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EPIDEMIOLOGICAL EVIDENCE FOR POSSIBLE RADIATION HORMESIS
FROM RADON EXPOSURE: A CASE-CONTROL STUDY CONDUCTED IN
WORCESTER, MA.

Richard E. Thompson � Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health

� Data from a case-control study of lung cancer and residential radon exposure con-
ducted in Worcester County, Massachusetts, are presented. Lung cancer risk was estimat-
ed using conditional logistic regression models that controlled for demographic, smoking,
and occupational exposure covariates. Preliminary exploratory analyses using lowess
smoothing revealed a non-linear association between exposure and the log odds of lung
cancer. Radon exposure was considered by using linear spline terms in order to model this
nonlinearity. The best fit of this linear spline model to these data predicted a shift from a
positive to a negative slope in the log-odds of lung cancer at a radon concentration of 70
Bq m-3. A statistically significant decrease in cancer risk with increased exposure was found
for values ≤ 157 Bq m-3 normalized to the reference exposure of 4.4 Bq m-3, the lowest
radon concentration measured(adjusted odds ratio (AOR) [95% CI] = 0.42 [0.180, 1.00],
p = 0.049). This result is consistent with those reported elsewhere that considered radon
exposure with cubic spline terms (Thompson, RE et al. 2008). Furthermore, this model
predicts an AOR that is numerically less than 1.0 for radon exposures up to 545 Bq m-3 ver-
sus the above baseline, reference exposure.
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INTRODUCTION

Radon, specifically the 222Rn isotope and its high linear-energy-trans-
fer (LET) alpha emitting progeny, have been shown to be carcinogenic at
high doses. This has been confirmed by observed increased rates of lung
cancer among miners exposed to excessive amounts of radon gas that
becomes trapped and concentrated in the enclosures of underground
mines. As far back as the 16th century, it was widely recognized that min-
ers in Central Europe experienced higher mortality rates than the gen-
eral population from respiratory diseases (Darby et al. 2001). Among
modern investigators, Samet et al. (1991) found a statistically significant
standardized mortality ratio [95% CI] for lung cancer = 4.1 [3.1 – 5.1]
among a cohort of 3469 male uranium miners in New Mexico. The min-
ers in this study had mean and median radon exposures of 111.4 and 35.0
Working Level Months (WLMs), respectively.
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Because radon is a chemically inert gas, it easily seeps upward from
rocks and soil below ground and can accumulate in confined above-
ground spaces such as homes. However, the average radiation exposure
to the population from radon trapped in homes is much less than that
experienced by underground miners. For example, Field et al. (2000)
found that roughly one-third of the homes measured in the Iowa Radon
Lung Cancer Study had radon concentrations that exceeded 11 WLMs
(e.g. approximately 4 pCi liter-1) on the first level, suggesting that the
mean exposures experienced underground are at least one order of mag-
nitude greater than those seen in the home.

In order to estimate lung cancer risk from residential radon expo-
sure, regulatory and scientific agencies have extrapolated risks seen in
the underground miners down to the radon concentrations present in
the home. The linear, no-threshold (LNT) model is commonly assumed
when making these risk extrapolations. The implication of the LNT
model is that there is no threshold level of radiation exposure below
which there is no cancer risk, and that a doubling of exposure leads to a
doubling of this risk. Based on LNT extrapolations of the miner’s data, it
has been estimated that there are approximately 18,600 excessive lung
cancer deaths in the United States each year due to residential radon
exposure (NRC 1999). One justification for LNT is the observed, consis-
tent linearity of the radon-cancer dose-response relationship over the
range of exposures seen in the miner studies (Lubin et al. 1995).
However, the enormous differences in exposure levels seen between
underground miners and the general population lead to a great deal of
uncertainty in these extrapolation models.

Several case-control studies have been performed over the past two
decades with the goal of directly measuring the excess lung cancer risk
from residential radon. However, these epidemiological studies are limit-
ed by the difficulty in making accurate estimates of cumulative exposures
and lack statistical power due to the small study sizes and corresponding
low cancer risk (Lubin et al. 1995). In an attempt to overcome the issue
of low statistical power, two large meta-analyses have been performed that
pooled data from case-control studies conducted in North America
(Krewski et al. 2006) and Europe (Darby et al. 2005). Investigators in these
studies also assumed LNT and have reported excessive cancer risks under
this model directly proportional to increases in radon exposure. Among
the North American studies, Krewski et al. (2006) reported an excessive
odds ratio (EOR) of 0.10 per 100 Bq m-3, a result that trends toward sta-
tistical significance (95% CI = [-0.01, 0.26]). However, when the data are
restricted to those study participants with ≤ 2 residences and ≥ 20 years
with α-track air monitors, these same investigators report a statistically sig-
nificant EOR [95% CI] per 100 Bq m-3 = 0.18 [0.02, 0.43]. Similarly, Darby
et al. (2005) found a statistically significant EOR [95% CI] per 100 Bq m-
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3 = 0.08 [0.03, 0.16] in the European pooling study. Under the LNT
model used in these pooling studies, the adjusted odds ratio (AOR) is
determined by one plus the EOR times the exposure of interest.

Although some investigators have claimed that these large pooling
studies confirm once and for all the LNT model for residential radon
exposure (e.g. Samet 2006), research in the area of adaptive-protective
responses calls into question the scientific validity of the LNT model at
the lower doses of radiation exposure. In particular, adaptive-protective
responses induced by exposure to low LET ionizing radiation (e.g. x-rays,
gamma rays, and beta particles) have been observed that protect against
both spontaneous cell damage and cell damage from an initial mutagenic
ionizing radiation dose. For example, Redpath et al. (2001), showed that
exposure of human fibroblast skin cells in vitro to gamma radiation doses
of up to 10cGy induced an adaptive-protective response among these cells
against spontaneous neoplastic transformation. In contrast, Day et al.
(2007) used a two-dose in vivo experiment to demonstrate for the first
time that a low follow-on x-ray dose (0.01 – 1 mGy) to mice can induce an
adaptive-protective response against a larger, initial whole-body x-ray dose
(1000 mGy) given several hours prior.

As an alternative to LNT, Scott et al. (2009) have recently proposed a
stochastic hormetic relative risk (HRR) model that incorporates both
radio-adaptive protection against intermediate doses of high LET ioniz-
ing radiation activated by exposure to low LET radiation and the epige-
netic silencing of this protective response under the condition of large
doses of high LET radiation. This model is stochastic in the sense that the
protective thresholds of low LET exposures that activate the adaptive
response are assumed to vary from person to person.

This paper presents data from a case-control study of lung cancer and
residential radon exposure conducted in Worcester County,
Massachusetts, that provides possible epidemiological evidence support-
ing such a hormetic cancer risk model.

STUDY DESIGN AND DOSIMETRY

The design and dosimetry of the present study have been described
in detail elsewhere (Thompson et al. 2008). Briefly, a total of 209 cases
were recruited into the study, with each case matched to two controls ran-
domly chosen from the same HMO patient population. Case-control
matching was based on gender and age to within +/- 2.5 years. Due to loss
of radon detectors, the final number of cases and controls in the study
was 200 and 397, respectively. No data of radon exposures were imputed
in this study. All study participants were clients of the Fallon Clinic \
Fallon Community Health Plan. In addition, all cases and controls were
residents of Worcester County, or for a few participants, lived just outside
the county line. Extensive face-to-face interviews were given to all study
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participants, or in cases of death or illness, to a spouse or offspring. Data
obtained included basic demographics, years of residency in the home, a
detailed smoking history on the number and type (e.g. filtered or unfil-
tered) of cigarettes smoked in each decade of life, and occupational
exposure to known or suspected carcinogens including heat welding,
asbestos, vinyl chloride, formaldehyde, ethylene oxide, x-rays, radioactiv-
ity, insecticides, herbicides, and smelter and foundry fumes. Surrogate
interviews were given for 3.3% of controls and 21.5% of cases.

In the current study, emphasis was placed on obtaining accurate and
extensive within-home radon measurements. Radtrack etch-track detec-
tors (Techs/Ops Landauer, Inc.) were placed in the current homes of all
study participants to obtain year-long radon concentration measure-
ments. For a few study participants, detectors were placed in the immedi-
ate past residences if they had lived in the home for at least 10 years.
Detectors were placed in the current bedroom, living area of the home
most often used, and on another level of the home that was occupied for
at least one hour per week. Typically, this was in the basement of the res-
idence.

A number of ‘blanks’ (e.g. unexposed detectors) and ‘spikes’ (e.g.
detectors with known, calibrated exposures) were placed in each batch of
detectors. The number of these blanks and spikes in each batch was
determined by the U.S. EPA’s National Air and Radiation Environmental
Laboratory in Montgomery, Alabama. An average correction factor
obtained from the calibrated radon exposure of the spikes in each batch
was then applied to all the detectors in that batch. Two radon detectors
were placed side-by-side in about one-tenth of all homes. These duplicate
readings gave a coefficient of variation of 12%.

In order to obtain an accurate assessment of within-home mobility,
study participants were asked about the ‘wakeful’ time spent in various liv-
ing areas of the home over all lifestyle periods that included full-time and
part-time employment outside of the home, child rearing, and retire-
ment. These distributions of weekly in-home usage averaged over all
lifestyle periods were used to obtain weighted averages of radon expo-
sure. The importance of using residence mobility to obtain more accu-
rate estimates of radon exposure has been emphasized in the Iowa Radon
and Cancer Study (Field et al. 2000).

STATISTICAL ANALYSES

All analyses presented here were performed using the statistical soft-
ware package Stata Release 10.0 (Stata Corp. 2009). Summary statistics
were initially obtained from the data and detailed in the results section
below. Initial confirmatory analyses were used to test for statistical associ-
ations between lung cancer status and the covariates of interest. The chi-
square goodness-of-fit test was used for categorical data, while the two
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sample t-test, or when the data were not normally distributed the non-
parametric Kruskal-Wallis test, was used for continuous variables. More
extensive analyses on the binary outcome of cancer status were conduct-
ed by the use of univariate and multivariable conditional logistic regres-
sion models, producing measures of association in terms of unadjusted
odds ratios (OR) and adjusted odds ratios (AOR) and corresponding
95% confidence intervals (CI). The Stata function ‘fracpoly’ was used to
determine the best fit to the data when modeling the dose-response rela-
tionship via polynomial functions. Potential confounders controlled for
in these regression models include categories of income, education, job
exposure, and smoking status, as well as the continuous measure of resi-
dency in years. Refusal responses for income and education were consid-
ered as separate categories in these models due to the large number of
participants who refused to answer these two questions. Based on exten-
sive initial investigations of these data on the relationship of smoking and
cancer, it was decided to categorize smoking into never smokers, four
groups of former smokers based on years since last smoked, and four
groups of current smokers based on pack-years.

Initial log-odds plots and lowess smoothing of the data showed a clear
non-linear relationship between case-control status and radon exposure.
Several analytical methods were considered to model this non-linear
dose-response relationship, including categories of radon exposure, nat-
ural or cubic spline terms, linear spline terms, and polynomial functions.
Results of regression models that quantified radon exposure with a cate-
gorical variable and models that considered natural spline terms have
been previously reported (Thompson et al. 2008). In the current paper,
additional results that include those based on the linear spline model and
polynomial functions are presented.

RESULTS

A detailed description of differences in radon exposure and other
covariates between the cases and controls has been previously reported in
Thompson et al. (2008). In summary, cases had a mean (sd) exposure
equal to 67.5 (118.5) Bq m-3, slightly higher than that of controls who had
a mean (sd) radon exposure of 66.3 (65.2) Bq m-3. However, when one
outlier at 1511 Bq m-3 was removed, the cases were found to have a mar-
ginally statistically significant lower mean exposure than controls: 66.3 Bq
m-3 for controls versus 60.2 Bq m-3 for cases (p = 0.047 based on the two-
sample t-test of the natural log of exposure). The median exposure for
controls (= 50.1 Bq m-3) was also statistically higher than the median for
cases (= 43.7 Bq m-3 , p = 0.039 based on the Kruskal-Wallis test). The low-
est radon exposure seen at the study site was 4.4 Bq m-3.

Given the matched design of the study, no differences between cases
and controls were seen in terms of gender or age. However, statistically
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significant differences were found for the other measured covariates (see
Table 1). In general, cases tended to spend fewer years in the current
home, be less educated, have less household income, and have more
occupational exposure to known or potential carcinogens than controls.
Cases had a mean (sd) years of residency equal to 28.5 (12.1) versus a
mean (sd) of 30.6 (12.1) years for controls, a difference that is marginal-
ly significant (p = 0.049). Twenty percent of cases had at least some col-
lege education, nearly half that of controls (41.6% obtaining this educa-
tional level). In contrast, 33.5% and 19.4% of cases and controls, respec-
tively, had less than a high school education (unadjusted OR [ 95% CI] =
0.22 [0.13, 0.38] with < H.S. as the reference group and p < 0.001).
Similarly, about 48% of controls and 29% of cases had household
incomes ≥ $30,000 per year, giving an unadjusted OR [95% CI] = 0.37
[0.23, 0.60] (income < $30,000 per year as the reference group and p <
0.001). Finally, there was nearly a two-fold increase in cancer risk among

R. E. Thompson

64

TABLE 1: Statistical associations between lung cancer risk with radon exposure, smoking status,
and demographic variables based on the unvariate conditional logistic regression model. 

Variable Cases/Controls Odds Ratioa 95% CI

Radon Exposure (Bq m-3)
< 25 57/70 1.00 Reference
25 – < 50 60/127 0.53 [0.32, 0.87]d

50 – < 75 34/89 0.45 [0.26, 0.77]d

75 – < 150 34/86 0.44 [0.25, 0.77]d

150 – < 250 8/18 0.49 [0.19, 1.28]
≥ 250 7/7 1.20 [0.40, 3.59]

Smoking
Never Smoked 15/162 1.00 Reference
Last Smoked 3–5 y-1 20/13 17.66 [6.25, 49.87]e

Last Smoked 6–10 y-1 22/16 19.50 [6.83, 55.69] e

Last Smoked 11–15 y-1 15/31 6.12 [2.33, 16.11] e

Last Smoked > 15 y-1 23/136 2.09 [0.92, 4.75] c

Smoker 5–30 Pack-y 15/12 10.75 [3.53, 32.69] e

Smoker 30–50 Pack-y 40/12 50.23 [17.83, 141.49] e

Smoker 50–60 Pack-y 16/7 49.26 [13.50, 179.75] e

Smoker > 60 Pack-y 34/8 68.39 [21.80, 214.56] e

Incomeb ($ y-1)
< 30,000 109/159 1.00 Reference
≥ 30,000 58/190 0.37 [0.23, 0.60]e

Educationb

< High School 67/77 1.00 Reference
High School Graduate 90/149 0.66 [0.43, 1.01]c

At Least Some College 40/165 0.22 [0.13, 0.38]e

Total Job Exposure (y)
0 134/290 1.00 Reference
1 – 9 25/52 1.07 [0.63, 1.81]
≥ 10 41/55 1.74 [1.07, 2.85]d

a ORs and 95% CIs obtained from univariate conditional logistic regression b Refusals removed
c p ≤ 0.1 d p ≤ 0.05 e p ≤ 0.001



study participants with ten or more years of occupational exposure to
harmful compounds as compared to those subjects with no such expo-
sure, a result that is statistically significant (unadjusted OR [95% CI] =
1.74 [1.07, 2.82], p = 0.027). Of the covariates listed above, only educa-
tion level remained a statistically significant risk factor for cancer in the
multivariable model.

Not surprisingly, current and former smokers in the study were at a
much higher risk for lung cancer as compared to never smokers. Only 15
out of 200 lung cancer cases in the study were never smokers. A highly sta-
tistically significant trend, as determined by the STATA command
‘tabodds’, towards increased lung cancer risk was seen among current
smokers as the number of pack-years of smoking increased (see Table 1,
p< 0.001). Current smokers with a smoking history of between 5 and 30
pack-years had an almost 11-fold increase in cancer risk as compared to
never smokers, while those smokers with more than 60 pack-years showed
a 68-fold increase in cancer risk as compared to never smokers. Among
former smokers, an increased risk of cancer was detected as the number
of years since last smoked decreased. Those with between 3 to 5 years
since last smoked were found to have an 18 fold increase in cancer risk,
while former smokers with more than 15 years since last smoked exhibit-
ed a two-fold increase in risk when the odds of cancer for both groups
were normalized by the never smokers category. However, the unadjust-
ed odds ratio for former smokers with more than 15 years since last
smoked was not statistically different from one, demonstrating no signifi-
cant increase in cancer risk for this group when compared to never smok-
ers (unadjusted OR [95% CI] = 2.09 [0.92, 4.75]).

In terms of the association between cancer status and radon expo-
sure, exploratory lowess smoothing plots using locally weighted regres-
sion models on the log-odds of cancer against radon exposure demon-
strated a strong non-linear dose-response relationship (see Figure 1).
Initially, this non-linearity was modeled by considering radon exposure as
a categorical variable and through the use of natural, cubic spline terms–
methods that are described in detail elsewhere (Thompson et al. 2008).
The use of linear spline terms in the regression analysis (e.g. the ‘broken
arrow’ regression) allows for modeling the dose-response relationship
with linear slopes that can shift in value at given ‘knots’ or inflection
points. Modeling the data with a polynomial function has the advantage
over the cubic spline model in that it allows for easier calculations of the
adjusted odds ratios, and gives a dose-response curve as an easy-to-inter-
pret mathematical function of exposure.

As shown in Figure 1, an investigation of the lowess smoothing sug-
gests that a shift in the dose-response relationship between lung cancer
risk and radon exposure exists between approximately 50 and 150 Bq m-

3. In order to find the optimal knot, several regression analyses were per-
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formed that allowed the inflection point to shift in unit increments from
50 to 200 Bq m-3. The model that maximized the log-likelihood function
then determined the optimal knot location. The result of this method
suggested a linear spline model with an inflection point at a radon expo-
sure of 70 Bq m-3 would best fit the data (see Figure 2). Mathematically,
this model is of the form:

[Eq. 1]

where X is the radon concentration (exposure) in Bq m-3, (X – 70)+ = 0
for X ≤ 70 Bq m-3 and = X – 70 for X > 70 Bq m-3, while the Zj terms rep-
resent addition variables controlled for in the model. Note that for logis-
tic models conditioned on case-control clusters used in this analysis, the
coefficient term β0 in Equation 1 is not estimated by the regression algo-
rithm. Further considerations of a possible second inflection point at
between 150 and 200 Bq m-3 did not produce a better fit to the data based
on adjusted R2 values of these extended models.

From Equation 1 above, the adjusted odds ratio for radon concentra-
tions ≤ 70 Bq m-3 (X) as compared to a given reference value (X0) can be
estimated by

, [Eq. 2]

while for X > 70 Bq m-3 and X0 ≤ 70, the AOR is given as

. [Eq. 3]

logit = + + − ++

=

∑β β β β0 1 2

3

70X X Zj j

j

p

( )

AOR = −exp[ ˆ ( )]b X X1 0

AOR = − + −exp[ ˆ ( ) ˆ ( )]b X X b X1 0 2 70
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FIGURE 1: Lowess smoothing average of cases and controls. Points near the top of the plot repre-
sent cases while those at the bottom represent the controls. These points have been jittered to better
show the distribution of cases and controls as a function of radon exposure. 



In Equations 2 and 3, and are the estimated values for the
parameters β1 and β2 in Equation 1. The values for and , along with
their corresponding standard errors (SE), were found to be -0.016
(0.0070) and 0.018 (0.0077), respectively, in the conditional logistic
regression model that controlled for smoking status, years of residence in
the home, years of occupational exposure to possible carcinogens, and
education and income status.

Given the negative value of -0.016 for and setting X0= 4.4 Bq m-3,
the lowest radon concentration measured in the study, Equation 2 pre-
dicts an approximate 65% reduction in the odds of cancer for a hypo-
thetical exposure at 70 Bq m-3 as compared to a hypothetical exposure at
this baseline value, a result that is statistically significant (AOR [95% CI] =
0.35 [0.14, 0.85], p = 0.021). Furthermore, even though the model pre-
dicts a shift in the dose-response curve at 70 Bq m-3, exposure values
much higher than this inflection point give a decreased odds of cancer as
compared to the baseline radon concentration. In fact, solving Equation
3 for values of X that correspond to an AOR ≥ 1.0 and setting X0 = 4.4 Bq
m-3 predicts a decreased risk up to an approximate exposure of 545 Bq m-3.
However, given the standard errors associated with and , this
decreased risk becomes statistically insignificant for exposure values ≥ 157
Bq m-3 (e.g. AOR [95% CI] = 0.42 [0.180, 1.00], p = 0.049, for 157 Bq m-3

v. 4.4 Bq m-3). Conversely, a decrease in radon exposure in the home from
4.4 Bq m-3 to 0 Bq m-3 would result in a statically significant predicted
increased cancer risk of approximately 7% (e.g. AOR [95% CI] = 1.07
[1.01, 1.14], p = 0.021, for 0 Bq m-3 v. 4.4 Bq m-3).

b̂2b̂1

b̂2b̂1

b̂2b̂1

b̂1
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FIGURE 2: Linear spline model superimposed on lowess smoothing of the data. Data are given on
the logit (e.g. log odds) scale. 



When considering a polynomial fit to the dose-response curve, a logis-
tic model using a two-term polynomial incorporating square root and nat-
ural log functions of radon exposure was found to best fit the data from
among all polynomial models with two power terms as determined by the
Stata command ‘fracpoly’. This logistic model is given in the form:

[Eq. 4]

where X is the radon concentration (exposure) in Bq m-3. This mathe-
matical relationship for the dose response curve is depicted graphically in
Figure 3. The estimates and corresponding standard errors for the
parameters β1 and β2 were found to (se) = -0.708 (0.344) and (se)
= 0.102 (0.052) while controlling for smoking status, years of residence in
the home, years of occupational exposure to possible carcinogens, and
education and income status.

Again, for conditional logistic regression, the parameter β0 is not esti-
mated. Polynomial models with three and four power terms that consid-
ered combinations of cubic functions of radon exposure and cubic func-
tions for the natural log of radon exposure in addition to the power terms
given in Equation 4 were also considered. However, these higher dimen-
sional polynomial models did not improve the fit of the data as deter-
mined by the likelihood-ratio test. As a comparison with the linear spline
model, again consider a person with a hypothetical exposure of 70 Bq m-

3. Under Eq. 4, this person would have a predicted AOR [95% CI] = 0.32
[0.11, 0.90] as compared to the reference exposure of 4.4 Bq m-3, a result
that is statistically significant (p = 0.030). Table 2 gives more comparisons
of the predicted AORs for these two models alongside those predicted

logit = + + ⋅β β β0 1 2X X (X)ln

b̂2b̂1
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FIGURE 3: Polynomial model superimposed on lowess smoothing of the data. Data are given on the
logit (e.g. log odds) scale. 



from the cubic spline and categorical models as presented in Thompson
et al. (2008).

DISCUSSION

Inspection of Table 2 reveals that there is a great deal of consistency
in the predicted odds of risk across all models among the exposures that
range between 50 and 150 Bq m-3. For example, the cubic spline, linear
spline, and polynomial models predict an AOR [95% CI] = 0.35 [0.12,
1.04], 0.39 [0.18, 0.87], and 0.33 [0.12, 0.90], respectively, for radon
exposure at 62.5 Bq m-3 as compared to an exposure of 4.4 Bq m-3. The
biggest difference in these predicted values is that the cubic spline model
trends towards statistical significance, while the AORs from the other two
models are statistically significant at the α = 0.05 level. Similarly, the cate-
gorical radon model (Model 1) predicts an AOR [95% CI] = 0.31 [0.13,
0.73] for exposures between 50 and < 70 Bq m-3 as compared to the ref-
erence group of < 25 Bq m-3.

Greater deviance is seen between models when looking at the expo-
sure values at the extremes. The largest exposure considered in Table 2
was 880.5 Bq m-3, a value chosen as the approximate mid-value between
the 250 Bq m-3 cut-point and the largest measured radon concentration
observed in the study (1511 Bq m-3). At this radon exposure, the cubic
spline, linear spline, and polynomial models predict an AOR [95% CI] =
0.47 [0.11, 2.04], 2.07 [0.14, 31.6], and 1.81 [0.11, 29.1], respectively, as
compared to the reference exposure. AORs at this high exposure value
predicted from these three models are statistically non-significant. The
categorical radon model gives an AOR [95% CI] for those with ≥ 250 Bq
m-3 exposure compared to the reference group of < 25 Bq m-3 = 2.50
[0.47, 13.46]. This result is comparable to that seen in the linear spline
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TABLE 2: AORs (95% CI) given by radon categories while controlling for smoking, residency, job
exposure, income, and education (Model 1). Model 2 quantifies exposure with natural cubic spline
terms (2 degrees of freedom), Model 3 quantifies exposure with linear splines, and Model 4 quanti-
fies exposure with a polynomial function (2 degrees of freedom). 

Model 1 Model 2 Model 3 Model 4 
AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI)

<25 1.00 (Reference) 0.75 (0.55, 1.03)a,b 0.88 (0.79, 0.98)i,a,b 0.65 (0.44, 0.96)i,a,b

25–< 50 0.53 (0.24, 1.13)h 0.39 (0.14, 1.07)h,c 0.59 (0.37, 0.92)i,c 0.40 (0.18, 0.91)i,c

50–< 75 0.31 (0.13, 0.73)i 0.35 (0.12, 1.04)h,d 0.39 (0.18, 0.87)i,d 0.33 (0.12, 0.90)i,d

75–< 150 0.47 (0.20, 1.10)h 0.35 (0.13, 0.99)i,e 0.38 (0.16, 0.91)i,e 0.29 (0.09, 0.90)i,e

150–< 250 0.22 (0.04, 1.13)h 0.36 (0.12, 1.10)h,f 0.46 (0.19, 1.12)h,f 0.29 (0.08, 1.01)h,f

≥ 250 2.50 (0.47, 13.46) 0.47 (0.11, 2.04)g 2.07 (0.14, 31.6)g 1.81 (0.11, 29.1)g

a Reference value at 4.4 Bq m-3 b12.5 Bq m-3 v. 4.4 Bq m-3, c 37.5 Bq m-3 v. 4.4 Bq m-3,
d 62.5 Bq m-3 v. 4.4 Bq m-3, e 112.5 Bq m-3 v. 4.4 Bq m-3, f 200 Bq m-3 v. 4.4 Bq m-3,
g 880.5 Bq m-3 v. 4.4 Bq m-3, h p ≤ 0.1, i p ≤ 0.05.



model and, to a lesser extent, that of the polynomial model. Based on this
comparison, it is evident that the cubic spline model with only two
degrees of freedom fails to adequately fit these data at the higher radon
concentrations, suggesting that a cubic spline model with greater degrees
of freedom and hence more flexibility might provide a better fit of the
dose-response curve at these higher exposure values.

Before comparing in depth the results of the Worcester data with
those of other radon studies, first consider the estimated slopes obtained
from the North American sites considered by Krewski et al. (2006) as
depicted in Figure 4. The length of the lines in this plot corresponds to
the range of the measured radon exposures seen for each study. Because
these studies used the LNT model to estimate AORs and the current
study did not, results from Worcester data are not included in this plot.
The important point to note from this figure is the large amount of vari-
ability in the obtained AOR slopes that define the lung cancer-radon
dose-response relationship. By pooling these studies, Krewski et al. (2006)
are making the implied assumption that all the measured odds ratios esti-
mate the true underlying risk and that deviations from this ‘truth’ are due
to random variability. However, given the variability in measured risks as
seen in Figure 4, is it possible that there are some underlying, unknown
mechanisms that might be causing this variability? Could these differ-
ences in dose-response relationships represent actual differences and not
just be due to random noise? Is it possible that the underlying mechanism
is due to low LET exposures that are activating adaptive biological
responses and leading to various degrees of protection against the dam-
ages to the lung tissue from exposure to LET alpha radiation? Or in cases
where a site might have high radon exposure and small doses of low LET,
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FIGURE 4: Slopes of estimated lung cancer risk as a function of radon exposure based on the LNT
model for the North American sites considered by Krewski et al. (2006). The length of these lines rep-
resents the range of radon exposures observed for each study. 



is it possible that the adaptive responses are being suppressed, resulting
in large odds of cancer risk at these higher doses of radon exposure?

In considering this hypothesis, it is noteworthy that the dose-response
relationship between cancer and radon exposure from the Worcester
data is very similar in shape to that predicted from the stochastic HRR
model as described in Scott et al. (2009) and reproduced here as Figure 5.
At the very least, the striking hormetic ‘dip’ seen from the Worcester data
raises the possibility that some underlying mechanism present at this site
might be activating an adaptive response that becomes suppressed at the
higher values of radon exposure. The fact that there are few study partic-
ipants at the Worcester site with large measured radon values also sug-
gests the possibility that there is a lack of power to accurately estimate the
dose-response relationship in the ‘linear zone’ and / or ‘transition zone
B’— hence the positive but non-statistically significant estimate of for
radon exposure > 70 Bq m-3 in Equation 1 above.

Possible additional support for the hypothesis of regional variability
in activation of adaptive responses is given by the fact that data from
Connecticut and New Jersey, study sites examined by Krewski et al. (2006)
that are geographically the closest to Worcester County, Massachusetts,
also show a trend towards a decreased risk of cancer at intermediate doses
of radon, as compared to the respective baseline exposures in these stud-
ies. Table 10 in Krewski et al. (2006) gives an AOR [95% CI] per 100 Bq
m-3 = 0.89 [0.56, 2.34] at the New Jersey site when the data are restricted
to those study participants with ≤ 2 residences and ≥ 20 years with α-track
air monitors. It is worth noting that the AOR is greater than one when all
the data are considered (AOR [95% CI] per 100 Bq m-3 = 1.56 [0.78,
2.97]). However, even these complete data give an estimated lung cancer

b̂2

Epidemiological Evidence for Possible Radiation Hormesis

71

FIGURE 5: Graphic depiction of the stochastic hormetic relative risk model as given in Scott et al.
(2009). 



risk for those in the 100-149 Bq m-3 exposure range that is half that of
those in the reference exposure group of < 25 Bq m-3 (AOR [95% CI] =
0.49 [0.11, 2.32]; see Table 9 in Krewski et al. 2006). For the complete
data from the Connecticut study as given in Table 9 of Krewski et al.
(2006), those in the exposure range of 75 to < 100 Bq m-3 have a predict-
ed AOR [95% CI] = 0.62 [0.31, 1.24] when compared to baseline expo-
sure. When the data are restricted to participants with ≤ 2 residences and
≥ 20 years with α-track air monitors, the adjusted odds ratio for this expo-
sure category moves closer to unity, but is still less than 1 (AOR [95% CI
] = 0.78 [0.31, 1.94]). It is also noteworthy that both the New Jersey and
Connecticut sites had the lowest mean concentrations seen among the
Krewski et al. (2006) studies, with the average concentrations among the
New Jersey and Connecticut study subjects at 26 Bq m-2 and 33 Bq m-3,
respectively.

Finally, when comparing the results of the Worcester data to those
data presented in Krewski et al. (2006), it is worth examining the Iowa
data in greater detail. From sensitivity analyses performed by these inves-
tigators, it is clear that the significant positive linear slope in cancer risk
is driven entirely by the Iowa results. When the data from this study are
removed, the overall AOR per 100 Bq m-3 is reduced from 1.18 to statisti-
cally non-significant value = 1.13 (95% CI = 0.98, 1.41) for the restricted
data. Subjects in the Iowa study had an overall estimated mean radon
exposure of 127 Bq m-3, second only to Winnipeg among the Krewski et
al. (2006) studies, and approximately twice that seen among the
Worcester study participants. 

Due to high radon concentrations present in Iowa, subjects were
assumed to have background exposures of between 7.4 Bq m-3 and 56 Bq
m-3 based on outdoor concentrations observed among the 111 geo-
graphic sampling sites in the state, giving a mean background exposure
rate of 30.3 Bq m-3 for this study (Field et al. 2000). Background radon
exposure in the Worcester area was < 10 Bq m-3 and was thought to be suf-
ficiently low as to be ignored. Furthermore, as noted by Table 9 in
Krewski et al. (2006), no participants in the Iowa study had a total radon
exposure < 25 Bq m-3, and only about 34.5% of cases and 34.9% of con-
trols had radon exposures < 75 Bq m-3. In contrast, a total of 437 subjects
or 73.2% in the Worcester study had radon exposures < 75 Bq m-3. The
LNT model from the Iowa data produced a statistically significant AOR
[95% CI] per 100 Bq m-3 = 1.44 [1.05, 2.59] when all the data in the study
are considered (see Table 9 of Krewski et al. 2006). 

Taken together, the contrasts listed above between the Iowa and the
Worcester studies suggest the possibility that data from each study are esti-
mating lung cancer risk at different zones of the HRR dose-response
curve. Perhaps the higher radon exposures seen in the Iowa data are such
that the low LET adaptive responses are silenced and the Iowa data are
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providing an accurate estimate of the dose-response relationship in the
‘transition zone B’ and / or the ‘linear zone’. Furthermore, is it possible
that for exposure values ≥ 70, Equation 1 is also estimating the dose
response in the ‘transition zone B’ and / or ‘linear zone’, although in the
log odds domain and with much less power than the Iowa study due to a
smaller number of study participates with large exposures? As a way of
comparison between the Iowa results and the linear spline model for X ≥
70 Bq m-3 in the Worcester data, consider what happens if the reference
point of X0 = 4.4 Bq m-3 in Equation 3 is replaced with X0 = 70 Bq m-3, the
inflection point in the dose-response relationship. For this new reference
value, the predicted AOR [95% C] per 100 Bq m-3 (e.g 170 Bq m-3 v. 70
Bq m-3) = 1.25 [0.88, 1.77], p = 0.221) for the Worcester study partici-
pants. It should be noted that the LNT model used in the Krewski et al.
(2006) study to analyze the Iowa data gives a linear slope in the AOR
domain, while the logit model used for the Worcester data is linear in the
log(AOR) domain. Nevertheless, the remarkable consistency between the
estimated AOR per 100 Bq m-3 from both the Iowa data and the Worcester
data for exposures ≥ 70 Bq m-3 provides possible support for the above
hypothesis. Research further testing this hypothesis could begin by apply-
ing the HRR model as currently proposed by Scott et al. (2009) to both
the Iowa and Worcester data.

In contrast to the dose-response relationship at high exposures, is it
possible that the Worcester radon concentration data < 70 Bq m-3 are pri-
marily estimating the cancer risk in the ‘zone of maximal protection’?
And, is it possible that the lowest radon concentrations seen in the Iowa
study lie in the ‘zone of maximal protection’, causing a ‘shift’ in the back-
ground exposure such that an overall positive increase in risk is seen as
the higher exposures in the ‘linear zone’ are compared to a reference
value somewhere in this ‘zone of maximal protection’? Furthermore, is it
also possible that the lower radon values seen in the Worcester data lie in
the ‘transition zone A’, which would then produce a decreased risk for
the majority of the higher exposure data that happen to lie in the ‘zone
of maximal protection’? These questions need to be seriously considered
and evaluated if the hypothesis that regional differences in adaptive
responses on an ecological level account for the various risk estimates
among the several radon studies conducted.

CONCLUSION

Data are presented here from a case-control study of radon and lung
cancer conducted in Worcester County, Massachusetts, that suggest the
possibility that radio-adaptive responses on a human scale are active and
present in the population under study. Differences in regional activation
of adaptive responses provide an underlying mechanism that could
explain the variable risk estimates seen among the several radon case-con-
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trol studies conducted over the past two decades. Of course, the possibil-
ity can not be discounted that the decreased risk of cancer as exposure
increases as seen in the Worcester study, along with other studies that
have shown a decreased cancer risk from radon, are simply due to ran-
dom variations.

In order to thoroughly test the hypothesis that radio-adaptive
response can be detected at the ecological level and are possibly mitigat-
ing the harmful effects of radon, further case-control studies need to be
conducted that accurately measure and assess both the low LET ambient
exposure as well as the high LET alpha radon exposure of a population
under study. However, several questions arise about such studies. First,
given the great deal of variability in human biology as well as the compli-
cated biological processes that lead to cancer, is it even possible to detect
the ‘signals’ of adaptive responses above the ‘noises’ present at the eco-
logical level? Second, is it possible to accurately quantify the sum total of
all the alpha, beta, and gamma radiation exposures experienced by any
one human population given the multitude of sources of both low and
high LET radiation? And finally, how would a study of this nature be pow-
ered? And are there adequate sources of in vivo data to provide the basis
for such power calculations? Nevertheless, such questions and challenges
need to be answered before the mechanisms, actions and effects of radio-
adaptive responses at the human and ecological levels are truly under-
stood.
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