelihood.bernoulli <- function(mdobj, Y, X, Z, beta, bi){

#linear predictor

eta = X%*%beta + Z%*%bi

#log-likelihood

temp = Y*eta - log(1 + exp(eta))

return (as.numeric(temp))

}

##################################################################

# Calculates the likelihood given the data from the bivariate model.

# This method is restricted only to the Poisson and Normal response.

##################################################################

Likelihood <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(dim(bi[[1]][,,]))){

#the likelihood of the poisson model

like1 = Likelihood.poisson(mdobj = mdobj, Y = Y[[1]],

X = X[[1]], Z = Z[[1]], beta[[1]], bi[[1]][,,][1])

#the likelihood of the normal model

like2 = Likelihood.normal(mdobj = mdobj, Y = Y[[2]],

X = X[[2]], Z = Z[[2]], beta[[2]], bi[[1]][,,][2])

}else{

#the likelihood of the poisson model

like1 = Likelihood.poisson(mdobj = mdobj, Y = Y[[1]],

X = X[[1]], Z = Z[[1]], beta[[1]], bi[[1]][,,][1,])

#the likelihood of the normal model

like2 = Likelihood.normal(mdobj = mdobj, Y = Y[[2]],

X = X[[2]], Z = Z[[2]], beta[[2]], bi[[1]][,,][2,])

}

#return the total likelihood

return (as.numeric(exp(log(like1) + log(like2))))

}

##################################################################

# Calculate the log-likelihood assuming the Normal model.

##################################################################
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logLikelihood.normal <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(X) || is.null(beta)){

eta = Z%*%matrix(bi, ncol=1)

}else{

eta = X%*%beta + Z%*%matrix(bi, ncol=1)

}

kk = log(2*mdobj$phi * pi)/2 - Y*Y/(2*mdobj$phi)

temp = (Y*eta - (eta*eta/2))/mdobj$phi + kk

return (as.numeric(temp))

}

##################################################################

# Calculate the log-likelihood assuming the Poisson model.

##################################################################

logLikelihood.poisson <- function(mdobj, Y, X, Z, beta, bi){

if(is.null(X) || is.null(beta)){

eta = Z%*% matrix(bi, ncol=1)

}else{

eta = X%*%beta + Z%*% matrix(bi, ncol=1)

}

temp = Y*eta - exp(eta) - lfactorial(Y)

return (as.numeric(temp))

}

##################################################################

# Calculates the log-likelihood given the data from the bivariate model.

# This method is restricted only to the Poisson and Normal response.

##################################################################

logLikelihood <- function(mdobj, Y, X, Z, beta, bi){

#the log-likelihood of the poisson model

like1 = logLikelihood.poisson(mdobj = mdobj, Y = Y[[1]],

X = X[[1]], Z = Z[[1]], beta[[1]], bi[[1]][,,])

#the log-likelihood of the Normal model

like2 = logLikelihood.normal(mdobj = mdobj, Y = Y[[2]],

X = X[[2]], Z = Z[[2]], beta[[2]], bi[[1]][,,])

#return the total likelihood

return (as.numeric(like1+ like2))

}

##################################################################
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# Calculate the prior density of the random effects.

##################################################################

PriorDensity <- function(mdobj, theta){

priorParameters <- mdobj$biPriors

thetaDensity <- mvtnorm::dmvnorm(theta[[1]][,,],mean =

priorParameters$mu, sigma = priorParameters$sigma)

return(as.numeric(thetaDensity))

}

##################################################################

# Wrapper method to update the concentration parameter of

# the Dirichlet Process.

##################################################################

UpdateAlpha <- function(dpobj) {

newAlpha <- update_concentration(dpobj$alpha, dpobj$units,

dpobj$numberClusters, dpobj$alphaPriorParameters)

dpobj$alpha <- newAlpha

return(dpobj)

}

##################################################################

# Update the concentration parameter of the Dirichlet Process.

##################################################################

update_concentration<-function(oldParam,n,nParams,priorParameters){

x <- rbeta(1, oldParam + 1, n)

pi1 <- priorParameters[1] + nParams - 1

pi2 <- n * (priorParameters[2] - log(x))

pi1 <- pi1/(pi1 + pi2)

if (runif(1) < pi1) {

g1 <- rgamma(1, priorParameters[1] + nParams,

priorParameters[2] - log(x))

new_alpha <- g1

} else {

g2 <- rgamma(1, priorParameters[1] + nParams - 1,

priorParameters[2]-log(x))

new_alpha <- g2

}

new_alpha

return(new_alpha)
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}

##################################################################

# Create a Dirichlet Process object.

##################################################################

DirichletProcessCreate <- function(X, Y, Z, mdObject, units, obs,

alphaPriorParameters = c(1, 1)) {

dpObj <- list(Y=Y, X = X, Z = Z,

mixingDistribution = mdObject,

units = units, obs = obs,

alphaPriorParameters = alphaPriorParameters,

alpha = rgamma(1, alphaPriorParameters[1],

alphaPriorParameters[2])

)

class(dpObj) <- append(class(dpObj), c("dirichletprocess",

class(mdObject)[-1]))

return(dpObj)

}

##################################################################

# Initialize the GLMM-DP object.

##################################################################

Initialise <- function(dpObj, m=3) {

#assign all units to the same cluster

dpObj$clusterLabels <- rep(1, dpObj$units)

#set the number of clusters variable

dpObj$numberClusters <- 1

#initialize the number of units per cluster

dpObj$pointsPerCluster <- dpObj$units

#initialize the fixed effects to the mean of their priors

if(!is.null(dpObj$X)){

dpObj$beta = list(dpObj$mixingDistribution$betaPriors$mu,

dpObj$mixingDistribution$betaPriors$mu)

}

#initialize random effects to prior values

dpObj$clusterParameters <- PriorDraw(dpObj$mixingDistribution, 1)

#this is the h parameters (Neal’s Algorithm 8)

dpObj$m <- m
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return(dpObj)

}

##################################################################

# Assign units to clusters, expanding/shrinking number of

# clusters, as required.

##################################################################

ClusterComponentUpdate <- function(dpObj) {

N <- dpObj$units

alpha <- dpObj$alpha

beta.current <- dpObj$beta

clusterLabels <- dpObj$clusterLabels

clusterParams <- dpObj$clusterParameters

numLabels <- dpObj$numberClusters

mdObj <- dpObj$mixingDistribution

m <- dpObj$m

pointsPerCluster <- dpObj$pointsPerCluster

aux <- vector("list", length(clusterParams))

#a list to hold (multivariate) responses for a unit

Y.list = list(NULL, NULL)

#a list to hold (multivariate) covariates (of fixed effects)

X.list = list(NULL, NULL)

#a list to hold (multivariate) covariates (of random effects)

Z.list = list(NULL, NULL)

for (i in seq_len(N)) {

#a vector of probabilities of assigning a unit to clusters

probs <- numeric(numLabels + 1)

#current assignment of units to clusters

currentLabel <- clusterLabels[i]

#number of units per cluster, excluding the current (i^th) unit

pointsPerCluster[currentLabel] <- pointsPerCluster[currentLabel] - 1

if (pointsPerCluster[currentLabel] == 0) {

priorDraws <- PriorDraw(mdObj, m - 1)

for (j in seq_along(priorDraws)) {
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aux[[j]]<-array(c(clusterParams[[j]][,,currentLabel],

priorDraws[[j]]),

dim = c(dim(priorDraws[[j]])[1:2], m))

}

} else {

aux <- PriorDraw(mdObj, m)

}

#indices of data of the current unit

sub.index = seq((i - 1) * n + 1, i*n)

#response of the first variable of the current unit

Y.list[[1]] = dpObj$Y[[1]][sub.index,,drop=FALSE]

#response of the second variable of the current unit

Y.list[[2]] = dpObj$Y[[2]][sub.index,,drop=FALSE]

#covariates of fixed effects of the first variable

#of the current unit

X.list[[1]] = dpObj$X[[1]][sub.index, , drop=FALSE]

#covariates of fixed effects of the second variable

#of the current unit

X.list[[2]] = dpObj$X[[2]][sub.index, , drop=FALSE]

#covariates of random effects of the first variable

#of the current unit

Z.list[[1]] = dpObj$Z[[1]][sub.index, , drop=FALSE]

#covariates of random effects of the first variable

#of the current unit

Z.list[[2]] = dpObj$Z[[2]][sub.index, , drop=FALSE]

#probabilities of assigning the current unit to one

# of the existing clusters

probs[1:numLabels] <- pointsPerCluster * Likelihood(mdObj,

Y=Y.list, bi=clusterParams, X = X.list,

Z = Z.list, beta = beta.current)

#probabilities of assigning the current unit to a new cluster

probs[(numLabels + 1):(numLabels + m)] <- (alpha/m) *

Likelihood(mdObj, Y=Y.list, bi=aux,

X = X.list, Z = Z.list, beta = beta.current)

#assign probability of 0 to those cases with NaN probability

if (any(is.nan(probs))) {

probs[is.nan(probs)] <- 0

}
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#assign probability of 0 to those cases with NA probability

if (anyNA(probs)) {

probs[is.na(probs)] <- 0

}

#set probabilities when the probability is +/- infinity

if (any(is.infinite(probs))) {

probs[is.infinite(probs)] <- 1

probs[-is.infinite(probs)] <- 0

}

#set all probabilities to 1 is they are all zero

if (all(probs == 0)) {

probs <- rep_len(1, length(probs))

}

#sample a new cluster assignment of the current unit

newLabel <- sample.int(numLabels + m, 1, prob = probs)

#update the state variables given assignment of the current

# unit to a new cluster

dpObj$pointsPerCluster <- pointsPerCluster

dpObj<-ClusterLabelChange(dpObj,i,newLabel,currentLabel,aux)

pointsPerCluster <- dpObj$pointsPerCluster

clusterLabels <- dpObj$clusterLabels

clusterParams <- dpObj$clusterParameters

numLabels <- dpObj$numberClusters

}

dpObj$pointsPerCluster <- pointsPerCluster

dpObj$clusterLabels <- clusterLabels

dpObj$clusterParameters <- clusterParams

dpObj$numberClusters <- numLabels

return(dpObj)

}

##################################################################

# Update cluster labels as per new label of the unit i, with its

# parameters contained in aux.

##################################################################

ClusterLabelChange <- function(dpObj, i, newLabel, currentLabel, aux) {

pointsPerCluster <- dpObj$pointsPerCluster

clusterLabels <- dpObj$clusterLabels
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clusterParams <- dpObj$clusterParameters

numLabels <- dpObj$numberClusters

if (newLabel <= numLabels) {

pointsPerCluster[newLabel] <- pointsPerCluster[newLabel] + 1

clusterLabels[i] <- newLabel

if (pointsPerCluster[currentLabel] == 0) {

numLabels <- numLabels - 1

pointsPerCluster <- pointsPerCluster[-currentLabel]

clusterParams <- lapply(clusterParams, function(x) x[, ,

-currentLabel, drop = FALSE])

inds <- clusterLabels > currentLabel

clusterLabels[inds] <- clusterLabels[inds] - 1

}

} else {

if (pointsPerCluster[currentLabel] == 0) {

for (j in seq_along(clusterParams)) {

clusterParams[[j]][, , currentLabel] <- aux[[j]][, ,

newLabel - numLabels]

}

pointsPerCluster[currentLabel] <-

pointsPerCluster[currentLabel] + 1

} else {

clusterLabels[i] <- numLabels + 1

pointsPerCluster <- c(pointsPerCluster, 1)

for (j in seq_along(clusterParams)) {

clusterParams[[j]] <- array(c(clusterParams[[j]],

aux[[j]][, , newLabel -numLabels]),

dim = c(dim(clusterParams[[j]])[1:2],

dim(clusterParams[[j]])[3] +1))

}

numLabels <- numLabels + 1

}

}

dpObj$pointsPerCluster <- pointsPerCluster

dpObj$clusterLabels <- clusterLabels

dpObj$clusterParameters <- clusterParams

dpObj$numberClusters <- numLabels
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return(dpObj)

}

##################################################################

# Calculates the mean and variance of a Gaussian approximation of a

# bivariate model with poisson and normal response. The method also

# calculates the log-likelihood of the bivariate model.

##################################################################

getGaussianApprox.poisson_normal <- function(current, eta, Y, Z,

prior.mu, prior.sigma,

phi1=1, phi2)

{

#Poisson model: diagonal matrix with variances on the diagonal

temp1 = exp(eta[[1]])

V1 = diag(temp1[,1])

if(length(eta[[1]])==1){

V1 = diag(temp1[,1], ncol=1)

}

#the mean of the Poisson model

lambda1 = temp1

#Normal model: diagonal matrix with variances on the diagonal

V2 = diag(phi2, nrow = length(eta[[2]]))

#the mean of the normal model

lambda2 = eta[[2]]

block1 = t(Z[[1]])%*%V1%*%Z[[1]]/phi1^2

block2 = t(Z[[2]])%*%V2%*%Z[[2]]/phi2^2

#variance

prop.var = chol2inv(

chol(

(adiag(block1, block2) + prior.sigma)

)

)

block.mean1 = t(Z[[1]])%*%(Y[[1]] - lambda1)/phi1

block.mean2 = t(Z[[2]])%*%(Y[[2]] - lambda2)/phi2

block.mean = rbind(block.mean1, block.mean2)

prop.mean = current + prop.var %*% (block.mean -

prior.sigma%*%(current - prior.mu))
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#the log-likelihood of the Poisson model

f1.val = ((t(Y[[1]])%*%eta[[1]] - sum(temp1))/phi1)[1,1]

#the log-likelihood of the Normal model

f2.val = (t(Y[[2]])%*%eta[[2]] - sum(eta[[2]]^2/2))/phi2 +

sum(log(2*pi*phi2)/2 - Y[[2]]*Y[[2]]/(2*phi2) )

return (list(mean=prop.mean, variance = prop.var, f =

(f1.val + f2.val)))

}

##################################################################

# Gaussian approximation of the posterior distribution built using

# the Bernoulli sampling distribution.

##################################################################

getGaussianApprox.bernoulli<-function(current, eta, X, Y, prior.mu,

prior.sigma, phi=1)

{

#diagonal matrix with variances on the diagonal

temp = exp(eta)

if(length(eta)==1){

V = diag(temp[,1]/(1+temp[,1])^2, ncol=1)

}else{

V = diag(temp[,1]/(1+temp[,1])^2)

}

#the mean of the Bernoulli model

lambda = temp/(1+temp)

#the variance matrix of the normal approximation

prop.var = chol2inv(

chol(

t(X)%*%V%*%X + prior.sigma

)

)

#the mean of the normal approximation

prop.mean = current + prop.var %*% (t(X)%*%(Y - lambda) -

prior.sigma%*%(current - prior.mu))

#the log-likelihood

f.val = t(Y)%*%eta - sum(log(1 + temp))

return (list(mean=prop.mean, variance = prop.var, f = f.val))

}
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##################################################################

# Gaussian approximation of the posterior distribution built using

# the Poisson sampling distribution.

##################################################################

getGaussianApprox.poisson <- function(current, eta, X, Y,

prior.mu, prior.sigma,phi=1)

{

#diagonal matrix with variances on the diagonal

temp = exp(eta)

V = diag(temp[,1])

if(length(eta)==1){

V = diag(temp[,1])

}

#the mean

lambda = temp

#the variance of the normal approximation

prop.var = chol2inv(

chol(

(t(X)%*%V%*%X/phi^2 + prior.sigma)

)

)

#the mean of normal approximation of the distribution

prop.mean = current + prop.var %*% (t(X)%*%(Y - lambda)/phi -

prior.sigma%*%(current - prior.mu))

#the log-likelihood of the Poisson model

f.val = t(Y)%*%eta - sum(temp)

return (list(mean=prop.mean, variance = prop.var, f = f.val))

}

##################################################################

# This method updates the parameters of mixture components.

##################################################################

ClusterParameterUpdate <- function(dpObj) {

#number of clusters

numLabels <- dpObj$numberClusters

#cluster labels (ordered from 1 to "no of clusters")

clusterLabels <- dpObj$clusterLabels
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#cluster parameters

clusterParams <- dpObj$clusterParameters

#distribution of the mixture component (metadata)

mdobj <- dpObj$mixingDistribution

#number of observations per unit

n <- dpObj$obs

#current value of fixed effects parameters

beta.current = dpObj$beta

#number of times random effect vector has been updating

#(in Metropolis-Hastings method).

bi.count = 0

#list of multivariate responses (all units) allocated to the

# current cluster

Y.list = NULL

#fixed covariates for all units allocated to the current cluster

X.list = NULL

#random covariates for all units allocated to the current cluster

Z.list = NULL

#list of linked predictors for all units allocated to the

#current cluster

eta = list()

##################################################################

#1. update random effects using Neal’s Algorithm 8

##################################################################

for (i in 1:numLabels) {

#indices of data of all units allocated to the current cluster

ind1 <- which(clusterLabels == i)

ind = rep((ind1-1)*n, each=n) + rep(seq(1,n), length(ind1))

#initialize the data of units allocated to the current cluster

Y.list[[1]] = dpObj$Y[[1]][ind,,drop=FALSE]

Y.list[[2]] = dpObj$Y[[2]][ind,,drop=FALSE]

X.list[[1]] = dpObj$X[[1]][ind,,drop=FALSE]

X.list[[2]] = dpObj$X[[2]][ind,,drop=FALSE]

Z.list[[1]] = dpObj$Z[[1]][ind,,drop=FALSE]

Z.list[[2]] = dpObj$Z[[2]][ind,,drop=FALSE]
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#random effects of units allocated to the current cluster

bi.current = clusterParams[[1]][, , i, drop = FALSE][,,]

#linear predictor for the 1st response

eta[[1]] = X.list[[1]]%*%beta.current[[1]] +

Z.list[[1]]*bi.current[1]

#linear predictor for the 2nd response

eta[[2]] = X.list[[2]]%*%beta.current[[2]] +

Z.list[[2]]*bi.current[2]

#get normal approximation of the posterior distribution

fit.current = getGaussianApprox.poisson_normal(

current = bi.current, eta=eta, Y = Y.list,

Z = Z.list, prior.mu = mdobj$biPriors$mu,

prior.sigma = mdobj$biPriors$sigma.inv,

phi1=1,phi2 = mdobj$phi)

#scale variance to ensure adequate acceptance ratio

fit.current$variance = fit.current$variance * 6

#get the proposal

prop_bi = mvtnorm::rmvnorm(1, mean = fit.current$mean,

sigma = fit.current$variance)

prop_bi = prop_bi[1,]

#density using the proposal random effect

log.q.prop <- mvtnorm::dmvnorm(prop_bi, fit.current$mean,

fit.current$variance, log=TRUE)

#linear predictor of the 1st response using the

#proposal random effect

eta[[1]] = X.list[[1]]%*%beta.current[[1]] +

Z.list[[1]]*prop_bi[1]

eta[[2]] = X.list[[2]]%*%beta.current[[2]] +

Z.list[[2]]*prop_bi[2]

#normal approximation of the posterior using the

#proposed random effect

gfit.prop <- getGaussianApprox.poisson_normal(

current = prop_bi, eta=eta, Y=Y.list,

Z = Z.list, prior.mu = mdobj$biPriors$mu,

prior.sigma = mdobj$biPriors$sigma.inv,
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phi1=1,phi2 = mdobj$phi)

#adjust the variance to ensure an adequate acceptance rate (in M-H)

gfit.prop$variance = gfit.prop$variance * 6

#density using the current random effec

log.q <- mvtnorm::dmvnorm(bi.current, mean= gfit.prop$mean,

sigma=gfit.prop$variance, log=TRUE)

#log ration (standard Metropolis-Hasting criteria)

log.ratio <- (gfit.prop$f-fit.current$f) + (log.q-log.q.prop)

ratio <- min(1, exp(log.ratio))

if (is.na(ratio) | !length(ratio) ) {

ratio <- 0

}

if (runif(1) < ratio) {

#accept new random effect proposal value

clusterParams[[1]][, , i] <- prop_bi

bi.count = bi.count + 1

}#else leave current parameters the same

}

#weight it by the number of clusters in the iteration

dpObj$biCount = (bi.count * 1.0)/numLabels

#update the global cluster parameter

dpObj$clusterParameters <- clusterParams

##################################################################

# 2. update the variance (hyperparameter) of random effects - START

##################################################################

cov.temp = mdobj$biPriors$rho * mdobj$biPriors$R

AA = dpObj$clusterParameters[[1]][,,dpObj$clusterLabels]

if(!is.null(dim(AA))){

for(i in 1:ncol(AA)){

cov.temp = cov.temp + AA[,i]%*%t(AA[,i])

}

}else{

cov.temp = cov.temp + sum(AA*AA)

}

conv.mat = rWishart(1, N + mdobj$biPriors$rho, solve(cov.temp))

dpObj$mdpobj$biPriors$sigma.inv = conv.mat[,,1]

dpObj$mdpobj$biPriors$sigma = solve(conv.mat[,,1])

# update the variance (hyperparameter) of random effects - START
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##################################################################

# 3. Update fixed effects parameters (corresponding to poisson

#submodel). Use the Metropolis-Hastings method.

##################################################################

#fixed effects parameters for the first (Poisson) submodel

beta_poisson <- dpObj$beta[[1]]

#this expression is Z_i^t * b_i

z.eta = dpObj$Z[[1]]*rep(dpObj$clusterParameters[[1]][,,]

[1,,drop=FALSE][,dpObj$clusterLabels], each=n)

#the linear predictor of the submodel

eta = dpObj$X[[1]]%*%beta_poisson + z.eta

#get the normal approximation of the distribution

fit.current=getGaussianApprox.poisson(current=beta_poisson,eta=eta,

X = dpObj$X[[1]], Y = dpObj$Y[[1]],

prior.mu = mdobj$betaPriors$mu,

prior.sigma =

mdobj$betaPriors$sigma.inv_poisson)

#adjust variance in order to get an acceptable acceptance rate

fit.current$variance = fit.current$variance * 3

#get the proposal fixed effect parameter

prop_beta = mvtnorm::rmvnorm(1, mean = fit.current$mean,

sigma = fit.current$variance)

#density using the proposed value of the fixed effect parameter

log.q.prop <- mvtnorm::dmvnorm(prop_beta, mean=fit.current$mean,

sigma = fit.current$variance, log=TRUE)

#linear predictor using the proposed value of the fixed effect prameter

eta = dpObj$X[[1]]%*%t(prop_beta) + z.eta

#get the normal approximation using the updated linear predictor (above)

gfit.prop <- getGaussianApprox.poisson(current = t(prop_beta),eta=eta,

X=dpObj$X[[1]], Y=dpObj$Y[[1]],

prior.mu = mdobj$betaPriors$mu,

prior.sigma = mdobj$betaPriors$sigma.inv_poisson)

#update the variance in order to get an acceptable acceptance ratio (M-H)

gfit.prop$variance = gfit.prop$variance * 3
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#new density of the original fixed effect parameter

log.q.old <- mvtnorm::dmvnorm(t(beta_poisson), mean= gfit.prop$mean,

sigma=gfit.prop$variance, log=TRUE)

#log-ratio

log.ratio <- (gfit.prop$f - fit.current$f + log.q.old -log.q.prop)

ratio <- min(1, exp(log.ratio))

if (is.na(ratio) | !length(ratio) ) {

ratio <- 0

}

#check if the new value should be accepted or not

if (runif(1) < ratio) {

#accept the new value of fixed effect

dpObj$beta[[1]] = t(prop_beta)

dpObj$betaAccepted = 1

} else {

#keep the current value of fixed effect

dpObj$betaAccepted = 0

dpObj$beta[[1]] = beta_poisson

}

#################################################################

# 4. Update fixed effects parameters (corresponding to normal

# submodel). Posterior is derived directly (no need to use the M-H)

#################################################################

#variance of the posterior distribution

var.normal = solve(t(dpObj$X[[2]])%*%dpObj$X[[2]]/

dpObj$mixingDistribution$betaPriors$phi.val +

dpObj$mixingDistribution$betaPriors$sigma.inv)

#mean of the posterior mean

mean.normal = t(dpObj$X[[2]])%*%(dpObj$Y[[2]] -

dpObj$Z[[2]]*rep(dpObj$clusterParameters[[1]][,,]

[2,,drop=FALSE][,dpObj$clusterLabels], each=n))/

dpObj$mixingDistribution$betaPriors$phi.val

mean.normal = mean.normal +

dpObj$mixingDistribution$betaPriors$sigma.inv%*%

dpObj$mixingDistribution$betaPriors$mu

mean.normal = var.normal %*% mean.normal

#sample new value of fixed effect parameter of the normal submodel

dpObj$beta[[2]] = t(mvtnorm::rmvnorm(1, mean = mean.normal,

sigma = var.normal))
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beta.current = dpObj$beta[[2]]

##################################################################

# 5. Update the dispersion parameter

##################################################################

#calculate the linear predictor using the (potentially new) value of

#fixed effect parameters

z.eta = dpObj$Z[[2]]*rep(dpObj$clusterParameters[[1]][,,]

[2,,drop=FALSE][,dpObj$clusterLabels], each=n)

eta = dpObj$X[[2]]%*%beta.current + z.eta

#shape of hyperparameter of dispersion parameter

phi.param2.shape = mdobj$betaPriors$phi.hyper1 +

mdobj$betaPriors$phi.ksi/2

#rate of hyperparmeter of dispersion parameter

phi.param2.rate = mdobj$betaPriors$phi.hyper2 +

1/(mdobj$betaPriors$phi.val*2)

#(2x) rate of dispersion parameter

phi.param2 = rgamma(1,shape=phi.param2.shape,rate=phi.param2.rate)

#shape of dispersion parameter

phi.shape = mdobj$betaPriors$phi.ksi + mdobj$betaPriors$phi.nr

#rate of dispersion parameter

phi.rate = phi.param2 + t(dpObj$Y[[2]]-eta)%*%(dpObj$Y[[2]] - eta)

phi.rate = solve(phi.rate)

#new value of dispersion parameter

phi = rgamma(1, shape = phi.shape, rate = 1/(2*phi.rate))

#update beta priors state

mdobj$mdobj$betaPriors$phi.val = 1/phi

dpObj$mixingDistribution$betaPriors$phi.val = 1/phi

return(dpObj)

}

##################################################################

# This method is main method in GLMM-DP model. It runs MCMC simulations

# and wraps various estimates into lists that are suitable for

# further processing.

##################################################################
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Fit <- function(dpObj, its, updatePrior = FALSE, progressBar=TRUE) {

if (progressBar){

pb <- txtProgressBar(min=0, max=its, width=50, char="-", style=3)

}

#chain to contain concentration parameters of the Dirichlet Process

alphaChain <- numeric(its)

#mixing ratio (portion of units allocated to each cluster)

weightsChain <- vector("list", length = its)

#chain to contain cluster parameters (potentially different number of

#parameters in each iteration)

clusterParametersChain <- vector("list", length = its)

#chain of cluster labels

labelsChain <- vector("list", length = its)

#chain of fixed effects parameters

betaChain <- vector("list", length = its)

#total number of times fixed effects parameters have been updated

#applied only to parameters of the Poisson submodel (in the Normal

#submodel, parameters are updated in each iteration)

betaCount = 0

#total weighted number of times random effects parameters were

#updated in Metropolis-Hastings sampling

biCount = 0

#run MCMC

for (i in seq_len(its)) {

alphaChain[i] <- dpObj$alpha

weightsChain[[i]] <- dpObj$pointsPerCluster / dpObj$units

clusterParametersChain[[i]] <- dpObj$clusterParameters

labelsChain[[i]] <- dpObj$clusterLabels

betaChain[[i]]<-dpObj$beta

#assign units to clusters

dpObj <- ClusterComponentUpdate(dpObj)

#update cluster parameters

dpObj <- ClusterParameterUpdate(dpObj)
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#update concentration parameter of the Dirichlet Process

dpObj <- UpdateAlpha(dpObj)

if (updatePrior) {

dpObj$mixingDistribution <-

PriorParametersUpdate(dpObj$mixingDistribution,

dpObj$clusterParameters)

}

if (progressBar){

setTxtProgressBar(pb, i)

}

#update betaCount if it was accepted in the last iteration

betaCount = betaCount + dpObj$betaAccepted

#update the number of times random effects have been updated

biCount = biCount +dpObj$biCount

}

#update the above properties on the main object

dpObj$weights <- dpObj$pointsPerCluster / dpObj$units

dpObj$alphaChain <- alphaChain

dpObj$weightsChain <- weightsChain

dpObj$clusterParametersChain <- clusterParametersChain

dpObj$labelsChain <- labelsChain

dpObj$betaChain = betaChain

dpObj$betaCount = betaCount

dpObj$biCount = biCount

if (progressBar) {

close(pb)

}

return(dpObj)

}

##################################################################

# Object providing basic information about a mixing distribution,

# such as the prior of fixed and random effects parameters and the

# dispersion parameter of the normal submodel.

##################################################################

MixingDistribution<-function(distribution,betaPriors,biPriors,phi){

mdObj <- list(distribution = distribution,

betaPriors = betaPriors,
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biPriors = biPriors,

phi = phi)

class(mdObj) <- append(class(mdObj), c(distribution))

return(mdObj)

}

A.3 Label-switching related methods

library(cluster)

##################################################################

# Calculate the similarity matrix of units, starting with MCMC

# iteration start.it and ending with itertion end.it

##################################################################

get.similarity.matrix <- function(dp, N, start.it, end.it){

#similatiry matrix (N is total number of units)

result <- matrix(0, nrow=N, ncol=N)

for(i in start.it:end.it){

#similarity matrix for one particular iteration

tmp = matrix(0, nrow=N, ncol=N)

#current cluster

cluster = dp$labelsChain[[i]]

for(j in 1:N){

for(k in (j+1):N){

#the matrix is symmetric

#consider only one half (upper-triangular)

if(j > N || k>N){

next

}

if(cluster[j]==cluster[k]){

tmp[j,k]=1

tmp[k,j] = 1

}

}

}

#update the matrix with the "similarity" of current iteration

result = result + tmp

}

#adjust similarity values to fall in the [0,1] range
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return (result/(end.it - start.it))

}

##################################################################

# Find the optimal cluster given the dissimilarity matrix.

# The dissimilarity matrix = 1 - similarity matrix

##################################################################

get.optimal.cluster <- function(maxNClusters, disSimMat){

clustVec = NULL

chosenNClusters = NULL

clustSizes <- NULL

clustMedoids <- NULL

# Loop over the possible number of clusters

avgSilhouetteWidth<--1.0;

cat(paste("Max no of possible clusters:",maxNClusters,"\n"))

for(c in 2:maxNClusters){

cat(paste("Trying",c,"clusters\n"))

tmpObj<-pam(disSimMat,k=c,diss=T)

# Check whether the silhouette width from this clustering

# improves previous best

if(avgSilhouetteWidth<tmpObj$silinfo$avg.width){

avgSilhouetteWidth<-tmpObj$silinfo$avg.width

chosenNClusters<-c

clustVec<-tmpObj$clustering

clustSizes<-tmpObj$clusinfo[,1]

# The id of the objects chosen as the medoids

clustMedoids<-tmpObj$id.med

}

}

return (list(

"nClusters"=chosenNClusters,

"clusObjDisSimMat"=disSimMat,

"clusterSizes"=clustSizes,

"clustering"=clustVec,

"avgSilhouetteWidth"=avgSilhouetteWidth))

}

##################################################################

# Estimate fixed effects parameters

##################################################################

estimate.bi <- function(dp, best.cluster, N, start.it, end.it ){

# dimension of the random effects vector
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b.dim = dim(dp$clusterParameters[[1]][,,1, drop=FALSE])[2]

# matrix of estimates of random effects (per MCMC iteration)

result <- matrix(0, nrow=(end.it - start.it+1),

ncol= best.cluster$nClusters* b.dim)

for(i in start.it:end.it){

current.cluster = dp$labelsChain[[i]]

for(j in 1:best.cluster$nClusters){

#find indices parameters for the current (j-th) unit in cluster

bi.index =seq(from=(b.dim*j-(b.dim-1)), to=(b.dim*j))

#get the parameters of the current cluster

bi.parameters = dp$clusterParametersChain[[i]][[1]][,,

current.cluster]

if(is.null(dim(bi.parameters))){

#parameters in the current cluster that are also

#in the best cluster

bi.parameters = bi.parameters[best.cluster$clustering ==

j, drop=FALSE]

#parameters (averaged over size of the best cluster)

result[(i-start.it + 1),bi.index] =

sum(bi.parameters)/best.cluster$clusterSizes[j]

}else{

bi.parameters = bi.parameters[,best.cluster$clustering ==

j, drop=FALSE]

result[(i-start.it + 1),bi.index] =

rowSums(bi.parameters)/best.cluster$clusterSizes[j]

}

}

}

return(result)

}

##################################################################

# This is a utility function.

##################################################################

get.correct <- function(indices){

result = sort(table(indices), decreasing = TRUE)

name = as.integer(names(result)[1])

return (sum(indices == name))
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}

A.4 The main code that starts the estimation

source(’./script_multivariate.R’)

source(’./get.mult.data.R’)

source(’./get.similarity.matrix.R’)

#number of MCMC iterations

iterations = 10000

#beta of the first model

beta.poisson = c(0.8, -0.6, 0.3)

#beta of the second model

beta.normal = c(-0.5, 0.5, 0.4)

#random effect of the first cluster in the normal model

bi1 = 0.5

#random effect of the second cluster in the normal model

bi2 = 1.05

#random effect of the poisson model

bi.poisson = list(c(1.15), c(-0.5) )

#random effect of the normal model

bi.normal = list(c(bi1), c(bi2))

#number of units in the study

N = 50

#number of observations per unit

n = 10

#generate data

my.data = get_poisson_data(units = N, obs.per.unit=n,

beta=beta.poisson, bi=bi.poisson)

my.data = add_normal_response(X = my.data$X, Y = my.data$Y, Z = my.data$Z,

obs.per.unit = n, beta =beta.normal, bi = bi.normal )

############################################

# PRIORS INFORMATION - START



191

############################################

#vector containing priors of fixed effects parameters

betaPriors = NULL

#prior of the mean of random effects parameters

betaPriors$mu_poisson = matrix(c(0, 0, 0), ncol=1)

#prior covariance of fixed effects Poisson parameters

betaPriors$sigma_poisson = diag(100,nrow=3, ncol=3)

betaPriors$sigma.inv_poisson = solve(betaPriors$sigma)

#prior of the mean in Normal model

betaPriors$mu_normal = matrix(c(0, 0, 0), ncol=1)

#prior of the covariance matrix of the Normal model

betaPriors$sigma_normal = diag(100,nrow=3, ncol=3)

betaPriors$sigma.inv_normal = solve(betaPriors$sigma)

#dispersion parameters and hyperparameters

betaPriors$phi.val = 0.1 ##this phi^-1: inverse of variance

betaPriors$phi.ksi = 2

betaPriors$phi.hyper1 = 0.2 #dispersion hyperparam 1

betaPriors$phi.hyper2 = 2.5 #dispersion hyperparam 2

betaPriors$phi.nr = N*n #number of observations of the rth marker

#vector containing priors of random effects parameters

biPriors = NULL

#prior mean of the random effects parameter

biPriors$mu = c((1.15 + bi1)/2, (bi2 - 0.5)/2)#, -2)

#hyperparameeters of covariance matrix of random effects parameters

biPriors$rho = length(biPriors$mu)

biPriors$R = diag(100, nrow=length(biPriors$mu))

biPriors$R.inv = solve(biPriors$R)

biPriors$sigma = biPriors$R

biPriors$sigma.inv = biPriors$R.inv

############################################

# PRIORS INFORMATION - END

############################################

glmmpMd<- MixingDistribution("glmmp", betaPriors = betaPriors,

biPriors = biPriors, phi=0.1)
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print(Sys.time())

dp <- DirichletProcessCreate(X=my.data$X, Y=my.data$Y,

Z = my.data$Z, mdObject = glmmpMd, units = N, obs = n)

dp <- Initialise(dp, m = )

print(iterations)

dp <- Fit(dp, its = iterations)

print("beta acceptance rate")

print(dp$betaCount/iterations)

print("bi acceptance rate")

print(dp$biCount/iterations)

############################################

# POST-PROCESS - START

############################################

#the first MCMC iterate to use for processing

start.it = iterations/2

#the last MCMC iterate to use for processing

end.it = iterations

#calculate the similarity matrix

similarity.matrix = get.similarity.matrix(dp=dp, N=N,

start.it=start.it, end.it = end.it)

#find the optimal clustering (with max # of clusters being 3)

optimal.cluster = get.optimal.cluster(maxNClusters = 3,

disSimMat = 1 - similarity.matrix)

#fins the optimal clustering (with max # of clusters being 10)

optimal.clusterCL = get.optimal.cluster(maxNClusters = 10,

disSimMat = 1 - similarity.matrix)

#check if optimal.clusterCL returns different number of

#clusters than optimal.cluster

#if so, then investigate

#get the estimates of random effects (per MCMC iterate)

bi.estimates = estimate.bi(dp=dp, best.cluster = optimal.cluster,

N=N, start.it = start.it, end.it=end.it)
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#get the final MCMC estimate of random effects

bi.output = colMeans(bi.estimates)

#variance of random effects estimates

vars = matrix( apply(bi.estimates,2,var), nrow=1)

#combined random effects

bi.input = c(unlist(bi.poisson), unlist(bi.normal))

#sort random effects so we can perform calculations on it

bi.input = sort(bi.input)

bi.output = sort(bi.output)

#calculate the MSE

RMSE = 0

RMSE.sum = 0

if(optimal.cluster$nClusters == 2){

for(i in 1:length(bi.output)){

RMSE = RMSE + (bi.output[i]-bi.input[i])^2

}

RMSE = sqrt(RMSE/length(bi.output))

RMSE.sum = sum(RMSE)

RMSE = round(RMSE, digits = 4)

RMSE.sum = round(RMSE.sum, digits = 4)

}

#optimal clustering

optimal.clustering = optimal.cluster$clustering

class.correct = get.correct(optimal.clustering[1:(N/2)]) +

get.correct(optimal.clustering[(N/2 + 1):N])

class.correct = class.correct * 1.0

class.incorrect = N - class.correct

#estimate fixed effect parameters of the Poisson model

beta.save.poisson = matrix(0, nrow = (end.it - start.it + 1),ncol=3)

for(i in start.it:end.it){

beta.save.poisson[i-start.it + 1,] = dp$betaChain[[i]][[1]]

}

beta.average.poisson = colMeans(beta.save.poisson)
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#estimate fixed effect parameters of the normal model

beta.save.normal = matrix(0, nrow = (end.it - start.it + 1),ncol=3)

for(i in start.it:end.it){

beta.save.normal[i-start.it + 1,] = dp$betaChain[[i]][[2]]

}

beta.average.normal = colMeans(beta.save.normal)

############################################

# POST-PROCESS - END

############################################
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