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Abstract
Non-opioid analgesics including both selective and non-selective cyclooxygenase (COX) inhibitors
and acetaminophen are the most widely used treatments for pain. Inhibition of COX is thought to be
largely responsible for both the therapeutic and adverse effects of this class of drugs. Accumulating
evidence over the past two decades has demonstrated effects of non-opioids beyond the inhibition
of COX and prostaglandin synthesis that might also explain their therapeutic and adverse effects.
These include their interaction with endocannabinoids, nitric oxide, monoaminergic, and cholinergic
systems. Moreover, the recent development of microarray technology that allows the study of human
gene expression suggests multiple pathways that may be related to the analgesic and anti-
inflammatory effects of non-opioids. The present review will discuss the multiple actions of non-
opioids and their interactions with these systems during inflammation and pain, suggesting that COX
inhibition is an incomplete explanation for the actions of non-opioids and proposes the involvement
of multiple selective targets for their analgesic, as well as, their adverse effects.
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INTRODUCTION
Non-opioid analgesics are among the most widely used medications due to their efficacy for
a wide range of pain and inflammatory conditions. In the United States alone, over 172 million
prescriptions for cyclooxygenase (COX) inhibitors (both selective and non-selective) were
dispensed in the year 2004 [1]. Inhibition of prostaglandin (PG) synthesis has been widely
accepted since the 1970s as the mechanism underlying the pharmacological actions of both the
therapeutic and adverse effects of this group of drugs. The application of new molecular-genetic
technologies to classic analgesic paradigms has resulted in compelling evidence to question
the unitary COX-inhibition hypothesis of non-opioids. We review here evidence that suggests
alternative mechanisms of non-opioids actions that may hold promise for new strategies for
analgesic drug development.
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IS INHIBITION OF PROSTAGLANDIN SYNTHESIS THE SOLE MECHANISM
UNDERLYING THE PHARMACOLOGICAL ACTIONS OF NON-OPIOID
ANALGESICS?

The inhibition of PG synthesis has been reported in almost every study that has used a non-
opioid. We have shown in several studies a temporal association between decreased PGE2
levels at the site of extraction in the oral surgery model of acute inflammatory pain and the
analgesic effects of NSAIDs and coxibs [2–4]. However, observations dissociating the
analgesic and the anti-inflammatory activities of non-opioids have also been reported. At
analgesic doses, sodium salicylate does not inhibit urinary excretion of PGE2 or PGI2
metabolites in human volunteers [5]. Furthermore, though the COX inhibitory activities of
salicylate and acetylsalicylic acid (ASA; aspirin) differs markedly [6], they show similar anti-
inflammatory potencies [7]. The same discrepancy applies to R- and S-enantiomers of
flurbiprofen, without possible explanation based on pharmacokinetics or chiral inversion.
While S-flurbiprofen has anti-inflammatory activity and inhibits PGE2 synthesis, R-
flurbiprofen at equianalgesic doses is devoid of both properties [8]. Furthermore, a meta-
analysis reported that the analgesic efficacy of different non-opioids in the clinical dental pain
model, does not correspond to the degree of inhibition of PG synthesis in vitro [9], which
suggests that other molecular mechanisms contribute to the analgesic effects of NSAIDs.

The introduction and eventual recognition of an increased risk of cardiovascular adverse effects
attributed to selective COX-2 inhibitors [10] also challenges the COX-inhibition hypothesis.
It was proposed that selective COX-2 inhibitors, in contrast to non-selective ones, affect the
balance between prothrombotic and anti-thrombotic eicosanoids, thereby shifting the balance
to a prothrombotic state [11]. However, to date, this proposed mechanism of cardiovascular
risk has not been confirmed [12]. In fact, several findings argue against this assumption. In
healthy volunteers, therapeutic doses of rofecoxib that are known to inhibit vascular PGI2
production, do not result in significant changes in endothelial vasodilator responses [13]. In
another clinical study, rofecoxib neither affected the levels of both PGI2 and thromboxane
A2 metabolites, nor did it have an effect on bleeding time, platelet aggregation or thrombin
generation after 7 days of treatment in an ex-vivo model of microvascular injury [14]. Further,
internal mammary and radial arteries and saphenous veins donated by individuals with ongoing
cardiovascular disease (during standard coronary artery bypass surgery) showed detectable
levels of COX-1 but not COX-2 [15]. Interestingly, in bovine aortic endothelial cells,
prostacyclin synthase and COX-1 were colocalized to the nuclear envelope and endoplasmic
reticulum. However, there was a lack of colocalization of COX-2 with prostacyclin synthase
[16]. Taken together, these studies argue against the role of vascular COX-2 in PGI2 mediated
vasodilation. Recent epidemiologic reports suggest that cardiovascular risk associated with
COX-2 inhibitors extends to some non-selective NSAIDs and to acetaminophen, particularly
with higher doses or higher frequency of use [17], further lack of evidence for COX-2 mediated
imbalance resulting in a prothrombotic state.

The recent development of microarray technology allows study of gene expression across the
whole human genome, adding further possibilities to explore drug effects. We have recently
shown in two different studies [18,19] the effect of both ibuprofen and rofecoxib on gene
expression in the oral surgery model of acute inflammatory pain. Both drugs induce over 3-
fold up-regulation of more transcripts than did the placebo 48 hours after surgery. Among the
upregulated genes identified in these studies are interleukin-6 (IL-6), suppressor of cytokine
signaling 3 (SOCS3), and matrix metalloproteinases (MMPs), which we will discuss in detail
here. Taken together, it appears plausible that multiple mechanisms contribute to non-opioids’
therapeutic and adverse effects. Indeed COX-independent mechanisms have been reported for
the antiproliferative and antineoplastic effects of NSAIDs and coxibs [20,21]. The present

Hamza and Dionne Page 2

Curr Mol Pharmacol. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



review will focus on the interaction of non-opioids with endocannabinoids, nitric oxide (NO)
and monoaminergic and cholinergic pathways in relation to their analgesic effect, and their
effect on IL-6 and MMPs regulation.

ENDOCANNABINOID SYSTEM AND ITS RELATION TO NON-OPIOIDS
Cannabinoids, including endogenous ones, have been implicated in the modulation of a large
number of behavioral processes, including pain and inflammation [22,23]. Anandamide
(AEA), the amide of arachidonic acid (AA) with ethanolamine and 2-arachidonyl glycerol (2-
AG) are the most widely studied endocannabinoids, even though several other have been
identified. The synthesis, release and metabolism of endocannabinoids have been discussed in
detail elsewhere [24,25]. Important targets in the metabolism of endocannabinoids are AEA
membrane transporter (AMT), which facilitates the transport of AEA into the cells [26] to be
hydrolyzed by fatty acid amidohydrolase enzyme (FAAH) [27,28]. AEA may also be
metabolized by COX-2 and to a less extent COX-1 into PGE2-ethanolamide. However, AEA
is a significantly poorer substrate than AA for COX-2. 2-AG is selectively metabolized by
COX-2 at a much higher rate than AEA and the products of its oxygenation closely parallel
those for AA oxygenation [29,30].

The involvement of endocannabinoids in the analgesic anti-inflammatory effects of non-
opioids is suggested by both in vitro and in vivo evidence. In a macrophage cell line,
indomethacin induced AEA synthesis in the presence of a calcium ionophore [31]. In vivo,
ibuprofen and rofecoxib injected with AEA increased the levels of the endocannabinoids AEA,
oleoylethanolamide and palmitoylethanolamide in inflamed paw tissues. Interestingly, higher
levels were produced by rofecoxib. Paw level of AEA was also elevated non-significantly after
injection of either ibuprofen or rofecoxib alone. [32].

As shown in Fig. (1), the increase in endocannabinoids levels following non-opioids treatment
could be explained based on either: 1) the inhibition of their metabolism by FAAH; several
non-opioids, including indomethacin, ibuprofen and flurbiprofen, inhibit the activity of FAAH
[33–35], particularly at low pH [35–37], often a characteristic of the site of inflammation. 2)
Inhibition of their oxidative metabolism by COX-2; at least in vitro COX-2 can metabolize
AEA [30]. 3) Increase endocannabinoid synthesis as a result of shunting of free AA away from
PG synthesis [38,39]. 4) In case of acetaminophen after being metabolized into N-
acylphenolamine (AM-404) in the brain and spinal cord, inhibition of the cellular uptake of
AEA thus preventing its inactivation and enhancing its potency [40]. 5) Inhibition of NO
synthesis and thus inactivating the endocannabinoid transporter [41,42].

In vivo studies support the involvement of endocannabinoids in the analgesic and anti-
inflammatory effects of non-opioids. The selective cannabinoid CB1 receptor (CB1) antagonist
AM-251 antagonizes the antinociceptive activity of indomethacin in the mouse formalin test
and zymosan-induced heat hyperalgesia [38] and that of flurbiprofen in the rat formalin test
[39]. Other observations supporting the role of endocannabinoids include: 1) failure of
intrathecal indomethacin to induce an antinociceptive effect in CB1-receptor knockout mice
[38]. 2) Both ibuprofen and rofecoxib induce a synergistic antinociceptive effect when injected
with AEA into the rat paw before the formalin test and CB1 and CB2 antagonists completely
antagonize their effects [32,43]. 3) The 6-methyl-pyridin-2-yl analogue of ibuprofen, which is
equipotent as a COX inhibitor yet more potent as FAAH inhibitor [44] was more efficacious
than ibuprofen in the acetic acid writhing test [45]. 4) The CB1 receptor antagonists (AM-281
and SR141716A) prevent the analgesic effects of acetaminophen in the hot plate test [46], and
the CB1 receptor antagonist AM-251 blocks the antinociceptive effect of acetaminophen in the
mouse formalin test*. Where not all studies show reversal of non-opioids antinociceptive
effects after CB1 receptor blockade [47,48], the discrepancy might be due to the differences
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in pain models used. The preponderance of evidence is strongly suggestive that
endocannabinoids contribute to the analgesic effects of non-opioids.

NON-OPIOIDS AND MONOAMINERGIC PATHWAYS
The antinociceptive effects of non-opioids might also be related to their effects on the
monoaminergic pathways, namely the noradrenergic and the serotonergic systems.

The Serotonergic System and its Relation to Non-Opioids
The regulation of spinal nociceptive processing by serotonin (5-HT) may induce facilitation
or inhibition of nociception due to the different classes of 5-HT receptors and their location on
facilitating (primary afferent fibers, projection neurons, excitatory interneurons) and
attenuating (inhibitory interneurons) neurons in the superficial laminae of the spinal cord
[49].

The involvement of the serotonergic system in the antinociceptive effects of non-opioids has
been extensively studied. In rats, ASA increases 5-HT content in the cerebral cortex and pons
[50,51], as does acetaminophen in the striatum, posterior cortex, hypothalamus, hippocampus
and brain stem but not the spinal cord of rats [52]; while rofecoxib increases 5-HT in the frontal
cortex [53]. Lysine ASA increases concentrations of 5-hydroxyindole acetic acid, in several
areas of the brain in rats [54]. This increase in 5-HT levels is accompanied by down-regulation
of 5-HT2 receptors expression in several studies [50,51,53]. Furthermore, administration of
acetaminophen for 15 days results in a dose-dependent downregulation of the 5-HT2A receptor
in the frontal cortex of rats. These effects were accompanied by an increase in 5-HT levels in
platelets [55], which might reflect a parallel change in 5-HT level in the central nervous system
[56].

The increase in 5-HT in acetaminophen-treated rats is not due to increased synthesis since
quantitative determination of 5-hydroxytryptophan accumulation after aromatic L-amino acid
decarboxylase blockade showed no changes, nor does the increase in 5-HT is due to blockade
of its catabolizing enzyme, MAO A, as 5-hydroxyindoleacetic acid levels do not decrease
concomitantly with the increases in 5-HT levels [52]. In vitro, acetaminophen exerts no direct
effect on MAO A activity. It increases K+-evoked [3H]5-HT overflow from slices of the
posterior cortex, but not the striatum, the brain stem or the hypothalamus, eliminating the
possibility that changes in 5-HT release/reuptake might account for the increased levels of 5-
HT in these areas [52].

In vivo studies support the involvement of a central serotonergic mechanism in the
antinociceptive activity of non-opioids. Depletion of central 5-HT antagonizes the
antinociceptive activity of ASA, acetaminophen, diclofenac, ketoprofen, metamizol,
acetaminophen, piroxicam, meloxicam and rofecoxib in several pain models [53,57–59].
Furthermore, the analgesic effect of ASA is enhanced by central administration of either 5-HT
or its precursor 5-hydroxytryptophan [57]. There is considerable controversy on identifying
the role of different 5-HT receptor subtypes in the mechanism of action of acetaminophen, e.g.
[60–62]. Recently, Pickering et al. [63] reported the reversal of the analgesic effect of
acetaminophen by the 5-HT3 antagonists, tropisetron or granisetron in a pain self-evaluation
test based on the electrical stimulation of the median nerve in man. At least in case of
acetaminophen, central serotonergic effects appears to be primarily supraspinal [64]. Since
acetaminophen possesses no binding affinity to any type of 5-HT receptor or transporter [65],
a direct effect on 5-HT receptors or transporters is unlikely and the exact mechanism of

*Hamza, M. Role of transient receptor potential vanilloid-1 (TRPV1) and cannabinoid CB1 receptors in paracetamol induced
antinociception and hypothermia in mice. FASEB J. 2008, 22, 1125.11.
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acetaminophen effects on 5-HT signaling is yet to be determined. Based on behavioral studies
using naloxone, activation of opiate receptors has been suggested as a mechanism for increasing
5-HT levels, at least in the cerebral cortex and pons [66]. However, acetaminophen has little
affinity for opioid receptors [66]. The involvement of opiate receptors has been suggested also
for ASA [50], diclofenac, indomethacin and sodium salicylates [67].

The molecular mechanism underlying acetaminophen–induced analgesia via the serotonergic
system was recently studied [68]. Acetaminophen modulated the expression of four genes in
the lumbar enlargement of the rat spinal cord following the formalin test, but not in naive rats.
The gene and protein expression of the low-affinity neurotrophin receptor (p75NTR), insulin-
like growth factor-1 receptor alpha subunit (IGF-1Rα) and growth hormone receptor (GHR)
were upregulated, while gene expression of the somatostatin 3 receptor (sst3R) was down-
regulated. The changes in the gene expression of these four transcripts were dependent on
spinal 5- receptor stimulation, since they were completely blocked by HT1A WAY-100635.
While a GHR antagonist partially reversed the anti-nociceptive effect of acetaminophen in the
second phase, an IGF-1R antagonist completely antagonized its effect in both phases implying
that these cellular events are important for the antinociceptive activity of acetaminophen.
Acetaminophen also increases the activity of both extracellular signal-regulated kinases 1 and
2 (ERK1/2), an effect that was again blocked by the 5-HT1A receptor antagonist WAY-100635.
The down-regulation of sst3R mRNA depends on an acetaminophen-induced 5-HT1A receptor
dependent increase in neuronal ERK1/2 activities that mediate antinociception. U0126, a
specific inhibitor of mitogen-activated protein kinases 1/2 (MAPK1/2), which are kinases
upstream of ERKs, totally prevented the augmentation of phosphorylation and activities of
ERK1/2 elicited by acetaminophen, and the down-regulation of sst3R mRNA. U0126 only
partially blocks acetaminophen-induced antinociception in the formalin test. While further
studies are needed to test the effect of other non-opioids on these targets, collectively these
observations suggest that the antinociceptive activity of non-opioids is mediated at least in part
through interaction with the serotonergic system.

Noradrenergic System and its Relation to Non-Opioids
The noradrenergic system is involved in nociception at spinal and supraspinal levels. Its effects
are mediated through activation of α-adrenoceptors and descending inhibitory pathways. At
the spinal level, norepinephrine produces potent analgesia through activation of α2
adrenoceptors. It is likely that norepinephrine modulates nociception via indirect control of the
activity of other descending pathways including histaminergic and serotonergic pathways
[49,69]. The role of α adrenoceptors subtypes in nociception is reviewed in detail elsewhere
[49].

PGE2 causes a significant reduction of the stimulation-induced overflow from peripheral
noradrenergic nerve terminals and a small yet significant reduction from central noradrenergic
nerve terminals in vitro [70]. This action may contribute to the pronociceptive effects of
PGE2, and consequently, to the antinociceptive effect of non-opioids. In-vivo studies support
this hypothesis; both destruction of bulbospinal noradrenergic projection neurons by
intracerebroventricular injection of 6-hydroxy dopamine and intrathecal injection of
phentolamine (a non selective α-adrenoceptor antagonist) prevents the pronociceptive effect
of PGE2 and the antinociceptive effect of indomethacin in the rat tail-flick and mechanical
Randall-Selitto paw-withdrawal tests [71]. Similarly, the α2 adrenoceptor antagonist
yohimbine, but not the α1 adrenoceptor antagonist prazosin antagonizes the antinociceptive
effects of the non-opioids ketoprofen, diclofenac and piroxicam in the mouse tail flick test
[72]. In addition, the α2 adrenoceptor antagonist atipamezole prevents the analgesic effects of
systemic ketoprofen on mechanical noxious stimulation in sheep [73]. Yohimbine, however,
did not antagonize the antinociceptive effect of diclofenac in the mouse writhing test [74],
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which might be due to the different nature of the inflammatory stimulus and the predominant
role of COX inhibition as an anti-inflammatory mechanism in this model. In the same model,
systemic combination of α1- and α2-adrenoceptor agonists (phenylephrine and clonidine,
respectively) with diclofenac or ketoprofen showed a synergistic antinociceptive effect,
suggesting that they induce antinociception by activating different mechanisms (COX
inhibition and α2-adrenoceptor activation). On the other hand, intrathecal administration of the
same drug combinations resulted in an additive rather than synergistic interaction [74,75].
Similarly, the concurrent intraperitoneal administration of clonidine with metamizol,
nimesulide, acetaminophen, piroxicam or naproxen results in synergistic interactions. The
intrathecal administration of these combinations, however, resulted in an additive interaction
[76]. Taken together, these data clearly point to an interaction between non-opioids and the
adrenergic system. Non-opioids may activate supraspinal mechanisms that indirectly cause
descending inhibitory influences on the spinal transmission of nociceptive inputs [71–73],
beside their COX inhibitory action.

CHOLINERGIC SYSTEM AND ITS RELATION TO NON-OPIOIDS
Acetylcholine in the dorsal horn of the spinal cord is released from both intrinsic neurons and
supraspinal structures. Possible cholinergic mechanisms of antinociception may include the
activation of non-cholinergic descending inhibitory pathways, mediation of descending
inhibition following its own release from descending pathways and the induction of
antinociception following release from inhibitory interneurons in the dorsal horn.
Pharmacological studies have suggested that antinociceptive effects of acetylcholine in the
dorsal horn are mediated through both nicotinic and muscarinic receptors. The mechanism of
this analgesia, however, is not well defined as nicotinic receptor activation at the spinal level
may affect several modulatory transmitters including inhibitory amino acids, norepinephrine
and serotonin [49,69].

ASA administered subcutaneously, but not spinally, increases intraspinal acetylcholine release
in anesthetized rats [77], which might contribute to its analgesic activity. In line with that,
cholinergic depletion by intracerebroventricular hemicholinium-3 or systemic administration
of the muscarinic antagonist atropine antagonizes the antinociceptive effect of both
intraperitoneally and intrathecally administered clonixin, diclofenac, piroxicam, ketoprofen
and meloxicam in the mouse tail flick test [78]. In support of the above theory, the cholinergic
agonist carbachol shows a synergistic antinociceptive effect in the acetic acid writhing test
when co-injected intraperitoneally with meloxicam, diclofenac, piroxicam or ketoprofen.
Intrathecal administration, however, shows only an additive effect [79]. These studies point to
a possible role for central cholinergic modulation of the antinociceptive effects of non-opioids,
yet further investigations are needed to identify and localize the exact mechanism of this
modulation.

NON-OPIOIDS AND NITRIC OXIDE
NO has been recognized as an important intra- and intercellular messenger molecule in the
central nervous system [80]. Its release depends on its synthetic enzyme, nitric oxide synthase
(NOS), which exist in three isoenzymes termed NOSs [81] and many of its effects are mediated
by cyclic guanosine monophosphate (cGMP) [82]. NO is implicated in many physiological
and pathological processes including nociception, inflammation and regulating the contractile
activity of vascular smooth muscle cells. At the spinal level NO plays an important role in the
development and maintenance of inflammatory hyperalgesia. Its role in the periphery is not as
well studied [83,84].

Non-opioids inhibit NO production in different clinical and experimental studies. Ibuprofen
(2400 mg p.o.) decreases alveolar NO flow rates and urinary excretion of nitrite and nitrate, in
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both endotoxemic and normal subjects [85]. Similarly, ibuprofen-arginine (400 mg) reduces
NO metabolites in serum twenty minutes after oral intake [86]. In spinally microdialyzed mice,
indomethacin reduces NO metabolites in dialysate [38]. The inhibitory effect of indomethacin
on NO production and or iNOS induction was reported in several other studies [87–89].
Acetaminophen also inhibits NO synthesis in murine spinal cord slices [90]. In RAW 264.7
macrophages, acetaminophen, ASA and sodium salicylate inhibits NO production and iNOS
protein expression in a dose dependent manner. Further, acetaminophen inhibits iNOS mRNA
expression [91]. Although the main body of evidence supports the inhibitory effect of ASA on
NO synthesis, sporadic studies suggest a stimulatory role e.g. [92,93]. The discrepancies could
be explained based on the difference of cell types and/or inflammatory model.

PG inhibition does not seem to contribute to this inhibitory process, since the effect of different
non-opioids varies under the same experimental setting. For example, therapeutic
concentrations of ASA, but not indomethacin inhibits the protein expression of iNOS and the
production of nitrite in lipopolysaccharide (LPS) activated RAW 264.7 murine macrophages,
while only ASA inhibits the catalytic activity of iNOS in cell free extracts [94]. Likewise, ASA,
but not indomethacin or acetaminophen inhibits cytokine-induced nitrite production in cardiac
fibroblasts [95]. Furthermore, there was no significant difference between the S- and R- pure
enantiomers of flurbiprofen and ketoprofen as regards the reduction of NO release from
IL-1β stimulated human chondrocytes [96], and exogenous PGE2 did not reverse the inhibitory
effects of celecoxib on NO production by activated human articular chondrocytes [97].

Ryu et al. [91] suggests that acetaminophen inhibits iNOS expression at the transcriptional
level by suppression of nuclear factor kappa B (NF-κB) binding activity, whereas salicylates
exerts their effects by inhibiting iNOS expression at the translational or post-translational level
[94]. NF-κB expression is one of the integral contributors to iNOS transcription and expression
[98]. LPS or cytokines were shown to activate the phosphatidyinositol 3-kinase/Akt (PI3K-
Akt) pathway, which in turn activates the NF-κB pathway, and results in upregulation of iNOS
expression in vascular smooth muscle cells [99]. In human articular chondrocytes, NO
production is mediated via NF-κB, Jun NH2-terminal kinase (JNK) and p38, with celecoxib
inactivating NF-κB and JNK [97]. Similarly, acetaminophen inhibits NF-κB binding to the
promoter region of the iNOS gene [91]. Since non-opioids regulate NF-κB, JNK, p38 and Akt
[100], this might represent the molecular mechanism by which they regulate iNOS expression.

In agreement with the pronociceptive role of NO at the spinal level and the inhibitory effect
of acetaminophen on its production, L-arginine, but not D-arginine, antagonizes the
antinociceptive effect of acetaminophen in NMDA and substance P-induced nociception,
suggesting that the analgesic effect of acetaminophen is related to inhibition of NO generation
[101]. Further, intrathecal treatment with LG-nitro-L-arginine, a non-selective NOS inhibitor,
or with 7-nitroindazole, a selective nNOS inhibitor, potentiates the antinociceptive activity of
submaximal doses of acetaminophen in Randall-Selitto and writhing tests [102]. In the
periphery, however, the picture is not as clear. Several studies show inhibition of the
antinociceptive effects of non-opioids by local administration of L-NAME in inflammatory
pain models, including ketorolac, dipyrone [103], indomethacin [104], rofecoxib [105],
nimesulide [106], meloxicam [107] and lumiracoxib [108]. These effects range from partial
inhibition to complete reversal of the analgesic activity of the non-opioids used. However, in
all these studies the dose of L-NAME used did not have any effect on the nociceptive threshold.
The controversy might be due to type and intensity of the noxious stimuli, rat strain and the
dose or concentration reached at the active site [108]. The contradictory roles NO plays in
nociception [109,110] might contribute to this complexity.

In vascular endothelium, ASA elicits NO release by direct acetylation of the eNOS protein.
This effect is independent of COX inhibition [111]. Further studies are needed to elucidate the
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effect of different non-opioids on the NO/cGMP pathway in vessels, as this may be one of the
mechanisms of cardiovascular adverse effects recently associated with the use of this group of
drugs.

NON-OPIOIDS AND IL-6
IL-6 is a pleiotropic cytokine that modulates a variety of physiological functions including cell
proliferation, differentiation, survival, inflammation and apoptosis. IL-6 gene transcripts are
expressed in human atherosclerotic lesions [112] and circulating IL-6 levels may predict the
risk of future cardiovascular events [113,114]. With the recent recognition of the cardiovascular
adverse events of non-opioids, their relation to IL-6 becomes of special interest.

We recently reported an increase in gene and protein expression of IL-6 in response to both
rofecoxib and ibuprofen in the oral mucosa, after tissue injury and 48 hours of acute
inflammation in the oral surgery model [18]. As seen in Table (1), the effect of non-opioids
vary remarkably in a variety of inflammatory models and at different time points; some non-
opioids even induce variable effects on IL-6 production in the same experimental setting
[115,116]. Not only the drug used, but the sample tested could contribute to these discrepancies.
In a clinically relevant rat model of polymicrobial peritonitis and sepsis, induced by cecal
ligation and puncture, the levels of IL-6 were significantly higher in ascetic fluid than in
circulating blood both after 6 and 24 hours, a finding that may indicate more activity at the
local site of inflammation and infection than systemically [116]. The same finding was reported
in a clinical setting [117].

The effect of non-opioids on IL-6 production could be due to inhibition of PGs synthesis. The
regulatory effect of PGE2 on IL-6 has been reported in many studies e.g. [119,120,126,127].
Furthermore, exogenous PGE2 reverses the stimulatory effect of indomethacin on IL-6 gene
expression in human dental pulp cells [127] and in IL-1β-stimulated human gingival fibroblasts
[120]. This could explain the variable effects of non-opioids in different inflammatory models,
since IL-6 production is differentially modulated by PG receptor agonists: in IL-1β stimulated
human gingival fibroblasts, a selective EP2 agonist, butaprost, inhibited IL-6 production in a
concentration dependent manner, while 17-phenyl-ω-trinor PGE2, a selective EP1 agonist,
upregulated IL-6 production [120]. Different roles of PGE2 receptor subtypes was also seen
in human periodontal ligament cells [119], murine bone marrow denderitic cells [126] and in
RAW 264.7 macrophages [128]. It is therefore suggested that PGE2 induces variable regulatory
effects on IL-6 production through different subtypes of EP receptors, the selectivity of which
depends on expression of EP subtypes of PGE2 receptors [119,120].

EP2 and EP4 are G-protein-coupled receptors that activate adenylyl cyclase upon ligand binding
and result in increased cyclic adenosine monophosphate (cAMP) levels, while EP1 receptor
activation results in an increase in intracellular calcium levels [129]. In cloned osteoblast-like
MC3T3-E1 cells, PGE2 stimulates IL-6 synthesis through Ca2+ mobilization from the
extracellular space via EP1 receptors [130]. The effect of cAMP on IL-6 production varies
between studies [119,120,131]. Many non-opioids also affect cAMP level, but different studies
show varying results [132–134]. We have recently reported downregulation of gene and protein
expression of phosphodiesterase type IV (PDE4D) enzyme by rofecoxib and ketorolac in oral
mucosal biopsies, 3 hours after third molar tooth extraction [135]. Fig. (2) summarizes the
possible sites of interactions between non-opioids and IL-6 regulatory pathways.

NF-κB, also plays an important role in the upregulation of IL-6 in response to several
inflammatory mediators [136,137]. It is known that different non-opioids produce variable
effects on the activation of NF-κB; for review see [100]. A binding site for transcription factor
NF-κB is present in the 5′ promoter region of the IL-6 gene [138]. NF-κB inhibition lowers
peptidoglycan- and PGE2-induced IL-6 production in RAW 264.7 macrophages and IKKαβ-
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dependent NF-κB activation occurs downstream of the signaling pathway of COX-2-generated
PGE2 and PKA activation stimulated by peptidoglycan [128]. In the same study, the selective
COX-2 inhibitor, NS398, inhibited the peptidoglycan-induced NF-κB-specific DNA protein
complex formation from 2–12 h of treatment, but not in the first 60 min, suggesting that NF-
κB activation may be PGE2/cAMP dependent [128]. Furthermore, activation of NF-κB blocks
IL-6-induced late phase STAT3 activation in Mock-transfected HepG2 cells [139].

We also reported an increase in gene and protein expression of SOCS3 in response to both
rofecoxib and ibuprofen in the oral mucosa, 48 hours after tissue injury and acute inflammation
in the oral surgery model [18]. To our knowledge, the effect of other non-opioids on the
expression of SOCS3 has not been reported. Over expression of SOCS3 blocks the
proinflammatory effects of IL-6 signaling through gp130 [140,141]. Thus, even if non-opioids
under certain conditions might upregulate IL-6 production, an accompanying over expression
of SOCS3 might in fact block its proinflammatory effects.

NON-OPIOIDS AND MATRIX METALLOPROTEINASES
The matrix metalloproteinases (MMPs) are a family of enzymes that cleave the various
components of the extracellular matrix. MMPs are activated by tissue plasminogen activator
(tPA)/plasmin, and are inactivated by their endogenous protein inhibitors, tissue inhibitors of
metalloproteinases (TIMPs). The dynamic interaction between MMPs and their endogenous
inhibitors, the TIMPs, determine their overall activity (for review, see [142,143]). MMPs can
be both pro-inflammatory and anti-inflammatory and the same MMP might have opposite roles
in different conditions. They contribute to the vulnerability of atherosclerotic plaques [144],
which on rupture could be a predisposing factor to acute coronary syndrome. This adds to the
importance of their relation to non-opioids.

As seen in Table (2) non-opioids have different effects on MMPs and TIMPs in different
inflammatory models. Both COX-1 and COX-2 seem to be involved in MMP-9 induction
[155], though COX-2 seems to have a key role in the signaling pathway leading to increased
proteinase expression [155].

Possible Factors Contributing to Non-Opioids Effects on MMPs
Inhibition of PGs Synthesis—Accumulating data have revealed that PGs are involved in
the regulation of MMP pathways in various cell types [156,157]. The use of selective EP
receptors subtypes agonists and antagonists, however, do not show a consistent pattern for the
role of each sub-type [158–160]. How much inhibition of PGE2 production contributes to the
final effect of non-opioid analgesics on MMP production is far from clear, particularly
considering the differential effects of non-opioid analgesics on MMPs. The variable response
to different non-opioid analgesics on MMP-1 and MMP-3 production in bovine chondrocytes
cultured in alginate gel beads [161] argues against the possibility of a common mode of action.
The use of the pure enantiomers of flurbiprofen and ketoprofen can help answer this question,
since the S-enantiomer inhibits PGE2 synthesis, while the R-enantiomer is devoid of this
property. Panico et al. [96] showed in human chondrocytes that S-flurbiprofen and S-
ketoprofen inhibits IL-1β induced MMP-3 production to a greater extent than R-flurbiprofen
and R-ketoprofen. However, R-flurbiprofen and R-ketoprofen significantly inhibited IL-1β
induced MMP-3 production, suggesting that inhibition of PGE2 production, though
participating in this process, is not the sole player. The ability of exogenous PGE2 to reverse
the effect of COX-inhibitors on MMPs shows variable results [146,162–165]. Thus it is likely
that the effects of non-opioid analgesics on MMPs are both PG dependent and independent. It
is suggested that the PGE2 requirement in MMP synthesis may vary with different cell types
as well as duration of exposure [163].
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Transcriptional Regulation of MMPs—The molecular mechanisms of MMP regulation
have been extensively studied (for review see [166,167]). Cytokines are key regulators of MMP
expression, and the concentrations and combinations of cytokines may determine the extent of
matrix degradation [168]. Different cytokines may lead to the activation of at least one of the
MAPK pathways (ERK1/2, JNK, and p38 MAPK), which may result in upregulation of
secondary mediators such as IL-6 or PGE2 that contribute to the upregulation of MMP-1 and
MMP-3 expression [169]. Translocation of activated MAPKs to the nucleus results in
phosphorylation of the components of activator protein 1 (AP-1) [170]. The interplay between
different transcription factors contributes to the control of MMP expression. The NF-κB
pathway also contributes to the regulation of MMP-1, -3, -9 and -11 expression [167,171].

The interaction of non-opioids with the MMP regulatory pathway is expected at different levels
(Fig. 3). (1) Non-opioids are known to differentially affect cytokine expression, including TNF-
α, IL-1 and IL-6, all of which are major regulators of MMP expression [18,172–175]. (2) They
regulate different MAPKs as well as NF-κB [100]. (3) Non-opioids inhibit AP-1 activation by
different stimuli [100]. The inhibition of AP-1 activation together with inhibition of NF-κB by
ASA and sodium salicylate results in reduction of MMP-9 levels [176].

MMP Activators and Inhibitors—As mentioned earlier MMPs are activated by tPA/
plasmin, and are inactivated by TIMPs. Therefore, affecting any of these activators or inhibitors
would alter the activity of MMPs (Fig. 4). In bovine articular chondrocytes, ASA, diclofenac,
indomethacin, meloxicam, naproxen, and tiaprofenic acid dose dependently inhibited the gne
expression of tPA. However, only indomethacin and tiaprofenic acid reduced the expression
of uPA [161]. The effect of non-opioids on plasminogen activators was reported in other studies
including [149,177,178]. TIMPs, on the other hand, have been extensively studied; a few
examples of the effect of non-opioids on TIMPs are shown in Table (2).

IL-8 and Monocyte Chemoattractant Protein-1 (MCP-1)—IL-8 is another target for
non-opioids that may affect the overall activity of MMPs. IL-8 downregulates TIMP-1
expression in cholesterol-loaded human macrophages [179], and induces the gene expression
of MMP-2 and MMP-9 in cultured neurons [180] and in tumor cells [181]. Again, IL-8 is
differentially regulated by non-opioids [19,182].

MCP-1 also causes an increase in MMP-1 in cytokine stimulated monocytes [183], and MMP-9
secretion by primary isolated rat brain microglia in vitro [184] and non-opioids differentially
modulate the expression of MCP-1 [18,185,186].

Nitric Oxide—The modulatory role of NO on MMPs and TIMP expression and/or activity
has been shown in rat aortic smooth muscle cells [187], rat primary astrocytes [188] and murine
macrophages [189]. Since non-opioids modulate NO synthesis (as discussed earlier), this may
represent another mechanism by which non-opioids regulate MMP production and activity.

Mechanical Regulation of MMPs—MMPs are regulated by changes in mechanical forces
applied to tissues (for review see [190]). NSAIDs are known to increase blood pressure
[191], and acetaminophen was reported to have the same effect [192,193]. Thus, non-opioids
might upregulate vascular production of MMPs by elevating blood pressure.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Inhibition of eicosanoids synthesis represents an important aspect of non-opioid action, yet
accumulating data points to several other targets (reviewed here) that contribute either to their
analgesic effects, anti-inflammatory actions or to their adverse effects (Fig. 5). The interaction
between non-opioids and these targets can be prostanoid-dependent or independent, and in
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many cases these mechanisms are interactive. The studies cited in this review demonstrate the
wide variability in response to non-opioids in a variety of cells and tissues under different
experimental conditions. These observations suggest that except for a common action as COX
inhibitors, these drugs have diverse pharmacological actions making it problematic to consider
them as a single group. While these discrepant observations prevent generalization about which
mechanisms predominate in the action of non-opioids, these recently appreciated alternatives
to a unitary COX-inhibition hypothesis may form the basis for the development of new
analgesics and anti-inflammatory medications with more favorable safety profiles.
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ABBREVIATIONS
2-AG  

2-Arachidonyl glycerol

5-HT  
5-Hydroxy treptamine (serotonin)

AA  
Arachidonic acid

AEA  
Arachidonoylethanolamide (anandamide)

AP-1  
Activator protein 1

ASA  
Acetylsalicylic acid (aspirin)

cAMP  
Cyclic adenosine monophosphate

CB1  
Cannabinoid CB1 receptor

cGMP  
Cyclic guanosine monophosphate

COX  
Cyclooxygenase enzyme

EP  
Prostaglandin E receptor

ERK1/2  
Extracellular signal-regulated kinases 1 and 2

FAAH  
Fatty acid amidohydrolase enzyme

GHR  
Growth hormone receptor

IL  
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Interleukin

IL-6R  
Interleukin-6 receptor

JNK  
Jun NH2-terminal kinase

MAPK  
Mitogen-activated protein kinase

MCP-1  
Monocyte chemoattractant protein-1

MMPs  
Matrix metalloproteinases

NF-κB  
Nuclear factor kappa B

NO  
Nitric oxide

NOS  
Nitric oxide synthase

NSAIDs  
Non-steroidal anti-inflammatory drugs

PG  
Prostaglandin

PI3K-Akt  
Phosphatidylinositol 3-kinase/Akt

PKA  
Protein kinase A

SOCS3  
Suppressor of cytokine signaling 3

sst3R  
Somatostatin 3 receptor

STAT  
Signal transducers and activators of transcription

TIMPs  
Tissue inhibitors of metalloproteinases

TNFα  
Tumor necrosis factor α

t-PA  
Tissue plasminogen activator

u-PA  
Urokinase
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Fig 1.
A hypothetical diagram of possible sites of interaction between non-opioids and the
endocannabinoid system. Endocannabinoids including anandamide are proposed to be released
from the post-synaptic neurons upon depolarization, diffuse or actively transported via AMT
(anandamide membrane transporter) to the presynaptic neuron and activate cannabinoid CB1-
receptors. AMT, which is activated by nitric oxide (NO), is also responsible for the cellular
uptake of AEA where it is hydrolyzed by either FAAH (fatty acid amidohydrolase) into
arachidonic acid (AA) and ethanolamine, or by cyclooxygenase 2 (COX2) into PGE2
ethanolamide. Non opioids are known to inhibit COX2 and some of them can inhibit FAAH.
Non-opioids also modulate NO synthesis and AMT might be inhibited by acetaminophen.
Finally, inhibition of COX might result in a shift of AA metabolism towards the synthesis of
endocannabinoids.
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Fig 2.
A hypothetical diagram of possible sites of action of non-opioids in the regulatory pathway of
IL-6. IL-6 binds to IL-6 receptor forming a hexadimer with intracellular gp-130 molecule. This
activates (phosphorylates) JAK-1 (Janus kinase 1), which leads to the phosphorylation of
gp-130 and subsequently the activation of STAT1 and STAT 3 (signal transducers and
activators of transcription). The activation of this signaling cascade results in the induction of
SOCS3 formation that ultimately inhibits the signaling transduction of IL-6. PGE2 via EP2 and
EP4 receptors activates adenylyl cyclase leading to the formation of cAMP that activates
(protein kinase A) PKA and subsequently NFkB (nuclear factor kappa B). NFκB activation
results in further IL-6 expression and it also interferes with activation of STAT. Non-opioids
interfere with synthesis of PGE2, the degradation of c-AMP and also regulates SOCS 3and
NFκB. It should be noted that non-opioids have different effects on these targets in different
cells and under different experimental conditions.
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Fig 3.
A hypothetical diagram of possible sites of action of non-opioids in the regulatory pathway of
MMPs. TNF-α and IL-1 activates the MAPKs ERK1/2, p38, and JNK, which results in
phosphorylation of the components of AP-1, and the upregulation of MMPs. Activation of
MAPKs also may result in upregulation of secondary mediators such as, IL-6 or PGE2. IL-6
via the JAK/STAT pathway may upregulate MMPs. PGE2 via EP4 receptors activates adenylyl
cyclase leading to the formation of cAMP that interfere with the activation of ERK. NFκB is
also involved in the regulation of MMPs expression. Non-opioids interfere with synthesis of
PGE2, the degradation of c-AMP and also regulate various cytokines. They regulate AP-1,
NFκB and MAPKs. It should be noted that non-opioids have different effects on these targets
in different cells and under different experimental conditions
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Fig 4.
A hypothetical diagram of possible regulatory mechanisms of non-opioids on MMPs. It should
be noted that non-opioids have different effects on these targets in different cells and under
different experimental conditions. Abbreviations: NO, nitric oxide; IL-6, Interleukin-6;
MCP-1, Monocyte Chemoat-tractant Protein-1; MMPs, matrix metalloproteinases; SOCS3,
suppressor of cytokine signaling 3; IL-8, Interleukin-8; IL-1, Interleukin-1; PGE2,
prostaglandin E2; TIMPs, tissue inhibitors of metalloproteinases; t-PA, tissue plasminogen
activator; u-PA, urokinase; TNFα, tumor necrosis factor α.
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Fig 5.
Possible targets that contribute to the analgesic effects, anti-inflammatory action or adverse
effects of non-opioids in the central nervous system, the peripheral sites of inflammation or
the blood vessels.
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