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SUMMARY	 High-grade gliomas are the most common type of primary brain tumor and 
are among the most lethal types of human cancer. Most patients with a high-grade glioma 
have glioblastoma multiforme (GBM), the most malignant glioma subtype that is associated 
with a very aggressive disease course and short overall survival. Standard treatment of 
newly diagnosed GBM involves surgery followed by chemoradiation with temozolomide. 
However, despite this extensive treatment the mean overall survival is still only 14.6 months 
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�� Glioblastoma multiforme (GBM) is characterized by a collection of mutated signaling pathways.

�� Three core pathways are affected in a substantial fraction of patients.

�� Therapies directly targeting just a single mutated pathway are unlikely to be successful.

�� Instead, the combination of targeted therapeutics should be explored. 

�� Owing to its invasive character, GBM is a disease that affects the whole brain.

�� Consequently, therapeutics against GBM must cross the blood–brain barrier (BBB) to also reach the more 
remote areas of the brain containing tumor cells.

�� Most targeted agents have been designed for other cancers rather than for GBM, and many of them will 
not meet the requirement of sufficient BBB penetration.

�� Candidate agents that are not or are very weak substrates of ABC transporters have an advantage with 
regard to BBB penetration.

�� Alternatively, inhibitors of ABC transporters may be used to enhance the BBB penetration of 
substrate drugs.
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High-grade gliomas are the most common type 
of primary brain tumors and are among the 
most lethal types of human cancer [1]. High-
grade gliomas are classified by the WHO in 
grade III as: anaplastic astrocytoma, anaplas-
tic oligodendroglioma and anaplastic oligo
astrocytoma; and grade IV: gliosarcoma and 
glioblastoma multiforme (GBM) [2]. Unfor-
tunately, the majority of high-grade glioma 
patients are diagnosed with GBM, the most 
malignant subtype that is associated with a 
very aggressive course of disease and less than 
3 months overall survival if left untreated [2]. 
Standard treatment of newly diagnosed GBM 
includes surgery followed by radiotherapy 
(30 × 2 Gy) plus temozolomide (75 mg/m2; 
daily) for 6 weeks and maintenance temozolo-
mide therapy (150–200 × 5 mg/m2 per 28 days) 
for 6 months. However, despite this extensive 
treatment the mean overall survival is still only 
14.6 months and more effective treatments are, 
thus, urgently needed [3]. 

In contrast to conventional chemotherapies 
that work by interfering with DNA synthesis 
or cell metabolism, targeted therapies work 
by inhibition of the deregulated cell signaling 
pathways in cancer cells by small molecules or 
antibodies. The underlying concept is that these 
signaling pathways are more critical for survival 
and growth of cancer cells than for normal cells. 
Consequently, targeted therapy holds the prom-
ise of being effective with less toxicity than con-
ventional chemotherapies. Despite emerging 
success in some other tumor types, for example, 
imatinib for chronic myelogeneous leukemia [4] 
or vemurafenib in melanoma [5], the develop-
ment of molecularly targeted therapy for glio-
mas appears to be much more challenging. Two 
small-molecule inhibitors of the EGF receptor 
(EGFR) tyrosine kinase that received regula-
tory approval for the treatment of lung can-
cer, erlotinib (Tarceva®, Genentech, Inc., CA, 
USA) and gefitinib (Iressa®, AstraZeneca, DE, 
USA), have been extensively evaluated for GBM 
treatment. The expectations were high since 
EGFR overexpression and mutations are com-
mon in GBMs. The results of the first Phase I 

studies with erlotinib were exciting [6,7] and a 
Phase II, single institution study demonstrated 
that treatment with erlotinib plus temozolo-
mide before and after radiation significantly 
increased median survival of GBM patients to 
19.3 months compared with 14.1 months in 
historical controls [8]. However, the results of 
subsequent clinical trials with EGFR inhibi-
tors were all disappointing [9–14]. In particu-
lar, a randomized controlled Phase  II study 
carried out by the European Organisation for 
Research and Treatment of Cancer (EORTC) 
demonstrated no clear benefit in progressive 
GBM patients treated with erlotinib compared 
with a control group receiving temozolomide 
or carmustine [10]. 

The failures of targeted therapy in the 
treatment of GBM are not limited to EGFR 
inhibitors. Inhibitors of mTOR have also 
been regarded as promising candidates for 
treating GBM, as the frequently deregulated 
PI3K–AKT–mTOR signaling pathway is con-
sidered to be a key mediator of GBM cell sur-
vival and growth. Rapamycin (sirolimus) and 
its analogs (rapalogs) temsirolimus (CCI-779) 
and everolimus (RAD001) are three mTOR 
inhibitors that have undergone extensive clini-
cal evaluation for their therapeutic effect in 
GBMs [15–22]. Similar to the EGFR inhibi-
tors, most trials with mTOR inhibitors as a 
single agent in GBM have failed to show any 
significant therapeutic benefit. 

Despite these disappointing results, impor-
tant lessons have been learned from translational 
studies with these agents. This article will focus 
on the recent development of targeted therapies 
on the core mutated pathways of GBM. More-
over, several major putative resistance mecha-
nisms of GBM to the earlier studied targeted 
therapies will also be discussed.

Genetic alterations & classification 
of GBMs
The majority of patients with GBMs suffer 
from primary (or de novo) GBMs. In compari-
son with secondary GBMs, which evolve from 
low-graded gliomas, primary GBMs usually 

and more effective treatments are urgently needed. Although different types of GBMs 
are indistinguishable by histopathology, novel molecular pathological techniques allow 
discrimination between the four main GBM subtypes. Targeting the aberrations in the 
molecular pathways underlying these subtypes is a promising strategy to improve therapy. 
In this article, we will discuss the potential avenues and pitfalls of molecularly targeted 
therapies for the treatment of GBM.
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develop without pre-existing precursor lesions. 
Primary and secondary GBMs are histopatho-
logically indistinguishable and are character-
ized by a high proliferative index, serpentine 
pseudopallisading necrosis and microvascular 
proliferation. However, primary and secondary 
GBMs are associated with differences in age 
of onset, clinical history, median survival and 
genetic changes (Tables 1 & 2). 

Primary and secondary GBMs develop as a 
result of multiple genetic alterations that dif-
fer in the two types of GBM. Secondary GBM 
is more frequently a result of an early muta-
tion in P53, whereas primary GBM more fre-
quently harbors mutations in EGFR deletions 
within the CDKN2 locus that codes for p14Arf, 
p16Ink4a and p15Ink4b, and a homozygous loss of 
chromosome 10q23, which contains the PTEN 
gene. Overall, loss of chromosome 10q, EGFR 
amplification and deletion of p16Ink4a have been 
demonstrated to be the most frequent genetic 
alterations in primary GBM [1,23–26]. 

�� The Cancer Genome Atlas project in GBMs
By implementation of large-scale multi-
dimensional analytic platforms, a comprehen-
sive characterization of the molecular basis of 
malignant gliomas recently became available. 
The Cancer Genome Atlas (TCGA) is a project 
that aims to catalog genetic mutations respon-
sible for cancer. In 2008, TCGA published 
the results of their first cancer project on the 
analysis of genomic abnormalities in human 
GBM (mostly primary GBM) [27]. This work 
not only confirmed the common genetic aberra-
tions reported previously, but also provided new 
insight into the roles of some known tumor-
related genes, such as ERBB2/HER2, NF1 and 
P53, and also uncovered new gene mutations. 
More importantly, it provided a network view 
of the pathways altered in the development of 
GBMs, which can be instructive for future ther-
apeutic decisions and facilitate the search for 
more efficacious targeted therapies. As shown 
in Figure 1, frequent genetic alterations of GBM 

Table 1. Classic classification of glioblastoma multiforme.

Subtype Incidence 
(%)

Origin Alterations (%) Clinical history Median overall 
survival (months)†  

Primary 
or de novo 
GBM

95% No 
recognizable 
precursor 
lesions

LOH 10q (70)
EGFR amplification (36)
P16INK4a deletion (31)
TP53 mutation (28)
PTEN mutation (25)

<3 months (68%)
<6 months (84%)

4.7

Secondary 
GBM

5% Developed 
from diffuse 
astrocytoma 
or anaplastic 
astrocytoma 

LOH 10q (63)
EGFR amplification (8)
P16INK4a deletion (19)
TP53 mutation (65)
PTEN mutation (4)

Low-grade 
astrocytoma 
origin: 5.1 years; 
anaplastic 
astrocytoma: 
1.9 years

7.8

The classic classification includes primary and secondary GBM. 
†Median overall survival without treatment. 
GBM: Glioblastoma multiforme.

Table 2. The Cancer Genome Atlas genomic classification of glioblastoma multiforme.

Subtype Biomarker Signature Major alterations Treatment 
response

Classical Neuroembryonic 
stem cell 

Astrocytic EGFR, CDKN2A/2B and PTEN Good

Mesenchymal Mesenchymal 
markers 

Astroglial NF1, PTEN, CHI3L1 and MET Modest

Proneural Oligodendrocytic 
development genes

Oligodendrocytic TP53, PDGFRA or 
PI3KCA/PIK3RI, IDH1 and PTEN

Poor or no 
response

Neural Neural markers Neuronal and 
astrocytic

EGFR Marginal

The Cancer Genome Atlas classification reveals four clinically relevant subtypes based on the genomic profiles of glioblastoma 
multiforme and their correlations with biomarker expression, cellular lineages and response to standard aggressive chemoradiation 
therapy. 
Data taken from [28].
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occur in three core pathways; RTK/RAS/PI3K 
signaling, and P53 and Rb tumor suppres-
sor pathways were mapped based on genetic 
analyses of 206 GBM samples. 

Another important finding based on the 
TCGA is the molecular classification of GBM 

[28]. Four GBM subtypes: proneural; neural; 
classical; and mesenchymal subtypes, described 
in this study showed strong correlations with 
GBM cells of origin, clinical characteristics 
and response to standard chemoradiation ther-
apy. For example, the proneural subtype was 
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Figure 1. The Cancer Genome Atlas of glioblastoma multiforme. Primary sequence alterations and significant copy number changes 
for components of the (A) RTK/RAS/PI3K, (B) P53 and (C) Rb signaling pathways are shown. Red indicates activating genetic alterations, 
with frequently altered genes showing deeper shades of red. Conversely, blue indicates inactivating alterations, with darker shades 
of blue corresponding to a higher percentage of alteration. For each altered component of a particular pathway, the nature of the 
alteration and the percentage of tumors affected are indicated. Boxes contain the final percentages of glioblastoma multiformes with 
alterations in at least one known component gene of the designated pathway. 
Reprinted with permission from [27] © Macmillan Publishers Ltd (2008).
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associated with younger age and IDH1 and P53 
mutations with a trend toward longer survival 
for these patients. Intriguingly, however, patients 
with proneural subtype GBM did not have an 
improved survival when receiving aggressive 
treatment. On the contrary, patient’s with 
the classical subtype GBM, usually harboring 
EGFR amplification and homozygous deletion 
of CDKN2 and PTEN, demonstrated the great-
est benefit from standard treatment among all 
subtypes (Tables 1 & 2). Given the fact that each 
subtype harbors specific aberrations in molecular 
pathways, one may expect that targeting these 
pathways by specific inhibitors may provide new 
avenues for developing improved therapies.

Blood–brain barrier & drug efflux 
transporters 
The brain is often referred to as a pharmacologi-
cal sanctuary site since most drugs are unable 
to cross the blood–brain barrier (BBB) [29–31]. 
The BBB represents one of the major challenges 
to the efficacy of chemotherapy against GBMs. 
The BBB is formed by endothelial cells that are 
closely linked by tight junctions, disabling the 
paracellular movement of substances. Moreover, 
in contrast to most endothelial cells in the rest 
of the body, endothelial cells in the BBB lack 
fenestra and have low endocytic activity. Con-
sequently, entry of substances into the brain 
can only occur by transcellular passage through 
the endothelium. Moreover, the pericytes and 
astrocytes intimately surrounding the endo-
thelial cells form a secondary lipid layer, which 
further enforces the impermeability of the BBB 
[32]. Entry of essential nutrients (e.g., glucose) is 
strictly regulated by a range of uptake transport-
ers. Other substances can only enter the brain by 
passive diffusion across the BBB, and the ability 
to do so is determined by a series of molecu-
lar parameters such as sufficient lipid solubility 
(octanol:water partition coefficient), molecular 
weight, degree of ionization, plasma protein 
binding and tissue binding. Nonetheless, even 
compounds that have molecular characteristics 
in favor of passive diffusion demonstrate much 
lower brain penetration than expected due to the 
activity of drug efflux transporters [31]. 

ABC drug transporters expressed at the 
BBB have well-known roles in the restriction 
of therapeutic agents into the brain [33]. Of 
all the efflux transporters present in the BBB, 
two transporters are mainly responsible for the 
efflux of anticancer agents back into the blood 

capillaries. These proteins are ABCB1 and 
ABCG2 (Figure 2B).

�� ABCB1
ABCB1 (also called P-gp or MDR1) is a 170-kDa 
membrane-associated protein expressed at high 
levels in normal human tissues, including the 
brain capillaries (Figure 2C). It was first discov-
ered by its ability to confer multidrug resistance 
in cultured tumor cells [34]. ABCB1 is a highly 
promiscuous transporter, which recognizes an 
amazing range of drugs. Like all members of 
the ABC transporter superfamily, energy for 
the active transport of compounds is provided 
by hydrolysis of ATP at the nucleotide binding 
domains [31,35]. 

In addition to affecting cellular drug accumu-
lation in tumor cells, ABC drug efflux transport-
ers also actively affect the drug disposition by its 
expression at various barrier sites (BBB, intesti-
nal epithelium and blood–testis barrier) [36–40]. 
ABCB1 was the first drug efflux transporter show-
ing a remarkable impact on the brain delivery of 
substrate agents. Mice have two genes that are 
equivalent to ABCB1, namely Abcb1a and Abcb1b 
of which Abcb1a is the subtype that is expressed 
in the BBB. Abcb1a-deficient mice demonstrate 
a dramatic sensitivity to the neurotoxic pesticide 
ivermectin and to the cytotoxic drug vinblastine 
[41]. The role of ABCB1/Abcb1a in limiting drug 
brain penetration has been extended to a plethora 
of agents, including many novel targeted agents.

�� ABCG2
ABCG2 (murine subtype Abcg2), also known as 
BCRP, is a 72-kDa ABC transporter. Similar to 
ABCB1, it plays an important role in drug dis-
position and distribution in the body (Figure 2D). 
ABCG2 is expressed in many tissues of the body, 
including the apical side of the intestinal lumen, 
the bile canaliculus in liver hepatocytes and the 
capillaries of the BBB. In addition, ABCG2 trans-
ports a broad range of endogenous and exogenous 
compounds [31,35]. However, pharmacokinetic 
studies using Abcg2-knockout mice showed little 
effect on the brain penetration of drugs, with a 
few exceptions. This is most likely due to most 
drugs being substrates of both ABC transporters 
and the fact that the accumulation of these sub-
stances by the brain is limited by Abcb1, which is 
still present in Abcg2-knockout mice. The absence 
of both Abcb1 and Abcg2, however, results in a 
profound increase in brain uptake compared with 
the absence of each transporter alone [42]. Due 
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to the extremely broad substrate specificities of 
these two transporters, the concerted action of 
ABCB1 and ABCG2 is not restricted to only a 
few drugs, but represents a common mechanism 
to limit the brain entry of many drugs and, thus, 
potentially confers resistance to brain tumor 
chemotherapies (Table 3). 

Targeting EGFR & lessons learned from 
erlotinib trials in GBM
The EGFR (ERBB1) is a member of the ERBB 
family of transmembrane RTKs and binds to 

at least six different ligands, including EGF 
and TGF-a. After binding a ligand, dimeriza-
tion of EGFR takes place and the complex is 
activated and recruits PI3K. This activates the 
PI3K–AKT–mTOR pathway, transducing a 
proliferation signal to the cell. In tumor cells, 
EGFR amplification is often present as small frag-
ments of extrachromosomal DNA (double min-
utes) and is often associated with structural muta-
tions in the EGFR gene, of which several variants 
have been identified. EGFRvIII (i.e., ∆EGFR) 
is the most commonly occurring mutation in 

Figure 2. The blood–brain barrier. (A & B) Blood–brain barrier and ABC drug efflux transporters at 
the blood–brain barrier. (C & D) Secondary structures of P-gp and BCRP, respectively. 
MSD: Membrane-spanning domain; NBD: Nucleotide-binding domain; TJ: Tight junction.  
Right-hand panel in (A) reproduced with permission from [110] © Oxford University Press (1991).  
Left-hand panel in (A) and (B) adapted with permission from [111]. 
(C & D) Adapted with permission from [35].

Nucleus
Capillary

TJ
Astrocyte
foot process

Brain capillary
endothelial cell

MRP2 MRP1

TJ

P-gp BCRP

Astrocyte foot
processes

Capillary
endothelium

Brain

Blood

MSD1 MSD1
BCRPP-gp

NBD1 NBD1NBD2

COOH COOH

Out Out

In In

MSD2



Targeting core (mutated) pathways of high-grade gliomas  REVIEW

future science group www.futuremedicine.com 277

GBMs derived by a nonrandom 801 bp in-frame 
deletion of exons 2–7, and codes for a truncated 
and constitutively activated protein [43–45]. 
Overall, EGFRvIII expression in the presence of 
EGFR amplification plays an important role in 
enhanced tumorigenicity and indicates a poor 
survival prognosis in GBM patients [46]. 

Although EGFR amplification and mutation 
is considered to be an important factor, none 
of the currently tested EGFR inhibitors have 
shown any clinical efficacy against GBM. The 
contrast between the more successful application 
of EGFR inhibitors in other types of cancer such 
as lung cancer and failure of EGFR inhibitors 
in GBM have been extensively studied. These 
studies suggest that the lack of response to EGFR 
inhibitors in GBM is multifactorial. A first issue 
is that it is not clear whether glioma cells will 
be exposed to therapeutic levels of erlotinib (i.e., 
can a therapeutic level of erlotinib be reached 
in the glioma tissue?). Erlotinib is a substrate 
of both ABCB1 and ABCG2, and the two drug 
efflux transporters together resulted in a sev-
enfold reduction of brain:plasma ratio in wild-
type compared with Abcb1- and Abcg2-knockout 
mice [47,48]. Thus, the limited BBB penetration 
of erlotinib caused by ABCB1 and ABCG2 may 
be at least partly responsible for the resistance 
of GBM to erlotinib treatment. Unfortunately, 
the fact is that ABCB1 and ABCG2 have a long 
list of overlapping substrates, including most 
RTK inhibitors, such as gefitinib [49], sunitinib 
[50], dasatinib [51,52], imatinib [53] and lapatinib 
[54], and the brain penetration of these com-
pounds is also markedly restricted by these two 
transporters (Table 3). 

A second issue is that deregulated compo-
nents downstream of EGFR could abolish the 
effects of EGFR inhibition. For example, Mel-
linghoff et al. reported that PTEN loss in GBM 
cells would cause resistance to erlotinib [55]. 
However, this is not the only reason, since the 
randomized EORTC study also found tumors 
with expression of PTEN, and EGFR and/or 
EGFRvIII that responded poorly [10]. There was 
only a weak relationship between the levels of 
phosphorylated AKT and the response to erlo-
tinib. As we know, PTEN is not the only key 
factor controlling the signaling downstream of 
EGFR. In addition, PI3K mutation and AKT 
amplification can lead to activation of the PI3K 
pathway. Furthermore, there is active crosstalk 
between the PI3K and RAS pathways [56,57], 
and activation of the RAS–RAF–MEK–ERK 

pathway is common in GBM [58]. This path-
way activation can be caused by a mutation or 
deletion of NF1 or (more rarely) by mutation of 
RAS. In addition, mutation and amplification 
of other parallel RTKs, such as ERBB2, PDGFR 
and c-MET, could also activate signaling via the 
PI3K–mTOR and RAS pathway, thereby confer-
ring resistance to EGFR inhibition [59]. Last but 
not least, another explanation for the disappoint-
ing clinical activity of erlotinib in GBM versus 
lung cancer was delivered by a recent study by 
Vivanco et al. [60]. Vivanco et al. demonstrated 
that distinct types of EGFR mutations in lung 
cancer and GBM responded differently to EGFR 
inhibitors. Importantly, they also found that in 

Table 3. Impact of Abcb1 and Abcg2 on the brain penetration of targeted 
agents as demonstrated in Abcb1- and/or Abcg2-deficient mice.

Agent Target 
protein(s)

Brain penetration 
limited by Abcb1?

Brain penetration 
limited by Abcg2?

Ref.

Sirolimus mTOR Yes No [Lin et al., 
Unpublished 

data]

Palomid 529 mTOR No No [112]

Erlotinib EGFR Yes Yes [47,113]

Gefitinib EGFR Yes Yes [49]

Sunitinib VEGFR-2 and 
-3, c-Kit, FLT3 
and PDGFR

Yes Yes [50]

Cediranib VEGFR Yes Yes [114]

Axitinib VEGFR Yes Yes [115]

Sorafenib c-Kit, PDGFR 
and Raf

Yes Yes [102]

Dasatinib BCR–ABL, 
c-Kit, PDGFR, 
SRC

Yes Yes [52]

Vemurafenib B-RafV600E Yes Yes [116,117]

Dabrafenib B-RafV600E Yes Yes [118]

Imatinib BCR–ABL, 
c-Kit, PDGFR

Yes Yes [53,105]

Lapatinib HER2 (ERBB2), 
EGFR

Yes Yes [54]

GDC-0941 PI3K Yes Yes [69]

Tandutinib c-Kit, FLT3 and 
PDGFRb

Yes Yes [119]

EGFR: EGF receptor; PDGFR: PDGF receptor; VEGFR: VEGF receptor.
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lung cancer, the first-generation EGFR inhibi-
tor erlotinib effectively inhibits EGFRs carry-
ing mutations in the kinase domain, whereas it 
performs very poorly against EGFRs with muta-
tions or deletions in the extracellular domain as 
in GBM [60]. The putative resistance of GBM 
to erlotinib caused by drug efflux transport-
ers and/or intrinsic molecular mechanisms are 
demonstrated in Figure 3.

Targeting the PI3K–AKT–mTOR pathway 
The PI3K–AKT–mTOR pathway, activated 
by extracellular survival signaling factors via 

RTKs, is a major cell signaling pathway involved 
in regulating a variety of cellular processes, 
including cell proliferation, survival, growth, 
glucose metabolism and protein synthesis [61]. 
The most frequent alteration responsible for 
the deregulation of this pathway in GBM is the 
loss of PTEN (36%). In addition, mutation of 
the PI3KCA (15%) gene, and occasionally AKT 
amplification (2%) or FOXO mutation (1%), 
also contribute to the activation of downstream 
signaling (Figures  1  &  4) [27,62,63]. Constitutive 
PI3K–AKT–mTOR pathway activation is a 
hallmark of GBM.
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The class IA PI3K is a heterodimer com-
posed of an 85-kDa regulatory subunit (P85a) 
and a 110-kDa catalytic subunit (P110a). 
Once RTK recruits PI3K to the cellular mem-
brane, the PI3K subunit converts inactive PIP

2
 

into active PIP
3
, which then recruits AKT to 

the membrane together with PDK1. Further-
more, PTEN counteracts PI3K by converting 
PIP

3
 back into PIP

2
, functioning as a tumor 

suppressor. Unlike other components of cel-
lular pathways with multiple protein family 
members, there is no PTEN-related protein 
present in the cells that can compensate for 
its loss. Therefore, it is not surprising that the 
loss of PTEN function plays a pivotal role in 
tumorigenesis [64]. 

�� PI3K inhibitors
Due to the high mutation rates of PTEN and 
PI3KCA (the gene that encodes the catalytic sub-
unit P110a of PI3K), and the importance of this 
pathway in GBM, PI3K, and especially its subunit 
P110a, provides an attractive drug target. The 
first generation of PI3K inhibitors (LY294002 and 
wortmannin) showed in vivo antitumor efficacy, 
but were associated with poor stability or solu-
bility, undesirable toxicities and crossover inhi-
bition of other lipid and protein kinases [65,66]. 
Therefore, clinical trials with these compounds 
have not been initiated. Since the crystal structure 
of PI3K was elucidated, the development of new 
PI3K inhibitors has been accelerated. More selec-
tive PI3K inhibitors have been developed, with 
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promising antitumor efficacy and low toxicity in 
preclinical research. For example, GDC-0941 
is a potent and selective ATP-competitive PI3K 
inhibitor. It inhibits the PI3K P110a subunit 
with an inhibitory concentration at 50% inhibi-
tion (<10 nM) and inhibits the phosphorylation 
of AKT with an inhibitory concentration at 50% 
inhibition (28 nM) [67]. GDC-0941 treatment has 
led to an increase in apoptosis and inhibition of 
growth in a subset of xenograft tumor cell lines 
[68]. In vivo antitumor activity with daily oral dos-
ing at 150 mg/kg of GDC-0941 achieved 98% 
growth inhibition in subcutaneous U87MG xeno-
grafts [65,68]. Unfortunately, GDC-0941 is also 
a substrate of both ABCB1 and ABCG2. After 
intravenous or oral administration, the GDC-
0941 brain-to-plasma ratio in Abcb1- and Abcg2- 
knockout mice was approximately 30-fold higher 
than in wild-type mice. The PI3K pathway was 
markedly inhibited as evidenced by 60% suppres-
sion of the phosphorylated AKT in the brains of 
Abcb1- and Abcg2- knockout mice, whereas no 
inhibition was detected in the brains of wild-
type mice [69]. Therefore, the potential efficacy 
of GDC-0941 as a targeted agent for treatment 
of GBM is limited due to ABCB1 and ABCG2. 

AKT is a serine/threonine protein kinase 
that can be activated by phosphorylation at 
the threonine-308 by PDK1, or serine-473 by 
mTORC2. The mechanism by which the latter 
phosphorylation occurs is not fully understood; 
however, recent work suggests that activation of 
mTORC2 kinase activity is induced by EGFR-
vIII in GBM cells, and that abnormal mTOR2 
signaling can promote GBM growth and sur-
vival [70]. When phosphorylated, AKT in turn 
phosphorylates a variety of downstream effector 
proteins, of which mTORC1 is one of the most 
important ones. There are very few trials with 
AKT inhibitors in GBM. The planned clinical 
trial with MK-2206 has been canceled by Merck 
(NJ, USA) due to a reprioritization within their 
oncology program [201]. 

�� mTORC1 & mTORC2 inhibitors 
mTORC1 is regarded as a central regulator of cell 
growth and has a critical role in tumor develop
ment. Via two major downstream targets, S6K 
(p70 S6 kinases) and 4EBP1, mTORC1 triggers 
the synthesis of proteins involved in cell survival, 
growth and proliferation [71–73]. Mutations of 
the mTOR gene are rare in GBM, but frequently 
deregulated upstream signaling drives mTORC1 
activation. Inhibition of mTORC1 by rapamycin 

or other rapalogs has shown efficacy in a subset of 
cancers [74,75]. However, rapamycin and other rap-
alogs only inhibit mTORC1 and not mTORC2 
[76]. This can lead to activation of AKT via an 
mTORC2-driven positive-feedback loop [74,77,78]. 
The novel generation of mTOR inhibitors are mul-
titargeting agents, which are capable of inhibiting 
dual targets in the PI3K pathway or even more 
targets, to more completely block the feedback 
loop activation caused by inhibition of mTORC1. 
Dual mTORC1 and mTORC2 inhibitors that 
disrupt downstream signaling of mTORC1, and 
at the same time inhibit AKT activation by block-
ing mTORC2 activity, are interesting candidates 
for evaluation of treatment efficacy in GBM. 
AZD8055, a dual mTORC1 and mTORC2 
inhibitor, is a highly potent, ATP-competitive 
and specific mTOR kinase inhibitor. In  vivo, 
AZD8055 demonstrated potent single-agent anti-
tumor activity against a range of subcutaneous 
xenografts, including U87 malignant glioma [79]. 
AZD8055 is currently being evaluated in a clinical 
trial in adults with recurrent glioma [202]. To date, 
no data have been presented in orthotopic brain 
tumor models, or to assess whether AZD8055 
is able to cross the BBB. Similar to AZD8055, 
Palomid 529 is another dual mTORC1/mTORC2 
inhibitor that markedly reduces the phosphoryla-
tion of AKT (S473-Akt) signaling by inhibition 
of both mTORC1 and mTORC2 activity. In vivo 
studies demonstrated that Palomid 529 reduced 
angiogenesis, vascular permeability and tumor 
growth [80]. Moreover, Palomid 529 was shown to 
enhance the antiproliferative effect of radiother-
apy in GBM in an orthotopic model [81], as well 
as in prostate tumor models [82]. Another way to 
interrupt the mTORC2–PI3K positive-feedback 
loop is by combined inhibition of mTORC1 and 
PI3K. Particularly, the imidazo(4,5-c)quinoline 
derivative, NVP-BEZ235, selectively inhibits 
both PI3K and mTOR kinase activity by bind-
ing the ATP-binding cleft of these enzymes, thus, 
resulting in G1 arrest and autophagy in tumor 
cells. It displayed remarkable antitumor activity 
in U87MG GBM xenograft models with a dose-
dependent effect, and it could further enhance 
the efficacy of temozolomide [83]. Further studies 
using U87 intracranial xenograft models also con-
firmed the antitumor potency of NVP-BEZ235 
in the treatment of GBM [84]. NVP-BEZ235 has 
not been tested clinically against glioma, most 
likely because the company (Novartis, Basel, 
Switzerland) has prioritized NVP-BKM120 for 
development in treating glioma. BKM120 is a 
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pan-class 1 PI3K inhibitor, but has no inhibitory 
activity against mTOR [85]. This compound is 
assumed to penetrate the BBB [86].

Targeting the RAS–RAF–MEK–ERK 
pathway
The MAPK pathway is activated in the major-
ity of GBMs through various mechanisms, such 
as via EGFR mutation or amplification (45%), 
PDGFR amplification (13%) or deletion of NF1 
(18%) (Figures 1 & 4) [27]. Upon activation, the 
growth factor receptors generate binding sites 
for adaptor proteins, such as GRB2, containing 
a SH2 domain. Next, GRB2 recruits SOS to the 
membrane, which, in turn, activates RAS through 
the replacement of inactive GDP with active GTP. 
As a result, RAS is able to recruit RAF kinases 
(A-RAF, B-RAF and C-RAF) to the plasma 
membrane, where they are activated. RAF is able 
to phosphorylate and thereby activate MEK1 
and MEK2, which, in turn, activate ERK1 and 
ERK2. Activation of ERK leads to activation of a 
variety of nuclear and cytoplasmic substrates asso-
ciated with gene regulation, cell cycle progression, 
differentiation and cell division [27,87,88]. Due to its 
important role in cell proliferation and survival, 
the MAPK pathway is frequently altered in a vari-
ety of tumors. K-RAS, one of the three RAS genes, 
is often mutated in leukemia, colon cancer, pan-
creatic cancer and lung cancer. Although human 
GBMs rarely show RAS mutations (2%), almost 
all malignant human gliomas show elevated levels 
of activated RAS as a result of other upstream 
molecular alterations. 

�� MEK inhibitors
Inhibition of MEK is an effective strategy to pre-
vent the subsequent downstream signaling of the 
RAS pathway, and consequently induces tumor 
regression and/or stasis. A recent study by See et al. 
demonstrated that PD0325901 and AZD6244, 
as single agents, suppressed the growth of NF1-
deficient and MEK inhibitor-sensitive glioma 
cells both in vitro and in vivo [89]. Their findings 
indicate that a subset of NF1-deficient GBMs 
may be responsive to MEK inhibitors. Moreover, 
they found that NF1-deficient glioma cells that 
are intrinsically resistant to MEK inhibition were 
sensitized by the addition of the dual PI3K/mTOR 
inhibitor PI-103. Many commonly used MEK 
inhibitors are benzohydroxamate derivatives, 
sharing many similarities in chemical structure. 
These inhibitors result in MEK-specific inhibition 
by binding to the hydrophobic pocket, adjacent to 

the ATP binding site of the MEK protein, which 
keeps the kinase in a catalytically inactive state. 
This allosteric mechanism contributes to the high 
selectivity for MEK without affecting other pro-
tein kinases that have structurally similar ATP-
binding pockets. Therefore, MEK inhibitors are 
usually highly specific and non-ATP-competitive 
inhibitors. PD-0325901 was the first clinically 
tested MEK inhibitor. In  vivo results demon-
strated that PD-0325901 potently inhibits growth 
of human tumor xenografts bearing activating 
mutations of B-Raf, concomitant with suppres-
sion of ERK1/2 phosphorylation [90]. Interestingly, 
during Phase I and II clinical trials in advanced 
cancers, antitumor activity was seen when treated 
with 4–30 mg twice-daily doses of PD-0325901 
[91,92]. However, beside the more common side 
effects like rash, diarrhea and fatigue, the drug also 
caused ocular and CNS toxicities at doses above 
15 mg, and Pfizer (NY, USA) has suspended its 
further evaluation. Notably, a similar ocular tox-
icity has been observed with the MEK1 inhibitor 
AZD6244 (selumetinib), albeit to a lesser extent 
than PD-0325901. Whether these CNS toxicities 
are a direct consequence of MEK inhibition in the 
brain or caused by off-target drug effects is still 
unclear; both are possible regarding the structural 
similarities of the MEK inhibitors tested so far. 
Clearly, these CNS toxicities suggest that MEK 
inhibitors, such as PD-0325901, are able to enter 
the CNS, which would qualify these as candidates 
for testing in GBM. However, MEK inhibitors 
are predominantly evaluated against non-CNS 
tumors and the selection of novel candidates is 
narrowed to those having a low BBB permeability 
to avoid CNS toxicities. It should be noted that 
this strategy holds the risk that a complete class 
of targeted agents may become useless for treat-
ing GBM. The central role of an activated RAS 
pathway in GBM argues in favor of using MEK 
inhibitors, although it is obvious that finding the 
optimal dose level will be a challenging task. 

Rb pathway & CDK inhibiton
Deregulation of the G1/S checkpoint is very com-
mon in GBM. Cyclin-dependent kinases (CDKs) 
are serine/threonine protein kinases whose activ-
ity depends on binding and activation by cyclin 
partners, and they are required for cell cycle pro-
gression. CDK4 and CDK6, which are both under 
control of P16INK4a and P15INK4b, bind to cyclin D 
and phosphorylate Rb, causing subsequent release 
of the transcription factor E2F and synthesis of 
proteins that are needed in the S phase. The most 
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common alteration of the Rb pathway in GBM 
(52% of cases) is a homozygous deletion of parts 
of the CDKN2 locus that code for P16INK4a and 
P15INK4b. Other alterations include amplifica-
tion and overexpression of CDK4 (15–20%) and 
homozygous deletion/mutation of the RB1 gene 
(~10%) (Figure 1 & 5). Deletion of CDKN2A (or 
amplification of CDK4), CDKN2B and CDKN2C 
leads to loss of cell cycle control and increased 
cell proliferation. Codeletion of CDKN2A and 
CDKN2C serves as a strong predictor of sensitiv-
ity to a selective inhibitor of CDK4/6 [93]. Ampli-
fication of CDK6 and individual D-type cyclins, 
and homozygous deletion of CDKN2C encoding 
P18INK4c are less common [27].

�� CDK inhibitor PD-0332991
CDK4 is a logical target, taking into consideration 
that the loss of CDKN2A/B or amplification of 
CDK4 is a frequent event in GBM. PD-0332991 
is an orally bioavailable CDK inhibitor, which 
selectively inhibits CDK4 and CDK6. Antip-
roliferative activity has been demonstrated in 
luminal breast cancer, myeloma and GBM cell 

lines [94,95]. As expected, RB1-deficient tumors 
were resistant to PD-0332991. Michaud et al. 
demonstrated that PD-0332991 was effective in 
suppressing the growth of intracranial U87MG 
tumors, including those that recurred after initial 
therapy with temozolomide [94]. The combination 
of PD-0332991 and radiation therapy resulted 
in significantly increased survival compared with 
either therapy alone. Based on these results, it was 
argued that this compound can efficiently cross 
the BBB [94]. It should be noted, however, that the 
BBB in U87MG tumors is very leaky [96]. 

Two completed Phase  I trials showed that 
PD-0332991 is generally well tolerated and neu-
tropenia was the sole significant toxicity at maxi-
mum tolerated dose (125 mg once daily) [97,98]. 
A Phase II clinical study to test PD-0332991 
in patients with recurrent Rb-positive GBM is 
currently ongoing [203].

Future strategies for targeted therapy
�� Combined inhibition of multiple pathways

As outlined above, at least three core sig-
naling pathways (RAS–RAF–MEK–ERK, 
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PI3K–AKT–mTOR and CDKN2–CDK4/6–
RB1) are jointly activated in the majority of 
GBMs through different mechanisms, and 
targeting just one of these components may 
be insufficient to achieve a meaningful effect 
on tumor progression. In addition, crosstalk 
between different molecules of two or more path-
ways increases the plasticity of tumor-survival 
signaling and reduces oncogene addiction [56]. 

As depicted in Figure 3, inhibition of EGFR 
will not be able to suppress the activation of 
PI3K and RAS pathways in case other oncogenic 
alterations in parallel (e.g., other RTKs) and/or 
downstream components (e.g., PI3K activation) 
have occurred. Similarly, as shown with mTOR 
inhibitors, treatment with an inhibitor of a single 
pathway may also not sufficiently block parallel 
signaling pathways to reach a significant antip-
roliferative effect. For example, Di Nicolanto-
nio et al. have shown that a number of human 
cancer cell lines carrying alterations in the PI3K 
pathway responded to everolimus, but only when 
there was no concomitant KRAS mutation [99].

Although several studies with PI3K and RAS 
inhibitors, given as a single agent, have dem-
onstrated promising tumor growth inhibitory 
potencies by in  vitro or in  vivo models using 
established GBM cell lines, such as U87-MG, 
it should be taken into account that these GBM 
cells have been cultured for many generations. 
When grown in vivo they form homogeneous 
noninvasive lesions with a relative stable genome, 
unlike the highly heterogeneous GBMs that are 
typically found in patients. This discrepancy 
may be a plausible explanation for their poor 
predictive value on the usefulness of these agents 
against GBM in the clinic. 

The considerations above argue in favor of tar-
geting multiple pathways simultaneously, by anal-
ogy with the polypharmacy commonly applied in 
antiretroviral therapy. Ideally, this would include 
targeting all three core signaling pathways simul-
taneously. Although it will be challenging to 
design combination therapies that result in suffi-
cient inhibition of these three core pathways simul-
taneously with acceptable toxicities, this concept 
would have the intrinsic potential to be beneficial 
for a substantial fraction of GBM patients. To 
date, just a few studies on combinations of targeted 
agents have been reported. Clinical trials combin-
ing EGFR and mTOR inhibitors reported consid-
erable toxicities and the potential of drug–drug 
interactions, highlighting some of the issues that 
may be encountered [100,101]. However, whereas 

cytotoxic drugs in oncology are traditionally dosed 
at the maximum tolerated dose level, this ‘more 
equals better’ strategy is most likely suboptimal 
for targeted agents. Taking into consideration the 
basic principles of pharmacokinetic–pharmacody-
namic relationships, the optimal dose should be 
determined by verifying target inhibition, since 
higher dose levels may not contribute to improved 
efficacy, but may increase toxicities due to off-
target effects. Implementing methods to verify 
target inhibition in tumor tissue will be crucial to 
the further development of combination therapy 
with targeted agents, not just in gliomas but in 
all cancers.

�� Targeted therapy combined with drug 
efflux transporters inhibitors
The important roles of ABCB1 and ABCG2 in 
drug resistance, and in limiting the brain penetra-
tion of therapeutic drugs, are well established. 
However, surprisingly little attention has been 
paid to this fact when designing clinical trials 
with targeted agents in GBM. Erlotinib, lapatinib 
and most other newly developed kinase inhibitors 
are substrates of ABCB1 and/or ABCG2 and, as a 
consequence, their usefulness in the treatment of 
GBM growth may be compromised by an inad-
equate brain penetration. The reality is that most 
targeted agents are initially developed for the treat-
ment of major tumor types, such as lung and breast 
cancer, in which good BBB penetration is irrelevant 
or considered undesirable (e.g., MEK inhibitors). 
Consequently, however, agents from this panel 
that are being considered for further evaluation in 
GBM may not be the best BBB-permeable drugs. 

Elacridar (GF120918) and tariquidar are both 
dual ABCB1 and ABCG2 inhibitors that were 
developed in the 1990s to improve the treatment 
of ABCB1-mediated multidrug resistant tumors. 
Due to the lack of success in this area, this con-
cept is not currently receiving much attention. 
These same agents, however, have the potential 
to enhance the brain penetration of targeted 
therapies by blocking the efflux of drugs by these 
two transporters at the BBB, and perhaps also 
at the blood–tumor barrier. Coadministration 
of elacridar with a number of anticancer drugs 
has been proven to be an effective strategy to 
enhance the brain accumulation of these drugs, 
including a range of potentially effective targeted 
therapeutics [49–52,102–109]. Therefore, the use of 
elacridar might represent a feasible strategy to 
improve the brain entry of potentially effective 
targeted therapeutics for GBMs. 
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Conclusion & future perspective
The TCGA project and other collaborative 
research efforts have revealed how the oncoge-
netic processes of GBM are driven by multiple 
deregulated core signaling pathways and will 
provide new avenues for more effective targeted 
therapies in the treatment of GBM. Because the 
crosstalk between these molecular pathways 
fuels the plasticity of these processes, target-
ing a single, prevalent target that promotes and 
dominates GBM proliferation will, at best, pro-
vide only very short-lived effects. Consequently, 
the next generation of targeted therapies should 
focus on multitargeting agents or combinations 
of single-targeting agents against these core 
pathways. 

Importantly, when selecting the most appro-
priate candidates of targeted therapeutics, the 
brain penetration of such candidates and, in 
particular, their interactions with the drug efflux 
transporters ABCB1 and ABCG2 should be 
taken into consideration. No matter how potent 
an agent is in inhibiting or activating its target, 
it has to reach that target at a therapeutic level, 
which is more difficult to achieve in the brain 
than in other tissues. Ideally, substances should 
be designed to have a low affinity for drug efflux 

transporters. Alternatively, coadminstration of 
targeted agents together with inhibitors of these 
drug efflux transporters (e.g., elacridar) may be 
helpful and should also be considered. 

The progress that has been made in the treat-
ment of GBM during recent years has been very 
modest. Therapies that are based on targeting 
core signaling pathways underlying the processes 
of malignant transformation is an emerging 
therapeutic strategy that holds great potential 
and receives a lot of attention. However, if we 
continue testing such agents against GBM, 
one-by-one and without considering whether 
the candidate drugs are able to cross the BBB 
sufficiently, it is likely that again little progress 
will have been made in 5–10 years from now.
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