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Recent Advances in Free Energy Calculations with a Combination of
Molecular Mechanics and Continuum Models
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Abstract: Recently, the combination of state-of-the-art molecular mechanical force fields with continuum
solvation models enables us to make relatively accurate predictions of both structures and free energies for
macromolecules from molecular dynamics trajectories. The first part of this review is focused on the history
and basic theory of free energy calculations based on physically effective energy functions. The second part
illustrates the applications of free energy calculations on many biological systems, including proteins, DNA,
RNA, protein-ligand, protein-protein, protein-nucleic acid complexes, etc. Finally, the prospective and
possible strategies to improve the techniques of MM-PBSA and MM-GBSA is discussed.
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I. INTRODUCTION

Molecular mechanics (MM), though its theoretical
background is not as solid as quantum mechanics (QM), has
broad applications in studying biological systems for its
simplicity and efficiency. The harmonic function form
(Equation 1), which is widely-used in many popular
molecular mechanical force fields, describes molecular
energy using bond stretching, bond angle bending, torsional
angle twisting as well as non-bonded electrostatic and van
der Waals interactions. It is well-known that most biological
procedures take place in aqueous solutions. Therefore,
solvation effect cannot be neglected in studying the
structures and interactions of biological systems. There are
two basic ways to take the solvent effect into account: with
either an explicit water model or an implicit water model.
For the first approach, a biological system is usually
immersed in a periodical water box; the second approach
does not apply water molecules explicitly. Instead, solvation
energy and force due to the solvent effect are calculated using
some formulas or by solving some equations numerically or
analytically. The widely used implicit solvation models
include the generalized Born surface area (GBSA) [1-5] and
the Poisson-Bolzmann surface area (PBSA) [6-15].
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MC have been proven to be successful in studying a variety
of properties of small molecules for a long time, it is not
until recent years that such techniques are useful in studying
complex biological molecules. Since macromolecules have
been studied with MD in the late seventies of the last
centaury, there are three eras in the history of molecular
simulations on macromolecules. In the first era (1976-1985),
one could call the Dark Ages, molecular simulations were
typically carried out without including explicit water or the
aqueous environment around the macromolecules was
represented in a primitive fashion. It was not a surprise if the
crystal structures collapsed after MD or MC simulations in
this era.

The main theme of the second era (1985-1998) is free
energy calculations with free energy perturbation and
thermodynamic integration. A typical scenario is like this:
putting a water cap or a thin water sphere around the binding
site of a biological system, and then mutating a residue or
ligand bound to the macromolecule into another. The
relative energies can be calculated and then compared to
experimental findings. In the late nineties, with the
implementation of computationally efficient particle mesh
Ewarld (PME) algorithm [16] in some molecular simulation
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To study an ensemble, rather than a few conformations is
important to guarantee the reliability and quality of
calculation results. Molecular dynamics (MD) and Monte
Carlo (MC) simulations are the two commonly used
techniques for sampling conformations. Though MD and
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software packages, the electrostatic interaction can be
calculated much more accurately and efficiently. It is since
then that biological systems in aqueous environment can be
modeled in a much more realistic fashion by using a
periodic boundary condition.

In the third era (f1998-), implicit solvent models,
exampled by GBSA [1-5] and PBSA [6-15], began to be
applied in structure and free energy calculations. Although
their theoretical background is not as rigorous as that of FEP
and TI [17-23], MM-PBSA and MM-GBSA can be used to
compute the structures and free energies of macromolecules
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much faster. Moreover, the absolute binding free energy of a
ligand or a substrate binding to a biological target can be
computed with the two techniques. In the last few years, the
two methods have been successfully applied to a wide
variety of biological molecules and complexes. Several
review papers have been published on both the methodology
and applications of MM-GBSA [4] and MM-PBSA [6-9]. In
this review, we will focus on the latest applications of the
two techniques in studying the structures and free energies of
biological systems. The limitations as well as the
perspective of the two methods will also be discussed. First
of all, the basic theory of MM-GBSA and MM-PBSA will
be presented in the next section.

II. THE MM-PBSA AND MM-GBSA APPROACHES

In the MM-PBSA and MM-GBSA theory, the energy of
a molecule is made up of two parts, the gas phase MM
energy and the solvation free energy (Equation 2).

G = Ggas + AGsolv 2
Ggas = Hgas - TSMM (3)
= Egas - TSMM

MM-PBSA and MM-GBSA can be applied to calculate
the relative free energy of a molecule between two

+ B 0 £

Wang et al.

conformations directly by using Equations 2 and 3.
However, to calculate the binding free energy of A + B ?
AB, a thermodynamic cycle below must be utilized and the
binding free energy is calculated with Equations 4-8.

AGpinding, the binding free energy, is made up of two
parts, the gas phase molecular mechanical energy AGg,s and
the solvation free energy AGqy. AGgys is calculated with
Equations S and 6. AE;,;., is typically neglected with an
assumption that the intra-molecular energies of the ligand
and receptor do not change significantly upon binding (the
single trajectory protocol described below). AGy,;, is
calculated with Equations 7 and 8. The solvation free energy
of a molecule is further made up of two parts, the
electrostatic interaction energy (polarization energy),
AGpp/nGB, and the non-electrostatic component (non-polar
energy), AGgy. The polarization energy is calculated with
either a GB or PB model, while the non-polar energy is
simply estimated with solvent accessible surface area (SAS).
If the solvation energies (AG45,,;,, AG4,,;, and AGE,,},)
and entropy (TAS) are omitted, Equation 4 becomes
Equation 9. The scoring function described by Equation 9,
which only considers the non-bonded intermolecular energy
(AE 1t AE ,4,,) between an inhibitor and a receptor, is
widely used in some molecular docking programs because of
its simplicity. However, in practice, a simple distance
dependent dielectric constant instead of the gas dielectric
constant is applied in the Coulombic term to roughly
account for the screening effect of water molecules.
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The polarization energy by PB is the difference in the
work of charging a molecule in the gas phase with a
dielectric constant of unity and in solution with a dielectric
constant of £(80 for water). The work of creating the charge
distribution in a dielectric media is called the reaction field
energy Geucrion, Which can be determined with Equation 10.
The electrostatic potential @ (») is calculated with Poisson-
Boltzmann equation (Equation 11). Here p(7) is the free
charge density; A is the dielectric constant of the media; ¢
represents the electronic charge; kg is the Boltzmann
constant; is a simple switching function, which is zero in
regions inaccessible to the electrolyte and one otherwise;
and, the Debye length, is a function of ionic strength of the
electrolyte solution.

For a conducting sphere with a charge spreading out
uniformly on the surface, the Poisson-Boltzmann equation
has an analytical solution and the equation used to calculate
the polarization energy of this ideal system is so-called the
Born equation. The GB model is an extension of the Born
model for a molecule with an arbitrary shape. The
polarization energy of the GB model is calculated with
Equation 12. yij in this equation has a unit of inverse length
and a widely-used functional form of is given by Equation
13, where yij is the inter-atomic distance; o is effective
Born radius; and d is a parameter.

The non-polar energy in both models is the leftover
excluding the polarization energy from the solvation free
energy. It is comprised of the free energy required to form
the solute cavity in a solvent that mainly accounts for the
entropy penalty associated with the reorganization of solvent
molecules around a solute, and the van der Waals interaction
between the solute and solvent. The non-polar energy Ggy is
simply estimated by multiplying a constant y (the so-called
surface tension) to the solvent accessible surface area (4) of
the solute (Equation 14) plus an intercept b [24-25].

By applying MM-PBSA and MM-GBSA, all the solvent
coordinates are implicitly integrated out and the free energy
between two “end points” can be calculated directly instead
of calculating the relative free energies of a set of less
interesting intermediate states along the mapping coordinate.
This explains why MM-PBSA and MM-GBSA are much
more efficient than FEP and TI. In contrast to LIE (linear
interaction energy) [26-30], another popular method of free
energy calculations, MM-PBSA/GBSA is more promising
under some circumstances owing to the fact that it does not
require a training set to derive empirical parameters for
different biological systems in the first place, while LIE
does. Therefore MM-GBSA and MM-PBSA are attractive
methods for directly estimating binding free energies.

Nevertheless, each free energy component may have
intrinsically considerable uncertainties and the accumulated
errors could be intolerable if the calculation protocol is not
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well-designed. The widely-used procedure of calculating the
relative free energy between two conformations of a molecule
i1s as follows: for each conformation, MD simulations is
typically carried out in a periodic box with water and
counterions, the long-range electrostatic effects is correctly
represented with PME, and a set of representative structures
are collected after the system is well-equilibrated. Then post-
process is carried out for these saved structures by removing
any solvent and counterion molecules and then calculating
the free energy according to Equations 2 and 3. As to the
calculation of the binding free energy of A+ B -~ AB, a
typical procedure is to run MD simulation for the complex
in explicit water and to save a set of conformational
snapshots; then the solvent and counterion molecules are
stripped away and the free energies of the complex, the
protein or DNA, and the substrate or the ligand, are
calculated separately. This procedure, which may be called
“single trajectory” protocol, assumes that there are no
significant changes on the conformations of both A and B
upon binding, and the gas phase molecular mechanical
energy component, AEq,, in Equations 5 and 6, is therefore
the inter-molecular energy between A and B in C, the
complex. When A and B undergo significant conformational
change upon binding, the “single trajectory” protocol may
cause substantial errors. If this is the case, one should apply
an “individual trajectory” procedure, which samples A, B
and C separately to calculate the binding free energy. Other
simplified sampling protocols will be presented in the next
section. It is critical that the same set of charges is used in
both the gas phase molecular mechanical energy calculations
and the solvation free energy calculations to ensure efficient
cancellation of most calculation errors. The conformational
entropy of a molecule, 7S)s3, in Equation 3, can be
estimated by quasi harmonic analysis of the MD trajectories
or by normal-mode analysis on selected snapshots [10]. The
conformational entropy is likely to be much smaller than the
other two terms in many applications of estimating relative
free energies. 7Sy, may be omitted if one does not need to
calculate the absolute binding free energies.

The above procedures are illustrated in Fig. 1. It is
demonstrated by many examples that the calculated AG
values are agreeable with experimental findings. In the
following sections, the applications of MM-PBSA and MM-
GBSA in free energy calculations for macromolecules are
presented. We want to emphasize that we did not intent to
collect all the papers on this topic, but some representatives
to demonstrate what kind of problems this technique can
address and for what kind of systems. Considering several
reviews have been published on this topic in 2000-2002
[4,6-9], this review mainly focuses on the publications after
the year of 2001. We also want to point out that there are
many theoretical approaches for free energy calculations,
which include free energy perturbation [17-23], linear
interaction energy [26-30], hybrid-LIE/GB [31-32], hybrid-
LIE/PB [33], -dynamics [34-35], the generalized Bjerrum
approach [36] and ligand interaction scanning [37], double-
coupling method [38], potential mean force based approach
[39], wormhole Monte Carlo method [40], statistical
mechanical method based on molecular correlation functions
[41] and so on. The comparisons of these methods to MM-
PBSA and MM-GBSA are beyond the scope of this paper.
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Fig. (1). The protocol of calculating relative free energy between two conformations. The upper part was a crystal structure of a protein
(PDB entry: laap) and the lower part was a molecular dynamic snapshot of the same molecule.

II1. APPLICATIONS OF MM-PBSA AND MM-GBSA
A. Relative Free Energies of Macromolecules
1. Proteins

It is generally believed that the crystal structures are the
global minima of macromolecules, such as proteins, DNA
and RNA under most of circumstances. Theoretically, the
crystal structures therefore have the lowest free energies with
Equations 2 and 3 in a conformational decoy. Ideally, the
smaller the RMS deviation of a conformation to the crystal
ones, the lower its free energy is. If it is the case, one can
reliably rank the predicted macromolecular structures and
pick up the native one if it is among the decoy structures. In
other words, MM-PBSA can be applied as a powerful tool
in assessing the predicted structures and an essential
technique in macromolecule modeling. If the hypothesis that
the free energy landscape has a funnel shape [42] is true, the
farther the structures lie from the native state, the less linear
the relationship should be. Typically, the linear relationship
is obvious only for structures that are within 5A of the
native structure. In practice, the relationship between the
calculated free energy and the RMSD may not be obvious
even for conformations immediately surrounding the native
states due to errors from all kinds of sources including the
force field. The following is some successful stories.

Lee, Baker and Kollman calculated the relative free
energy G for two small proteins, the 36-mer villin headpiece
domain (HP-36) and the 65-mer structured region of
ribosomal protein (S15) [11]. Starting from the native
structure and a set of protein models by ab initio approach
Rosetta [43], MD simulations were carried out followed by
cluster analysis on the saved trajectories. Then the MM-
PBSA free energy calculations were performed for the
collected snapshots in each conformational cluster. The
results were very encouraging: those conformational families

with the lowest average free energies also contained the best
Ca RMSD structures (1.4 A for S15 and HP-36 core) and
the lowest average Ca RMSDs (1.8 A for S15, 2.1 A for
HP-36 core); the ranking of the average free energies
correlated well with the average Ca RMSDs (the Spearman
rank correlation coefficient is 0.77 for HP-36 and 0.83 for
S15, respectively), whereas the Rosetta scores correlated
poorly with the Ca RMSDs.

In another work, they studied 12 small, single-domain
proteins (four alpha (1gab, lutg, luxd and 1pou), four beta
(1sro, 1qyp, 1vif and 2cdx) and four mixed topologies (1leb,
2ptl, 5icb and 5znf)) by MD simulations and MM-PBSA
free energy calculations [44]. They intended to answer the
following questions: (1) Are the native proteins stable
during the MD simulations? (2)What is the rank of the
native structure in a conformational decoy? (3) How well do
the MM-PBSA free energies correlate to native similarity
measured by RMSD? (4) Can more native similarity be
improved after the structural refinement by minimizations or
simulations? The initial structures for MD simulations were
generated by Rosetta. The MM-PBSA free energy of a
protein model was calculated with a variety of parameter sets
(force field parameters, the dielectric constant in
AFEelectrostatic and AGpp calculations, and the surface
tension Yy in Equation 14 to estimate the non-polar
contribution of solvation free energy). Here is what they
found: (1) the native structures were reasonably stable along
the 1 ns MD simulations and most of the Ca RMSDs were
under 2.0 A; (2) With the “standard” parameter set, eight out
of the twelve proteins, with exception of 1gab, luxd, 1pou
and 2ptl, had their native structures ranked No 1 among a set
of 36-77 decoy conformations based on the MM-PBSA
energies. Moreover, the average RMSD values of the
conformations having higher ranks than the natives were
2.08, 1.80, 3.70, and 11.01 A for lgab, luxd, 2ptl and
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Ipou, respectively. (3) For all the proteins except 1sro, 1pou
and Sicb, a good linear correlation coefficient between C
RMSDs and the MM-PBSA energies was achieved, but only
for structural families that were less than 5 A of the native
state. This indicates that Ca RMSD and an effective free
energy such as MM-PBSA is only linear near the native
state, and the relationship weakens dramatically beyond 5 A
Ca RMSD. (4) In general, further relaxation of a protein
structure can only slightly improve the native similarity.

Lee and Kollman applied the same protocol to study
other 15 small single-domain proteins [14]. It was found
that decoys were less energetically favorable than the native
conformations for nine of the ten X-ray structures and none
of the five NMR structures if only simple minimizations
were conducted. However, all the 15 proteins had the lowest
predicted free energies after short 150 ps MD simulations,
which indicated that MD simulations is much more efficient
in eliminating possible bad contact in NMR structures.
Nicely, a strong correlation (72 = 0.86) was found between
the protein length, in term of the number of amino acid
residues, and the predicted free energy of unfolding. The
unfolding free energy is the difference between a protein’s
native state and its fully extended state, which is entirely
alpha as suggested by Lee and Kollman. The unfolding free
energy provides a useful criterion to evaluate how close a
model protein represents its native even when the
experimental structure is absent.

Loop structure prediction is one of the most important
issues in protein modeling. Fogolari and Tosatto [45]
recently applied MM-PBSA in combination with colony free
energy proposed by Xiang and Honig et al. [46] to
discriminate native or native-like loops from their decoys.
Good correlations were found between the estimated free
energies and the similarity to the native structures for their
four test sets. The application of colony energy greatly
hampered the strong dependence of MM-PBSA energy on
minor conformational changes.

Santa et al. studied the o r 3 and Bf3 (Beta-Beta)
conformations of tetrapeptides SALN and its mutants [47].
The o r B turn was predicted to be slightly more stable than
the conformation according to the MM-PBSA free energies.
The authors suggested that r turn may be the most common
turn type in peptides; it may be readily formed in aqueous
solution and thereby plays important roles in the protein
folding process. MM-PBSA has also been applied by Ma et
al. to investigate the free energy landscapes of B-hairpin G
peptide and its isomers [48]. They concluded that the
changes in the sequence strongly modulated the relative
stabilities of topologically similar regions in the energy
landscape, rather than redefining the topology space.

2. Nucleic Acids

It is found that DNA is likely to adopt a right-hand
double helix B form (B-DNA) under physiological
conditions. However, repetitive sequences, such as
poly(GC), poly(AT), are easy to take other DNA forms. The
poly(AT) sequences are probably those exhibiting the widest
range of accessible structures, including the antiparallel
Hoogsteen duplex (apH). Recently, Cubero et al. [49]
systematically studied a set of repetitive AT sequences,
d(AT)n/2 for n = 4, 6, 8, 10, 12, 14 and 16, using MD
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simulations and MM-PBSA/GBSA free energy calculations.
They found that polyd(AT)n in both B and apH forms were
stable along the nano-second MD simulations in aqueous
solution (the RMSDs were smaller than 2.0 A). Both their
MM-PBSA and MM-GBSA results suggested that the
relative free energies without counting the entropy
contribution were negligible for the two forms. If entropy
was considered, the B form was energetically more favorable
than the apH helix and the difference slightly increased with
the increase of the length of the oligonucleotide. As a
conclusion, the population of the two helices in solution
might depend on the existence of cofactors, specific
hydration waters, and entropic considerations; the slight
difference of structural, dynamical and energetic properties of
the apH helices from those of the B form may be the basis
for proteins and drugs to distinguish between these two
helical structures.

Recently, Yan et al. carried out MD simulations on a
pair of 11mer double-strand DNA that have an adenine
residue covalently modified through reaction with mutagenic
and tumorigenic metabolites of benzo[d]pyrene [50]. The
two adducts, 10S(+) and 10R(-) trans-anti-[BP]-N2-dG, and
10S(+) and 10R(-) trans-anti-[BP]-N6-dA, are stereoisomers,
which makes it suitable to calculate the relative free energy
with Equations 2 and 3 using the sampling protocol in Fig.
1. The 10R(-) trans-anti-[BP]-N6-dA was 13 kcal/mol more
stable than its stereoisomer according to the calculated MM-
PBSA free energies. The enthalpy difference, which was
about 10 kcal/mol, agreed quite well with observed
differences in thermodynamic stability. In another work, Yan
et al. studied a pair of guanine adducts, 10S(+) and 10R(-)
trans-anti-[BP]-N2-dG, using a similar protocol [51]. The
computed enthalpy difference (AAEg,s + AAGpp) between
the guanine adducts (2.5 kcal/mol) was reasonably consistent
with the experimental data based on DNA duplex formation;
and the AAG was -0.9 kcal/mol, indicating that the two
adducts had essentially equal stabilities. Another pair of
DNA adducts, 1R(+) and 1S(-) trans-anti-B[c]Ph-N6-dA and
IR(+) trans-anti-B[c]Ph-N6-dA were studied by Wu et al.
with a similar approach [52].

B. Binding Free Energies

The combination of molecular docking, molecular
dynamics simulations and MM-PBSA/GBSA free energy
calculations enables us to address many problems in both
structural biology and computer-aided drug design. With
these techniques one can model complex structures of
biological systems, calculate the binding free energies,
elucidate the molecular interaction mechanism and identify
the main factors and / or “hot spots” that make substantial
contributions to the interaction by performing energetic
component analysis. In the following sections, we will
present some applications of MM-PBSA and MM-GBSA in
this field for a variety of biological systems.

1. Protein-Ligand Interactions

Recently, we successfully applied molecular docking
combined with MM-PBSA to determine the binding mode
of HIV-1 RT/efavirenz [13]. In this blind test, not only the
calculated binding free energy was in good agreement with
the experiment, but also the crystal structure, which was
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released after our manuscript had been submitted, was well-
predicted by the combination of molecular docking and
molecular dynamic simulations (the RMSD of the non-
nucleoside reverse transcriptase inhibitor and 54 a-carbons
of the key residues around the binding site was 1.1 A). Our
strategy of modeling protein-ligand complex is described as
follows: docking the ligand into the receptor; performing the
cluster analysis and selecting a representative docking pose
from each cluster (up to 10), then running MD simulations
for each docking pose followed by MM-PBSA analysis. The
pose that has the most favorable binding free energy is the
most reasonable complex structure. The same target was also
studied by Weinzinger et al. and a very good correlation was
achieved between the MM-PBSA binding free energies and
binding affinities estimated by ICgy( for efavirenz and a set of
benzoxazinone derivatives [53].

Huo ef al. studied a set of cathepsin D (CatD) complexes
by molecular docking, MD simulations and MM-PBSA
calculations [54]. They were able to reproduce the
experimental binding affinities for seven inhibitors of CatD
with an average error of 1.0 kcal/mol and a correlation
coefficient of 0.98, in contrast to the correlation coefficient
of 0.2 of the docking scores. The ligand conformation that
was found in an X-ray structure of the peptide
(pepstatin)/cathepsin complex was successfully identified in
the MD simulations of the CatD inhibitors. Kuhn et al.
reported MM-PBSA analysis on nine diverse biotin
derivatives in complex with avidin [55]. Although the
absolute binding free energies were 3.3 kcal/mol away from
the experiment in average, a nice correlation coefficient (2 =
0.92) was achieved between the calculated and the
experimental binding free energies.

Wang and Kollman also studied HIV-1 protease’s drug
resistance using MM-PBSA [56]. First they calculated the
binding free energies of five marketed drugs and one
substrate. Then the free energy contribution of each residue
was analyzed. Finally, they suggested a mechanism for drug
resistance: if the large free energy contribution came from a
not well conserved residue, in another word, this residue was
unimportant or the substrate could tolerate the mutations for
viral activity, the mutations at that site would not affect the
function of the protease but would be able to significantly
reduce the inhibition of drugs; and as a result, the mutations
would cause drug resistance. In another study, they applied
MM-PBSA in analyzing the interactions between the Sem-5
SH3 domain and its ligands, a set of N-substituted peptoids
at site -1, 0 and 2 [57]. They found that the calculated
relative binding free energies (without the contribution of
entropy) correlated well with the experimental data. They
also examined the effect of different dielectric constants and
different ligand charge methods on MM-PBSA binding free
energies. For the first molecule set, which included the wild
type and seven mutants for which mutations occurred at
different sites, the correlation coefficient squares between the
calculated and experimental were similar for = 1 and =4 (+2
= 0.88), whereas = 4 gave significantly better results than =
1 (r2 =0.78 versus r2 = 0.21) for nine mutants substituted
at site -1. They found that AM1-BCC [58-59], which was a
much efficient charge method and could be calculated with
the antechamber module in the AMBER packages for
arbitrary organic molecules, gave comparable results to those
applying the RESP [60-61] charges in MM-PBSA

Wang et al.

calculations. Finally, Wang ef al. found that the binding free
energies calculated from computational mutagenesis using
the wild-type peptide trajectory correlated poorly with the
experimental data (72 = 0.34).

Recently, Swanson and McCammon [62] took the
FK506 binding protein (FBP-12) and the ligand 4-hydroxy-
2-butanone as an example to calibrate the MM-PBSA
method for end-point free energy calculations. Instead of
applying normal model analysis, the entropic component of
the binding free energy was calculated with quasiharmonic
analysis. The calculated binding free energy was in
reasonable agreement with experiment (-7.4 versus -4.5
kcal/mol).

Hou and Xu et al. applied both MM-PBSA and LIE to
calculate the binding free energies of eight hydroxamate
inhibitors of gelatinase-A [63]. A good correlation was
achieved between the predicted binding free energies and the
experimental data (» = 0.84 and ¢ = 0.78). The absolute
binding free energies were reasonably predicted with an
average unsigned error of 2.9 kcal/mol. In contrast, the best
LIE model achieved a g2 of 0.83. However, the LLE model
had three fitting parameters and may not be transferable to
other systems. Diaz et al. recently studied the molecular
interactions between TEM-1 -Lactamase and cephalothin
(CEP) and benzylpenicillin (BP) by MD simulations and
MM-PBSA calculations [64]. The initial structure of
lactamase/CEP was suggested by AutoDock. The predicted
relative binding free energies between the two ligands ranged
from 1.8 to 5.7 kcal/mol for different computational
protocols, favoring benzylpenicillin. Interestingly, the result
of the standard MM-PBSA was consistent with that of the
semi-empirical quantum chemical PBSA. The absolute MM-
PBSA binding free energies were more than 10 kcal/mol
negative than the experiment, perhaps because of the
inaccurate solvation free energies of ligands.

Recently, Brigo et al. [65] carried molecular docking,
explicit solvent MD simulations and MM-PBSA
calculations for HIV-1 integrase in complex with L-731988,
one of the most active molecules of the class of B-diketo
acids. To study the molecular mechanism of drug resistance
of T661/M154I to the inhibitor, they docked the ligand to
two protein conformations, which were chosen from prior
MD trajectories and orientated differently. Then they
performed MD simulations on the wild type and the mutants
of HIV-1 integrase in complex with L-731988. Significant
differences were observed in the mobility of HIV-1 integrase
catalytic loop (residues 138-149). They also identified GIn62
as a hot spot that played an important role in the interactions
between the inhibitor and the protein.

von Langen et al. studied the binding of five steroids to
human glucocorticoid receptor (hGR) through homology
modeling, docking, MD simulations, and free energy
calculations [66]. They found the binding free energies with
both MM/PBSA and FlexX could discriminate strongly and
weakly binding ligands. Both methods recognized cortisol,
which had a nearly perfect steric and electrostatic
complementarity with the hGR binding pocket as the
endogenous ligand of the hGR in silico. Schwarzl et al. [67]
recently docked six benzamidine-like ligands to trypsin, and
then calculated the binding free energies with a scoring
function described as Equation 2 except that the van der
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Waals energy E, g4, was scaled down by 85 %. The RMS
difference between the calculated and the experiment was
0.55 kcal/mol. The binding free energies of seven aliphatic
cyclic ureas to HIV-1 protease were calculated using a
predominant states method and an MM-PBSA by Mardis et
al. [68]. They found that the MM-PBSA binding free
energies could reproduce the observed U-shaped trend of
binding free energy as a function of aliphatic chain length.
However the GBSA, which yielded a much smaller change
in solvation free energy with chain length trends, could not
reproduce the experimental binding affinity trend. Perdkyld
et al. performed MD simulations and MM-PBSA analysis
on anti-progesterone antibody DB3 in complex with two
steroids [69]. The relative binding free energy of the two
steroids, PRG and 5AD, was in fine agreement with the
experimental energy, 1.29 kcal/mol.

Site-directed mutagenesis has been widely used in the
study of protein functions. It can be used to identify the “hot
spots” that make substantial contributions to receptor/ligand
binding. Computational mutagenesis is attractive due to its
efficiency both timely and financially. Recently, a
computational scanning mutagenesis method has been
developed in Kollman’s group [70-71]. The basic idea is to
firstly run MD simulations on a wild type complex, then
map and alert the coordinates of the new residues, and
finally perform MM-PBSA analysis on the new species.
This protocol, in principal, can work at least as long as the
mutation does not cause significant conformational change
in the binding interface and/or destroy the important
interaction network with other residues, such as salt bridges
or disulfide bonds. Because alanine is the second smallest
natural amino acid residue and not as flexible as glycine, it
is not a surprise that residues are typically mutated to
alanine in mutagenesis studies. The technique of
computational scanning mutagenesis can be applied as a tool
to optimize the interacting species for the binding, or as a
ranking tool in high throughput screening of peptide/protein
design. Computational alanine scanning has been
successfully used in many protein/ligand systems, which
include P53-binding domain of oncoprotein Mdm?2 in
complex with 12-residue N-terminal stretch of tumor
suppressor protein p53 (Massova et al.) [70] and human
growth hormone complexed with its receptor (Huo et al.)
[71]. In the later case, Huo et al. could reproduce the
experimental AAGpinging With an average unsigned error of
~1 kcal/mol for the alanine mutations of hydrophobic
residues and polar/charged residues without buried salt
bridge by using a single MD simulation trajectory. They
also found that the minimization protocol described below
was not able to discriminate the “hot spots” of binding free
energy from the non-“hot spot”.

The dynamics of buried water molecules in the cavities
of apolipoprotein E were studied by MD simulations and
MM-PBSA free energy calculations [72]. The calculated
electrostatic component of the binding free energy of the five
crystal buried water molecules that exchanged in the course
of the simulations ranged from -4.8 to -1.4 kcal/mol.

2. Protein-Protein, Protein-Peptide Interactions

What is the overall guideline to use single and separate
trajectory sampling protocols in protein-protein interaction
studies? Noskov et al. [73] designed three protocols to

Current Computer-Aided Drug Design, 2006, Vol. 2, No. 3 7

calculate the MM-GBSA binding free energies for two
systems: trypsin complexed with bovine pancreatic trypsin
inhibitor (BPTI), and the fragment variable (Fv) region of
mouse monoclonal antibody, D1.3, bound to hen egg-white
lysozyme (HEL). For both systems, the crystal structures of
bound and two unbound proteins were available. In protocol
1, unbound receptor and ligand structures were minimized
prior to MM-PBSA analysis; in protocol 2 and protocol 3,
the bound receptor and ligand were minimized without and
with constraint on all heavy atoms prior to MM-PBSA
analysis, respectively. The result showed that the GGB
values with protocol 1 were in excellent agreement with the
experiments (-11.4 versus -11.4 kcal/mol for D1.3/Hel and
-18.6 versus -18.1 for BPTI/trypsin). The protocol 3 was
superior to protocol 2 in reproducing the experimental
absolute binding free energies, but inferior to protocol 1.
This indicated that simple minimizations could not bring
the bound ligand or receptor to their global minima; what is
more, the error cancellation became less efficient.

Recently, Gohlke and Case applied both MM-GBSA and
MM-PBSA to calculate the protein-protein interaction
energies of H-Ras/C-Rafl and H-Ras/RalGDS [74-75]. With
the separate trajectory protocol, the calculated binding free
energies were in fair agreement with the experimentally
determined values (-15.0 (modified GB model described by
Jayaram [5]) versus -9.6 kcal/mol for Ras-Raf; -19.5 (GB)
versus -8.4 kcal/mol for Ras/RalGDS). The experimental
and calculated relative binding free energies between the “hot
spot” residues and their alanine mutants yielded an obvious
correlation with 72 of 0.55 and 0.46 for Ras-Raf and
Ras/RaGDS, respectively. They also found that different PB
and GB models/protocols could produce substantially
different values for the absolute binding free energies. Thus,
a delicate computational protocol that balances the different
energetic and entropic contributions to maximize error
cancellation is critical in absolute binding free energy
calculations.

Wang et al. recently studied HIV protease dimerization
using MM-PBSA [76]. They firstly calculated the binding
free energies between the wild-type HIV protease with the
two catalytic aspartic acid residues at different protonation
states. The finding that the double ionic state had the most
favorable binding free energy was consistent with the
experiment. They also developed a qualitative geometrical
criterion to seek mutations that could affect dimerization free
energy and then used a rapid, minimization-based method to
evaluate their MM-PBSA dimerization free energies. Several
new mutants that might further stabilize heterodimer
stability were identified. With a similar approach described
in Ref.13, Wu et al. modeled the complex of scorpion toxin
ScyTx, a 31-residue protein bound to a small conductance
calcium-activated potassium channel rsk2 [77]. The NMR
structures of ScyTx were docked to a homology structure of
rsk2 with ZDOCK, followed by MD simulations on four
binding poses. The best pose that had the most favorable
MM-PBSA binding free energies was then applied to
perform computational alanine-scanning. The mutagenesis
result was consistent with the experimental findings.

MD simulations and MM-PBSA analysis were carried
out by Suenaga ef al. for SH2 domain of Grb2 and ErbB
phosphotyrosyl peptides [78]. The calculated binding free
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energies of nine peptides were in excellent agreement with
the surface plasmon resonance (SPR) experimental data (» =
0.92). Component analysis of the calculated binding free
energies reveled that van der Waals interaction between the
Grb2 and the phosphotyrosyl peptide was the dominant
factor for specificity and binding affinity. Recently, they
successfully conducted MD simulations followed by MM-
PBSA free energy calculations to identify the binding mode
of eight ErbB3 receptor-derived phosphotyrosyl peptides in
complex with the SH2 domain of the p85 subunit of
phosphatidylinositol 3-kinase [79]. They found that some
peptides favored the N1 binding site in the N-terminal
region, while the others favored the N2 binding site in the
C-terminal region as indicated by the MM-PBSA binding
free energies at both sites. An excellent agreement between
the calculated and the experimental binding free energies was
achieved with a correlation coefficient of 0.91.

Recently, the bindings between the Abl SH3 domain and
35 peptide ligands (10 binders and 20 non-binders) were
analyzed using MD simulations and MM-PBSA calculations
by Hou et al. [80]. The calculated binding free energies
correlated well with the rank order of the binding peptides
and clearly distinguished binders and non-binders. Free
energy component analysis revealed that the van der Waals
interactions dictated the binding strength of peptides while
the binding specificity was determined by the electrostatic
interaction and the polar contribution of desolvation. The
binding motif of the Abl SH3 domain was then determined
by a virtual mutagenesis (VM) method, which mutates the
residue at each position of the template peptide to all other
19 amino acids and calculates the binding free energy
difference between the template and the mutated peptides
using MM/PBSA. A single position mutation free energy
profile (SPMFEP) was thus established and used as a
scoring matrix to search peptides recognized by the Abl SH3
domain in the human genome. Ten out of the thirteen
experimentally-determined binding partners of the Abl SH3
domain were identified from ~ 6.2 107 decapeptides in the
SWISS-PROT database. This application demonstrated that
the combination of MD simulations, MM-PBSA
calculations and virtual mutagenesis would be a powerful
tool to identify possible binding partners of the modular
protein domains.

Recently, Myshkin et al. [81] studied the protein-protein
interactions between plastocyanine (Pc)/photosystem I (PSI)
using a set of docking programs, including GRAMM,
FTDOCK, DOT and AUTODOCK. Then MM-PBSA free
energy calculations were performed on the docked complexes
that were best consistent with the available biological
information. The free energy rank of the wild-type Pc, as
well as the hydrophobic patch Tyrl,Gly and Prol4Leu Pc
mutants was in agreement with the experimental
mutagenesis result. The neuregulin/ErbB system is a growth
factor/receptor cascade that has been proven to be essential in
the development of the heart and the sympathetic nervous
system. Recently, Luo et al. [82] carried out MM-PBSA
analysis for two complexes: NRG-13/ErbB3 and NRG-
1B/ErbB4, which was constructed against the homologous
proteins. The specificity of ligand-receptor recognition
mechanism was also elucidated by computational alanine
scanning mutagenesis in the binding site of NRG-13. Some
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“hot spots” were identified and the MM-PBSA binding free
energies of NRG-1B mutants binding to ErbB3 and ErbB4
were in agreement with the experimental data. The
computational mutagenesis result was useful in designing
mutagenesis experiment to further improve the binding
affinity and optimize the specificity of NRG-1f binding to
ErbB3 and ErbB4.

A coiled-coil protein composed of two oligo-peptides
was studied by MM-PBSA [83]. The calculated binding free
energy, the difference between the energies of coiled-coil
complex and two -helixes, was -87.0 kcal/mol, i.e. about
-1.2 kcal/mol per amino acid residue. Polticelli et al.
studied Cruzain S2 in complex with small peptides by MD
simulations followed MM-PBSA analysis [84]. The
calculated absolute binding free energies were consistently
overestimated for about 10.0 kcal/mol. MD and MM-PBSA
free energy calculations were applied to study the formation
of amyloid 3 dimmer by Urbanc et al. [85].

3. Protein-Nucleic Acid Interactions

MD simulations were carried out on the bovine
immunodeficiency virus BIV Tat-TAR complex by Reyes
and Kollman [86]. They ran MD simulations on the native
complex and then calculated the binding free energies of a
set of mutants with two simple post-processing protocols. In
the first protocol, a representative MD structure, such as the
last snapshot, was taken to calculate the binding free energy
of mutants after a series of minimizations with a distance-
dependant dielectric. The second was a generalized alanine-
scanning procedure to generate mutant structures directly
from the wild-type MD trajectory by altering the
corresponding coordinates. Then MM-PBSA post-processing
was performed on both the native and the mutated
topologies without further minimizations. This second
protocol should work, in principle, at least as long as the
involved mutant topology does not make the residue larger.
Seven mutations on the Tat peptide were carried out with the
first protocol and the calculated relative binding free energies
AAG were in reasonable agreement with experiment. Three
among the seven computational mutations were also
conducted with the second protocol and the calculated
relative free energies were similar to those obtained by using
the first protocol. In another work, Reyes and Kollman
carried out MD simulations on the spliceosomal protein
U1A that bound to both an internal loop (IL) and a hairpin
loop (HL) of a comparable sequence [87]. In many cases,
RNA-protein complexes are formed by an “adaptive binding”
mechanism, wherein both molecules undergo significant
conformational changes upon binding. Thus, the commonly
used protocol of only sampling complex conformations is
not adequate. Instead, one needs to run MD simulations for
A, B and C in Fig. 2 separately, and apply Equations 2 and
3 to calculate the free energy for each species with its own
trajectory. The adaptive free energy of A or B, which is the
free energy of conformational change that accompanies
complex formation, can also be calculated: AAG ;44prive =
AGpound - BGfree, Where AG e, is the free energy in free
bound state and AGp,,,4, the free energy in bound state, is
calculated with the monomer structures taken from the
complex trajectory. As to the system ofUlA-RNA, the
adaptive free energies of UlA were 12.62 and 11.28
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Fig. (2). The protocols of calculating binding free energies based on (a) single trajectory and (b) individual trajectory. The complex,
the protein and the ligand were taken from the protein data bank (PDB entry:1glp).
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kcal/mol for IL and HL binding, respectively; whereas the
adaptive free energies of IL and HL RNA were 7.93 and 8.73
kcal/mol, respectively. The calculated absolute binding free
energies of both Ul A-hairpin RNA and UlA-internal loop
RNA (AG ~ -5 kcal/mol) were close to those found
experimentally (AG ~ -12 to -14 kcal/mol). In contrast, the
binding free energies calculated with single trajectories of
complexes were more than 10 kcal/mol more negative than
experiment. Computational mutagenesis [88] were carried
out with a set of hierarchical sampling approaches (from a
simple minimization on the mutant built from the
experimental structure, to mutation on a set of snapshots
from the wild-type trajectory by atomic coordinate removal,
to the “standard” sampling protocol of running separated
trajectory for each mutant) to calculate the relative binding
free energies of different Ul A-hairpin RNA mutants. The
calculated relative binding free energies were in good
agreement with experimental studies and the mutations that
abolished and improved binding were verified.

The electrostatic and non-electrostatic effect of protein-
DNA recognition was studied for 20 complexes that had
crystal structures available by using MM-PBSA analysis
[89]. It was found that the desolvation penalty showed some
degree of correlation with the buried SAS; both favorable
and unfavorable salt-independent electrostatic free energies
were observed in the different protein-DNA complexes. The
association free energy from the hydrophobic effect was on
the same magnitude as the experimental estimates. The
number of heavy atoms that contributed to the buried SAS
varied between 68 and 180 atoms and the binding free
energy per heavy atoms varied from -0.07 to -0.14
kcal/mol/atom.

4. Protein-Carbohydrate Interactions

Recently, Shilov and Kurnikova studied the interaction
between a transmembrane pore protein 0-hemolysine (a-HL)
and a cyclic oligosaccharide a-cyclodextrin (a-CD)
theoretically [90]. A set of starting structures (10) were
constructed by orientating a-CD towards the cis or trans
side of the channel of a-HL and placing the center of mass
of 0-CD at z = 30, 35, 40, 45 and 50 A. To mimic the lipid
bilayer environment, a slab of heavy dummy atoms with
Lennard-Jones potential, were added around the stem of -
HL. They found that the equilibrated configurations with a-
CD residing in the vicinity of Metl13 residue of a-HL
protein and with wider rim oriented toward the trans-side of
the membrane were the most favorable in terms of both
interaction and MM-PBSA binding free energies. This result
was consistent with the experimental observations.

5. Nucleic Acid-Ligand Interactions

Gouda et al. applied MM-PBSA to study the interaction
of theophylline and its derivatives with an RNA aptamer
[91]. Although the rank of the relative binding free energies
of the five theophylline analogs was the same as that of
experiment with one exception, no good correlation between
the calculated and the experimental binding free energies
could be found. In contrast, the relative binding free energies
by thermodynamic integration, a much more expensive
method, were well predicted with an average unsigned error
of 0.4 kcal/mol. The binding free energies of three anticancer
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compounds (Mit, Pyrl, PyrIl) to DNA were calculated by
Baginski et al using MM-PBSA [92]. For each molecule,
several topologically different modes were first constructed
manually. Then MM-PBSA analysis was carried out on the
minimized complexes. The most favorable MM-PBSA
binding free energies were in fair agreement to experiment (-
16.8 versus —10.3 kcal/mol for Mit, -14.1 versus —8.9
kcal/mol for Pyrl and —4.7 versu —6.6 kcal/mol for PyrlIl).

Both MM-PBSA and MM-GBSA were applied by
Burkhardt ef al. to study monovalent and divalent cations to
two adenine-adenine platform structures from the
Tetrahymena group 1 intron ribozyme [93]. Qualitative
agreement between the calculated and experimental ion
placements and binding selectivity was obtained. The
inclusion of solvation effects turned out to be important to
obtain the low energy structures and ion binding placements
in agreement with the experiment. The calculated alkali ion
binding selectivity by PB for both platforms followed the
order K* > Na* > Rb* > Cs* > Li" in case of allowing
RNA conformational relaxation during docking. The GB
result was similar to that of PB except that the binding free
energy of Na® was marginally more favorable than K* in the
first AA platform. However, if the RNA conformations were
rigid during the docking, the binding free energies of Na*
were higher that that of Rb* in all the circumstances.

MD simulations and MM-PBSA analysis were
performed for DNA-DAP (4’,6-Diamidino-2-phenylindole)
binding at the minor groove by Spackova et al. [94]. DNA
sequences including two (AATT and ATTG) for which the
binding modes were observed experimentally and two
(AATT and ATTC) with alternative shifted binding modes
were investigated. The absolute MM-PBSA binding energies
of both single and separate trajectories were significantly
underestimated (~0 versus -9 to -12 kcal/mol in experiment).
The relative binding free energies, which should be
meaningful, suggested that the AATT site was weakly
favored in both binding sites. DAP binding to seven
dodecanucleotides including the two DNA sequences
mentioned above were studied by de Castro and Zacharias
using a combination of docking, GB-minimization and
PBSA calculations [95]. Qualitative agreement were
obtained between the results of GB and PB approaches as
well as between the calculated and experimentally observed
trends regarding the sequence specificity of DAPI binding to
B-DNA. Cieplak [96] also performed MM-PBSA analysis
for long MD trajectories to calculate the binding free
energies of some DNA-drug complexes and got encouraging
results.

6. Other Systems

Some small guest-host systems were also studied by
MM-PBSA. For example, the experimental result of
enantiodifferentiation observed in the complexation of
cizolirtine and its parent carbinol with B-cyclodextrin (3-CD)
was rationalized and interpreted by using MD simulations
and MM-PBSA free energy calculations [97]. The chiral
discrimination of N-acetylphenyl-alanine enantiomers by [3-
CD was studied by Choi et al. [98]. The calculated relative
binding free energy was in fine agreement with the
experimental determined value (-0.381 kJ/mol vs. -0.26
kJ/mol).
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C. Ligand Design

In this section, we present the application of MM-PBSA
and MM-GBSA in combination with other approaches to
design new and optimize known ligands. We have shown
several examples [13,77] above that MM-PBSA and MM-
GBSA together with molecular docking and MD
simulations can reliably model a protein and DNA complex
a priori. Evidently, this strategy provides a reliable means
to evaluate a protein model only if the binding affinities of a
set of inhibitors are known. A “successful” protein model
should give considerably accurate MM-PBSA binding free
energies compared to experiment. This strategy could have
great applications in GPCR (the G-protein coupled receptors)
modeling for which very few crystal structures are available.

MM-PBSA and MM-GBSA in drug discovery can also
be used as a promising filter in virtual screening. We have
successfully applied a set of hierarchical filters that include a
pharmacophore model, multiple-conformation rigid docking,
solvation docking and MM-PBSA in exploring promising
inhibitors for HIV-1 RT [99]. The basic idea of the virtual
screening strategy is to first employ rapid but less accurate
methods, such as docking, to screen out less interesting
compounds and then to apply MD techniques and MM-
PBSA to perform more accurate calculations on the most
promising ligands. 15,000 compounds in a refined available
chemical directory (ACD) database were subjected to the four
filters and 3360 compounds survived the first three filters. In
a control test, 22 out of 37 known HIV-1 RT inhibitors
survived the first three filters and 16 known ligands had the
calculated MM-PBSA binding free energies better than -6.8
kcal/mol. Overall the enrichment factor for the first three
filters was 25-fold and the hit rate for all the four filters was
predicted to be 41%. We also pointed out that although MD
simulations followed by MM-PBSA analysis required
massive amount of computational resource, it was expected
that one could screen as many as 3,500 compounds with this
filter within a reasonable timeframe (less than a week) for a
pharmaceutical company. It is worth mentioning that to
apply MM-PBSA in database searching, one needs a general
or universal force field that is consistent to the force field
used by protein and nucleic acids for organic molecules. We
have developed and will continue to improve a general
AMBER force field [100] for this purpose.

Hou and Xu et al. recently studied a set of quinazoline-
like inhibitors of epidermal growth factor receptor with 3D
QSAR, molecular docking and MM-PBSA [101].
Following the same approach described above, they used
MM-PBSA to determine the most favorable binding mode
among those suggested by docking. The proposed protein-
ligand complex, which had a MM-PBSA binding free
energy 10 kcal/mol more favorable than the second best one,
could explain the SAR data and was in good agreement with
the contour maps of the comparative molecular field analysis
(CoMFA) model (g2 = 0.6, F = 124.51). Furthermore, the
predicted complexed structure was quite close to the crystal
structure, which was released after the manuscript had been
submitted. The cross-validation between different methods
provides a useful way to evaluate a computer model in
complement to experiment.

Recently, Kuhn et al. further evaluated MM-PBSA as a
tool for drug discovery [12]. Their studies covered a variety
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of drug design approaches, which included virtual screening
and de novo design, and eight proteins and a large number of
inhibitors were involved. They concluded that MM-PBSA
was valuable as a post-docking filter in further enriching
virtual screening hits and was helpful in prioritizing de novo
design solutions, and could distinguish between good and
weak binders.

It is believed that the receptor conformation that is
adequate for a ligand to bind to occurs infrequently in the
unliganded receptor. Therefore, the common docking
protocol, flexible-ligand and rigid-receptor may fail to find
correct ligand-receptor binding modes. A receptor must be
flexible to adopt an appropriate conformation to
accommodate a specific ligand. Lin and McCammon ef al.
[102] proposed a relaxed receptor method in ligand design.
They first docked ligands to multiple snapshots collected
from a long MD simulation of the receptor. Then MM-
PBSA was employed to re-score the docking poses. They
found that the average distribution of the docking free
energies was about 2-3 kcal/mol for FK506 binding protein
FKBP-12 binding to a set of small molecules. They
concluded that by using the MM/PBSA protocol the
binding modes that were in agreement with the x-ray studies
were consistently ranked as the most stable complexes.

GBSA was applied by Taylor et al. in a two-stage
docking studies [103]. The first stage, the geometry-based
docking had four steps: clique detection, clique filtering,
clique embedding and clique clustering. In the second stage,
Monto Carlo simulations were used to further optimize the
poses produced in the first stage. A soft-core interaction
function and a GBSA model were employed in the
molecular mechanical energy-based scoring function. 13 out
of the 15 test protein complexes were able to find the
experimental binding mode in the rigid-protein, flexible-
ligand docking; in contrast to 11 out of the 15 for the both
flexible protein and ligand docking.

The solvation energy has also been applied as a
descriptor in QSAR studies. Nair ef al. [104] found that
polarization energy calculated by GB, the polar, non-polar
and total surface areas in addition to the 3D-QSAR
descriptors could substantially improve the performance of
QSAR models for the inhibitors of HIV-1 protease.

D. Other Applications

With a linear response of the dielectric assumption, Sulea
et al. [105] showed that the total reaction field was the
superposition of all the individual reaction fields of the
charges in the cavity and the reaction field energy had a
quadratic function form. The reaction field energy could be
rapidly calculated for an arbitrary value of ¢ at atom center i
if the coefficients were pre-calculated. Therefore, for a given
binding site and a given spatial arrangement of atoms in a
ligand, there existed an optimal set of partial charges at the
atom centers that would optimize the net electrostatic
binding free energy of the ligand. This idea could have a
great use in molecular docking and de novo ligand design.

MM-PBSA scoring function was applied by Silberstein
et al. [106] to identify the substrate binding sites of
enzymes. The algorithm placed a set of small molecules or
functional groups on a protein surface, and found the region
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that had the most favorable binding free energy. Their
method could find the consensus site that bound the highest
number of different probes. They also successfully mapped
thermolysin, for which experimental mapping results were
available, and six other enzymes that had no experimental
mapping data, but whose binding site were well
characterized.
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E. Summary

In Table 1, we list the protocols and some key
parameters of MM-PBSA and MM-GBSA analysis
employed in 54 papers. The sampling protocols include
single trajectory, individual trajectory, docking and
minimization; the parameters considered include the charge
method, radius parameter set and the solute dielectric

Table 1. A Summary of MM-PBSA and MM-GBSA Free Energy Calculations for 54 Papers
No. | Ref. Sys Calc Wat Sampl Free PB Prog Radius Solute Surface Entropy Performance /
Typel Type2 Mod3 | Protoc4 | Energy and GB Param Dielec Tension9 | Method10 Results11
TypeS Protocol 6 Set7 Const8

1 11 1 1 1 1 1 1 1 1 1 4 3and 4
2 12 3 2 1 2 1 1 1 1 1 1 1 and 2
3 13 3 2 2 2 1 1 1 1 1 1 1

4 14 1 1 and la 1 2 1 1 1 3

5 44 1 1 1 1 1 1 1 4 and 1 3and 8 4 3.4

6 45 lc 1 3 3 1 2 1 5 5 3

7 47 la 1 1 1 1 3 2 1 11 1 4

8 48 1b 5 1 1 1 1 1 7 4

9 49 2 1 1 1 3 5 1 N/A 1 4

10 50 2 1 1 1 1 1 1 1 1 1 3.4
11 51 2 1 1 1 1 1 1 1 1 1 3,4
12 52 2 1 1 1 1 1 1 1 1 4

13 54 3 2 2 2 1 1 1 1 1 1 1,3
14 55 3 2 2 2 1 1 1 1 1 1 1,3
15 56 3 2 1 2 1 1 1 1 1 1,3
16 57 3 3 1 1 and 3 1 1 1 4and 1 1 4 2,3

after 2a

17 62 3 2 1 1 and 2 1 4 1 1 2 1

18 63 3 2 2 2 1 1 1 1 1 1 3

19 64 3 2 1 2 1 1 1 1 1 1 2
20 66 3 2 1 2 1 2

21 67 3 2 4 1 2 4 6 1 3
22 68 3 2 GB MD 3 10 4

23 69 3a 3 2 2 1 1 1 1 1 4 2
24 70 3 2and 3 1 2 1 1 1 1 1 2
25 71 3 2and 3 1 2 1 1 1 1 1 1 2,3
26 72 3b 4 1 2 1 2 4
27 73 3 2 3 3 1 and 9 2 1 2 2 1

28 74 3 2 and 3 1 1 and 2 3 10 and 11 1 2 for PB 1 1 2,3

and
1 for GB
29 75 3 2and 3 1 1 2 10 1 2 1 2,3
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(Table 1)contd....

No. | Ref. Sys Calc Wat Sampl Free PB Prog Radius Solute Surface Entropy Performance /
Typel Type2 Mod3 | Protoc4 | Energy and GB Param Dielec Tension9 | Method10 Results11
TypeS Protocol 6 Set7 Const8
30 77 4 2 GB GB-MD 1 4
31 78 4a 2 2 2 1 5 1 4 1 1 3
32 79 4a 2 2 1 1 1 1 1 1 3
33 81 4 2 1 2 1 1 1 1 1 4 4
34 83 4 2 1 1 1 1 3 4
35 84 4a 2 4 2 after 3 1 1 1 2 9 3 4
after 4
36 85 4b 2 1 1 1 4 4
37 86 5a 2 1 2 1 1 1 1 1 4 1
38 87 Sa 2 1 1 1 1 1 1 1 1 1
39 88 5a 3 1 3 after 1 1 1 1 1 4 2
4a
40 89 5 2 3 1 1 2 7 3 4
41 90 6 2 la 1 1 6 5 2 4 4
42 91 7 2 1 2 1 1 1 1 1 4 2
43 92 7 2 5 3 after 4 1 2 4 7 1
44 93 Ta 2 GB 3 after 4 3 2 and 8 5 for GB 1 4 4
and
4 for PB
45 94 7 2 1 1 and 2a 1 1 1 1 1 4 2
46 95 7 2 4 3 2 and 8 1 1 2 4 4
47 97 8 2 2 1 4
48 98 8 3 2 1 3 1 1 4 2
49 99 3 2 2 2 1 1 1 1 1 1 1
50 101 3 1 2 1 1 1 1 1 1 1 3
51 102 3 2 1 4 1 4 2 6 1 2
52 103 3 and 2 4 2 8 2 4 2,4
4
53 106 1 1 N/A 1 7 4 N/A 4 4
54 122 4 2 4 la 2 3 1 N/A 4 4

System types: 1~proteins, la~peptide, 1b~protein and isomers, lc~protein loops, 2~DNA, 3~protein-ligand, 3a~antebody-ligand, 3b~protein-water, 4~protein-
protein, 4a-protein-peptide, 4b~peptide-peptide, 5~protein-DNA, Sa~protein-RNA, 6~protein-carbohydrate, 7~DNA-ligand, 7a~RNA-ion, 8~guest-host.

Calculation Type: 1~relative free energy, la~unfolding free energy, 2~binding free energy, 3~relative binding free energy, 4~relative electrostatic binding free energy,
S~energy landscape.

Water Model: 1~water box, la~water box, dummy atoms with LJ parameters that mimic the interior of lipid bilayer, 2~Water cap or water sphere, 3~GB; 4-explicit
water, S~vacuum.

Sampling Protocol: 1~individual trajectory, 2~single trajectory, 2a~single trajectory mutation, 3~minimization, 4~docking.

Free Energy Type: 1~MM-PBSA, la~MM-PB, 2~-MM-GBSA, 3~MM-PBSA and MM-GBSA.

PB Program and GB Protocol: 1~Delphi, 2-UHBD, 3~PBEQ in CHARMM, 4~APBS of Baker et al., 5~MEAD, 6~PNP, 7~CONGEN, 8~Hawkins et al. (GBSA) 9~Qiu
et al. (GBSA), 10~Jayaram et al. (GBSA), 11~Other GBSA models.

Radius Parameter Set: 1~Parse, 2~CHARMM, 3~AMBER, 4~BONDI. 5~(C: 1.7, H:1.0, N:1.5, 0:1.6, S:1.9, P:2.0A)

Dielectric constant of solute in PB or GB calculations

Surface Tension: 1~0.0054 + 0.92, 2~0.0072, 3~0.00542, 4~0.0055, 5~0.02, 6~0.025, 7~0.05, 8~0.054, 9~0.05818, 10~0.006 kcal/mol/ A2, 11~ Kyte and
Doolittle’s (J. Mol. Biol., 1982, 157, 105-132).

Entropy Method: 1~normal mode analysis, 2~quasiharmonic, 3~empirical approaches, 4~Not calculated, 5~implicitly considered in the colony free energy
calculations.

I~absolute values of free energies are well predicted, 2~relative values of free energies are well predicted, 3~good correlations between the calculated and experiment
are achieved, 4~can explain other experimental data.
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constant for PB or GB calculations, the surface tension for
estimating the non-polar solvation energy, and the entropy
calculation approaches. The following is a summary: most
studies performed MD simulations on complexes in explicit
water to get trajectories for single trajectory analysis; the
parse [25] parameter set was commonly used and the solute
dielectric constant was usually set to 1; dieletric constants of
2 and 4 were also tried in some studies; a set of diverse
surface tensions, including 0.0025, 0.0054, 0.006, 0.0072,
0.025, 0.05, 0.05818 kcal/mol/A2, were used; however,
most applications used 0.0054 with the constant b in
Equation 14 (b was set to 0.92 kcal/mol) [24-25]; about half
of the studies estimated the entropy contribution and normal
mode analysis was used in most cases; quasiharmonic
analysis and empirical methods were also utilized
occasionally by some users.

In terms of the performance of MM-PBSA and MM-
GBSA, in general, relative free energies and relative binding
free energies could be calculated with a considerable accuracy
(<2.0 kcal/mol), while the absolute binding free energies,
although in some studies good results were achieved, could
have a large error compared to experiment (up to 10.0
kcal/mol). Fortunately, the calculated free energies usually
could explain some experimental data and phenomena even
when large calculation errors happened. As to for what
systems MM-PBSA/GBSA tend to work well and for what
systems not, in general, for systems that have substantial
contributions to the free energy from buried charges, MM-
PBSA/GBSA may not perform well; on the other hand,
good results can be expected for the hydrophobic interaction
dominated systems. Yet, this is not always the case and
good results of both relative and absolute free energies could
be observed for almost all kinds of systems, including
proteins [14,44], nucleic acids [50-51], protein-ligand
[13,54,63], and protein-protein [76-79]. It is emphasized that
the above summary may be biased to some degree since we
only selected some representative papers published recently
in this field.

The absolute and relative MM-PB/GBSA free energies
are affected by many adjustable parameters that include the
van der Waals radii used in PB or GB solvation models, the
exterior and interior dielectric constants, and even the force
field parameters, etc. Although one could make the
calculated free energies reproduce experimental data well by
adjusting some parameters for his/her systems, the modified
parameters may not be transferred to other systems without a
problem. This free energy calculation approach should be
improved in a systematic and physical way. In the next
section, we will first discuss the perspective of the method
followed by discussion on how to improve the
methodologies from two aspects, both in accuracy and
efficiency.

IV. PERSPECTIVE AND CONCLUSION

In the above section, we have shown that MM-PBSA
and MM-GBSA have considerable promise in calculating
free energies for a wide variety of biological systems.
Although MM-PBSA and MM-GBSA do not have as a
solid theoretical basis as FEP and TI, it is computationally
more efficient. Moreover, compared to other free energy
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calculation methods including LIE and solvation docking,
MM-PBSA is more promising under some circumstances
owing to the fact that it does not require a training set to
derive empirical parameters in the first place, while LIE and
solvation docking do. As a newborn technique of free energy
calculations, MM-PBSA and MM-GBSA may have
limitations in many situations, for example, when explicit
water molecules form critical hydrogen-bond interactions and
some binding that involves divalent ions such as Mg2+ and
Zn2+. Furthermore, it is difficult to determine which solute
dielectric constant should be used a prior, although the
overall guideline is to use 1 for non-polar binding sites and
2 for polar binding sites and 4 if charged residues exist in
the binding sites. Experience on how to choose a reasonable
dielectric constant may be obtained by studying a set of
variant protein or DNA complexes (up to 100) that have not
only high-quality experimental structures, but also
experimental binding free energies. In the following section,
we will discuss how to improve MM-PBSA and MM-
GBSA.

This technology can be improved in two aspects, both in
accuracy and efficiency. The errors of MM-PBSA and MM-
GBSA may come from several sources: the molecular
mechanical force field error, the solvation free energy error,
the entropy error, and the error due to inadequate sampling,
etc. One of the most important issues in continuum
solvation models is how to define the dielectric boundary.
The dielectric medium is usually set to begin at the van der
Waals surface of the solute molecule. However, the van der
Waals radius parameters for PB and GB calculations are
charge method dependent and may not be necessarily the
same set used in the molecular mechanical force field. We
have argued that one needs to apply the same charges in both
MM and solvation free energy calculations in order to make
errors cancelled to a great degree. Unfortunately, there are no
radius-parameter sets developed for most molecular
mechanical force fields. The Parse parameter set, which
theoretically should be used together with the Parse charges,
is widely-used in combination with other charge methods,
including the HF/6-31G* RESP charges. The performance of
PBSA solvation free energies of a set of small molecules by
using RESP charges and Parse radius parameters are listed in
Table 2. The first 29 molecules are amino acid side chain
analogs, while the other 38 small molecules are chosen to
cover most of the functional groups. The structures of these
molecules are shown in Fig. 3. The average unsigned errors
(AUE) and the root-mean-square errors (RMSE) are listed in
Table 3. One could see that the errors are very large for all
three solute dielectric constants (€ =1, € =2, € = 4). The
smallest AUE and RMSE were achieved when dielectric
constant was 2, which were 1.55 and 2.04 kcal/mol,
respectively. It should be pointed out that the error of
calculated MM-PBSA binding free energy by using the
combination of RESP charge and Parse radii could be
unacceptably large for a small or medium-sized molecule,
especially in a scenario that the ligand molecule is well-
buried in the binding pocket and the errors can not be well
cancelled.

Recently, we have developed a set of radius parameters
that are consistent to the HF/6-31G* charges. The 404
training set molecules are from our previous work.107 The
PBSA free energies with the newly-developed radius sets are
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also listed in Table 1 for comparison purpose. The AUE and
RMSE, which are only marginally larger than the
experimental errors, are significantly smaller than those of
the RESP/Parse protocols. The parameterization for GBSA
was also reported recently. Zhang et al. [108] found that the
GB radii, which were obtained by timing 1.1 of the
corresponding OPLS Lennard-Jones radii (a/2) plus 0.05,
could make the GB solvation energies well reproduce those
calculated by free energy perturbation for 38 small molecules
(the AUE is 0.6 kcal/mol). A popular analytical GB
solvation model was modified by Onufriev and Case et al.
[109] to improve its accuracy in calculating the solvent
polarization part of free energy changes in large-scale
conformational transitions, such as protein folding. The new
algorithm was implemented in AMBER7 and AMBERS.

It is believed that the repulsive cavity term and attractive
van der Waals solute-solvent interaction term of non-polar
solvation energy can be modeled independently. The cavity
term, which mainly accounts for the entropy change of
solvent reorganization when a solute immerses in solvent, is
proportional to the solvent accessible surface area. However,
the solute-solvent dispersion interaction energy component
depends on the atomic composition of the solute.
Gakkuccgui ef al. [110] and Levy et al. [111] tried to
decompose the non-polar component and to model the
solute-solvent van der Waals energy separately. Gakkuccgui
et al. designed seven fitting functions to optimize the
surface tensions and constants of SAS classified by atom
types to reproduce experimental solvation energies of a set of
small organic molecules. Unfortunately, the parameters may
not be used for macromolecules without modification, since
buried atoms in macromolecules may also contribute to the
solute-solvent van der Waals energy. Levy ef al. found that
the linear correlation between SAS and the solute-solvent
van der Waals energies calculated through explicit MD
simulations could not be well transferred from the training
set to the test set.

To improve the efficiency of MM-PBSA and MM-
GBSA free energy calculations, actions may be taken in the
following two aspects. First of all, one may run MD
simulations using implicit water models, such as in GBSA
and PBSA, instead of an explicit water model. PB-MD
[112] and GB-MD have been available in Macromodel [113]
and the AMBER software packages. Although the
conformations sampled by PB-MD and GB-MD for post
energetic analysis may not be as good as those sampled by
MD in explicit solvent, PB-MD and GB-MD can save a lot
of CPU hours not only in the sampling stage, but also in
the post-analysis stage since many solvation energy terms
are calculated during the simulations. The simplified
sampling protocol used by Reyes [86-88] can also be applied
under certain circumstances.

Secondly, the entropies (translational, rotational and
vibrational) of each species need to be calculated if one
wants to know the absolute binding free energies or the
values are substantially different for two conformations in
relative energy comparisons. Normal mode analysis (NMA)
is the widely approach although it is not perfect due to its
not considering anharmonic effect. NMA, which is
computationally expensive, especially for macromolecules of
more than 5000 atoms, is one of the bottlenecks of MM-
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PBSA and MM-GBSA. Another approach, so called
quasiharmonic analysis, is clearly sensitive to simulation
length and inadequate or unconverged sampling may cause
substantial errors [62]. A much simpler approach of
estimating the conformational entropy is to perform side-
chain rotational analysis [114]. An empirical scale, RA, is
defined as the calculated accessible surface area of the side
chain divided by the surface area of the side chain in the
extended state. If RA is greater than 60%, the side chain is
assumed to rotate freely, and if not, it is regarded as a buried
side chain and just one rotamer. Recently, Gohlke et al.
[115] proposed a rapid method to estimate vibrational
entropy changes upon macromolecular complex formation by
using the result of network analysis [116]. For a data set of
10 protein-protein complexes with widely varying
properties, total vibrational entropy changes determined by
their method correlated well (#2 = 0.84) with those obtained
from NMA but it only required a fraction of computational
time of NMA. A new algorithm, which is based on solvent-
accessible surface area, is being developed to calculate the
entropy accurately and efficiently by ourselves.

Thirdly, one could develop a set of MM-PBSA-like
approaches by replacing PBSA and GBSA with simpler
models, such as solvation models based on weighted solvent
accessible surface area classified by atom types [107,117-
119], and atomic contact energy (ACE) approaches [120-
121].

Recently, Cerutti and McCammon ef al. developed an
efficient algorithm to calculate the electrostatic and non-polar
solvation energies of protein-protein interaction. Their
method, so-called ELSCA (Energy by Linear Superposition
of corrections Approximation), was a correction protocol
based on a distance-dependent dielectric, a scaleable function
describing the buried surface area between two interacting
spheres, and a set of potentials of mean force between
distinct types of atoms. ELSCA was trained by a linear
least-squares fit on more than 39,000 putative complexes
and tested against over 8000 non-native complexes. A good
correlation of 0.962 was achieved between ELSCA and the
MM-PBSA energies of the non-native complexes. When
applied to native complexes (45 protein systems), ELSCA
reproduced PBSA results with a lower correlation of 0.787.
As a very fast method, ELSCA is useful in macromolecular
docking and protein association simulations [122].

With these improvements, we expect that MM-PBSA
and MM-GBSA could help to make molecular mechanics
approaches more useful in the “end games” of protein
structure prediction and drug design [123].
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