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Abstract: Even though alterations in the microenvironmental properties of tissues 

underlie the development of the most prevalent and morbid pathologies in developed 

countries, they are not directly observable in vivo by conventional Magnetic Resonance 

Imaging (MRI) or Spectroscopy (MRS) methods. This circumstance has lead to the 

development of a wide variety of exogenous paramagnetic and diamagnetic MRI and 

MRS probes able to inform non invasively on microenvironmental variables such as pH, 

pO2, ion concentration o even temperature. This review covers the fundamentals of 

environmental contrast and the current arsenal of endogenous and exogenous MRI and 

MRS contrast enhancing agents available to visualize it. We begin describing briefly the 

physicochemical background necessary to understand paramagnetic and diamagnetic 

contrast enhancement with a special reference to novel Magnetization Transfer and 13C 

Hiperpolarization strategies. We describe then the main macrocyclic structures used to 

support the environmentally sensitive paramagnetic sensors, including CEST and 

PARACEST pH sensitive probes, temperature probes and enzyme activity or gene 

expression activatable probes. Finally we address the most commonly used diamagnetic 

contrast agents including imidazolic derivatives to reveal extracellular pH and tissue 

pO2 values by MRS. The potential applications of these agents in mutimodal and 

molecular imaging approaches are discussed. 

 

Key words: Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Tissue 

Microenvironment, Contrast Mechanisms, Paramagnetic Contrast Agents, Diamagnetic 

Contrast Agents, 13C Hyperpolarized molecules, Molecular Imaging. 

 



 3

1. INTRODUCTION 

< Figure 1, near here> 

The extracellular space of tissues is located between the cellular architectures 

and the capillary network providing a vital environment for intercellular communication 

and regulatory metabolic interactions (Figure 1). The biochemical profile of this 

compartment modulates many vital intracellular functions including differentiation [1], 

tissue regeneration [2], angiogenesis [3], metastasis [4], proliferation [5] and apoptosis 

[6] or necrosis [7], among others. The extracellular “millieu” is characterized by a 

collection of environmental properties, such as pH, pO2, ionic composition or diffusion, 

which are significantly different from those present in the intracellular or vascular 

spaces, configuring in this way a physiologically distinct compartment (Figure 1). 

Alterations in the environmental properties are known to occur very early during disease 

development, providing precious information for the diagnosis, prognosis and therapy 

assessment of the most prevalent and morbid pathologies in developed countries, with 

particular emphasis in cancer and ischemic episodes [8-10]. On these grounds, non 

invasive imaging of the extracellular microenvironment has gained substantial scientific 

and clinical interest in the last decades [11-13]. The biochemical properties of this 

compartment result from the balance between the cellular uptake and metabolism of 

substrates as glucose and oxygen from the capillaries, and the removal of waste 

products as lactate and H+ through the tissue microvasculature (Figure 1A). Intracellular 

oxidative metabolism leads simultaneously to the production of freely diffusing CO2 

and water (in fast equilibrium with HCO3
- and H+ through carbonic anhidrase). 

Reductions in glucose or oxygen delivery either by systemic metabolic limitations or 

inadequate performance of the local capillary network, result in extracellular lactate and 

proton accumulation, two conditions commonly found during the early development of 
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most pathologies (Figure 1B). Environmentally sensitive contrast agents (CA´s) are 

molecules designed to respond to physiopathological alterations in the values of 

extracellular pH, pO2, lactate, glucose, ions as Ca2+ or Zn2+, red-ox state or even 

temperature, in a manner detectable by MRI or MRS methods [14-17]. A variety of 

paramagnetic and diamagnetic “smart CAs” have been designed for this purpose. This 

review provides an integrative overview on the development and properties of these 

agents.  

The first generation of CA´s included highly stable paramagnetic lanthanide 

chelates with linear or macrocyclic ligands derived from diethylendiaminopentaacetic 

acid or tetraazamacrocyclic structures. These complexes, despite proving considerable 

capacity to reduce the relaxation times of tissue water in vivo, remained non specific 

hampering to obtain the microenvironmental information desired from the observed 

contrast enhancement. Improvements in the understanding of the structural and dynamic 

determinants of water relaxation in the presence of paramagnetic chelates, allowed for 

the rational design and synthesis of optimized ligands and chelates with improved 

relaxivity and fine-tuned sensitivity to microenvironmental factors [16,18-20]. Despite 

spectacular improvements, the use of environmentally sensitive paramagnetic chelates 

is, however, not devoid of important drawbacks under in vivo conditions. In particular, 

the relaxivity effects observed may derive frequently, from factors additional to those 

being investigated including the concentration of the probe or the environmental effects 

of microviscosity, limited water diffusion and eventually local temperature changes. 

These uncertainties prompted the development of alternative diamagnetic probes able to 

determine the microenvironmental properties in vivo in the absence if these 

interferences [21]. 
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In parallel with the development of MR imaging strategies, early progress in 

localized Magnetic Resonance Spectroscopy methods, allowed to obtain the metabolic 

fingerprint of healthy and diseased tissues and lesions [22]. The initial in vivo spectra 

localized a single tissue volume, but could soon be resolved in space generating 

multivoxel 1H and 13C MRSI spectroscopic maps with resolution approaching that 

provided by Possitron Emission Tomography (PET) and other nuclear medicine 

techniques [23]. However, as in the case of MRI, the MRS observation of endogenous 

metabolites did not disclose directly the properties of the extracellular environment. 

This made it necessary to synthesize novel collections of “ad hoc” exogenous 

diamagnetic sensors able to reveal, the values of tissue pH and pO2, not previously 

obtainable from the profile of endogenous metabolites.  

In this work we wish to provide an integrative view on the arsenal of 

paramagnetic and diamagnetic contrast agents currently available to investigate the 

tissue microenvironment. We begin by introducing the physicochemical background 

supporting the paramagnetic and diamagnetic strategies of environmental contrast 

enhancement. We then describe the paramagnetic ligands and chelates most commonly 

used in these studies. To finalize, we address the use of environmentally sensitive 

diamagnetic contrast agents currently available for the MRI/MRS approaches. Many 

related topics could not be covered here to make this review compatible with the 

allowed length. In particular, the following literature is recommended to complement 

and extend the information on synthesis and coordination chemistry of macrocyclic 

structures [24-27], their coupling to proteins or antibodies for cell targetting [28,29], 

superpaparamagnetic or ferromagnetic nanoparticles [30,31] or liposome formulations 

[32-34]. A comprehensive perspective on the fundamentals of paramagnetic relaxation 

and the early agents may be found the classical books edited by Merbach and Toth [35] 
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or Krause [36], and in the reviews of refs. [18,37-39]. Earlier accounts on diamagnetic 

probes may be found in [21]. Finally, for comprehensive information in novel 

nanotechnology approaches and liposomal formulations the reader is referred to refs. 

[40-42]. 

 

2. AN INTEGRATIVE VIEW ON PARAMAGNETIC AND DIAMAGNETIC 

CONTRAST  

 Contrast enhancement in MRI or MRS (Δc) may be defined as the difference in 

intensity between the same pixel or the same collection of pixels (region of interest) in 

the pre-contrast (Ipre or Īpre) and post-contrast (Ipost or Īpost) MR images;  

    Δc= Ipre-Ipost  ≈ Īpre- Īpost    (1) 

Enhanced image contrast may be then, produced by any differential manipulation of the 

Ipost intensity, normally achieved through the administration of an adequate exogenous 

contrast agent or probe. Paramagnetic contrast agents increase Δc by modifying the 

relaxation properties of tissue water in the regions where they accumulate, while 

diamagnetic contrast agents enhance spectroscopic images by introducing new 

resonances from the exogenous spectroscopic probe. Notably, both approaches are able 

to induce the same Δc becoming entirely comparable from this perspective. However, 

diamagnetic and paramagnetic contrast agents are normally treated independently in the 

literature. Here we aim to combine both approaches, since both seek to improve Δc. The 

intracellular, extracellular or vascular confinement of the administered diamagnetic or 

paramagnetic probe determines the compartmental origin of image contrast observed. 

Endogenous metabolites are normally considered to have a primarily intracellular 



 7

origin, while exogenous paramagnetic and diamagnetic probes are thought to enhance 

contrast derived from the extracellular and vascular environments. 

 

3. FUNDAMENTALS OF PARAMAGNETIC CONTRAST ENHANCEMENT  

The ability of paramagnetic probes to increase the relaxation rates r´1,2,2* of 

solvent water is a linear function of the concentration of the contrast agent [CA], the 

slope of which  is known as r1,2,2* relaxivity (measured in s-1.mM-1); 

r´1,2,2* = r0
1,2,2*+ r1,2,2*[CA]    (2) 

where r0
1,2, 2* represent the relaxation rate of the water protons in the absence of contrast 

agent [43]. The higher the relaxivity of the probe the more potent and sensitive the agent 

becomes and the smaller the concentration required to obtain MRI detectable changes in 

water relaxation [18].  

< Figure 2, near here> 

The enhancement in the water relaxation rate originates from the direct contact 

of one or more water molecules with the unpaired electron(s) of the paramagnetic metal. 

Paramagnetic contact results in a transfer of electronic magnetization that reduces 

relelaxation times of the coordinated water molecule (T1m), which then exchanges fast 

with the remaining water molecules of the solvent (kex), magnifying enormously the 

effects of the initial paramagnetic interaction. Gd(III) was chosen as the optimal 

paramagnetic lanthanide because of its seven unpaired electrons in d orbitals (the largest 

within the lanthanide series) and its relatively slow electronic relaxation rate (ca. 10ps). 

Both circumstances provide the most intense paramagnetic effect among the lanthanide 

series and the longest electronic magnetization transfer period during the residence time 

of the coordinated water molecule over the paramagnetic ion. However, free Gd(III) 

ions are toxic in vivo, mostly because of their very favourable competition with the 



 8

endogenous Ca2+ ions necessary for the operation of many biochemical and 

physiological processes. This circumstance imposed, for safety reasons, to use Gd(III) 

chelates with extremely high kinetic and thermodynamic stability, rather than the free, 

hydrated Gd(III) ion [44].  Upon chelation, up to eight sites out of the nine available in 

Gd(III) are occupied by the polydentate ligand, leaving normally only one vacant site 

for water contact and exchange. Even with this precaution, the possibility of 

transmetallation in vivo is not negligible. The competitive substitution of chelated 

Gd(III) by physiologically competing metals (Ca2+, Zn2+ or Mn2+ among others), 

liberating free Gd(III) into the tissue entails considerable risk, probably underlying 

some of the nephrogenic cystic fibrosis cases observed in renally compromised patients 

after repeated administration of some Gd(III) chelates [45-47]. In addition to Gd(III) 

many other paramagnetic metals may be used (although less efficiently) for these 

purposes, including mainly Dy(III), Eu(III), Mn (II) or Fe(III). 

The relaxation enhancement induced in water by paramagnetic ions involves two 

different effects; the inner (ris) and outer (ros) sphere contributions to relaxivity, each 

one representing approximatelly 50% of the total relaxivity observed [18,37,43,48]. 

Inner sphere contributions are due to those water molecules in direct contact with 

Gd(III) ion, while outer  sphere effects involve the contributions of solvent molecules 

external to the complex, but still maintaining an efficient exchange with those of the 

inner sphere. Only the inner sphere effects can be adequately modulated by 

manipulating the chemical structure of the ligand. Very briefly, the relaxation of water 

molecules in the inner sphere of a paramagnetic chelate may be described theoretically 

by an intricate, highly non linear function of the number of water molecules coordinated 

to the paramagnetic metal (q), the correlation time of the complex (τc) and the exchange 
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rate (kex) of water molecules in the inner coordination sphere of the paramagnetic metal 

[18,37,43,48]; 

r1is= f (q, τc, kex)    (3) 

The first improvements in the structure of the ligands agents seeked to improve 

their relaxivity values. Relaxivity of the early chelates lied in the range 3-4 s-1.mM-1, 

being significantly smaller value than the predicted theoretical limit of ca. 100 s-1.mM-1. 

Increasing the q values, slowing down the molecular rotation τc (e.g. by increasing the 

molecular weight of the complexes using dendrimeric materials or binding to 

macromolecules) and favouring a faster water exchange (increased kex), produced 

significant increases in relaxivity reaching the 30-40 s-1 mM-1 range. This knowledge on 

the determinants of relaxivity and their structural basis allowed then for the design of  

activatable probes, showing relaxivity changes in response to environmental factors as 

temperature, pH, metabolites, enzymatic activity or even gene expression through the 

effects of these variables of q, τc or kex, respectively [14,16].  

 

4. FUNDAMENTALS OF DIAMAGNETIC CONTRAST ENHANCEMENT  

In addition to the paramagnetic probes, contrast in Magnetic Resonance Images 

may be improved by diamagnetic methods through the selective perturbation of the 

chemical exchange of endogenous water molecules or the selective enhancements of 

their different diffusional components. Spectroscopic methods add to these classical 

diamagnetic imaging approaches by providing spectroscopic probes sensitive to 

microenvironmental factors as pH or pO2. While it is possible to discriminate between 

the intra- and extracellular environment because of the faster water diffusion in the later, 

perturbations involving water exchange are more difficult to interpret, since 

magnetically labelled water may exchange between the intra- and extracellular 
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environments several times during the measurement time, providing a weighted average 

of the contribution from these two environments. In spite of this, it is normally 

convened in all these cases, that the use of non permeable exogenous probes primarily 

reflects the properties of vascular and extracellular compartments while the use of 

endogenous metabolites reflect mainly the intracellular environment. 

Chemical Exchange 

<Figure 3, near here> 

The most abundant endogenous diamagnetic probe in vivo is the water molecule, 

accounting for approximately 80% of the tissue weight in adult mammals [49]. The 

presence of at least two dynamically different and mutually exchanging types of water 

molecules in vivo, those freely mobile and those trapped as solvation water in 

biomacromolecules, open the possibility to enhance contrast by manipulating this 

exchange [50]. The method is based in the early proposal of Forsen and Hoffman to 

determine exchange rates through saturation transfer experiments  [51]. Free solvent 

water has a fast rotational and translational correlation time ca. 1 ps originating a 

narrow resonance, while solvation water, partially immobilized over the surface of 

macromolecules, acquires the macromolecular rotational and translational dynamics (in 

the ns range) originating a downfield shifted (typically 2-4 ppm), broad, water 

resonance [49]. This dynamic difference underlies an interesting source of MRI contrast 

based in the exchange between these dynamically different environments (Chemical 

Exchange Saturation Transfer, CEST) [52]. First, for this two populations of water 

molecules to be resolved as two resonances, the exchange rate kex between them must 

be slower than the chemical shift difference Δω between both resonances (Δω>>kex). 

Under these conditions, it is possible to saturate the broad component and observe a 

decrease in the intensity of the narrow one. The faster the exchange kex between these 
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populations, the more saturation transfer is observed [53]. However, the exchange rate 

can never exceed the “slow exchange” limit (Δω>>kex), so the approach is inherently 

limited to measure rates slower than Δω, normally few 1H NMR ppm between 

diamagnetic molecules (DIACEST).  Notably, it is possible to increase dramatically 

Δω by using lanthanide “shift reagents”. These molecules are chelates of different 

lanthanides, particularly Eu(III) or Dy(III), able to increase Δω up to ca. 50 ppm, 

improving considerably the range of exchange rates measurable.  Moreover, different 

Δω can be induced using different lanthanides, an opportunity that allows to “fine tune” 

different saturation frequencies for different purposes, through the use different 

lanthanide complexes, even if the same ligand is used. 

The saturation transfer phenomenon is not restricted to exchanges between water 

molecules. In the Amide Proton Transfer (APT) method, the exchange of magnetization 

between the amide protons from tissue peptides and proteins and those of solvent water 

is observed [54]. In these cases it is possible to induce decreases in the solvent water 

resonance intensity after irradiating the amide region, the effect being larger for larger 

protein concentrations, a circumstance that allows the estimation of protein and peptide 

concentrations in vivo [55,56]. 

The exchange of protons between water and the amide protons is pH dependent, 

allowing also the investigation of tissue pH from the exchange rates determined by 

Chemical Exchange Saturation Transfer with a variety of diamagnetic molecules 

including proteins [57-59]. The compartmental origin of the dominant exchange 

mechanism determines the physiological environment where the pH is monitored. In the 

APT method, the pH value visualized corresponds most probably to the intracellular 

compartment, since the intracellular protein and peptide concentrations are larger than 

those in the extracellular space. This approach may be also enhanced to the use of 
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exogenous pH sensitive paramagnetic chelates (PARACEST) [14,16]. In these cases the 

exchange of water molecules between the coordination sphere of the paramagnetic 

center and the bulk solvent is also pH sensitive. Since these probes are mainly 

extracellular, the pH values visualized are thought to correspond primarily to the 

extracellular environment. PARACEST approaches entail enormous versatility since 

different environmental properties may visualized in the same imaging experiment by 

using selective irradiation frequencies of a suitable collection of lanthanide chelates 

with different Δω. In should be possible then to obtain intra- and extracellular pH 

images from the same tissue using endogenous and exogenous CEST and PARACEST 

agents. 

Translational diffusion 

< Figure 4, near here> 

The translational movements of water provide an additional opportunity to 

induce and observe tissue contrast since they can be conveniently monitored by 

diffusion weighted MRI methods [60]. Following the Stokes-Einstein relationship, the 

Apparent translational Diffusion  Coefficient (ADC) of water is highly dependent on the 

molecular obstructions that the water molecule finds in its random movements. These 

obstructions are higher in the intra- than in the extracellular environments, resulting in 

slower intracellular diffusion. Moreover, it has become recently possible to explore the 

translational diffusion of water in any direction of space, simply by modifying the 

orientation of the applied diffusion sensitizing gradient [61]. This made it possible to 

unravel the dominant direction of translational water movements solving the diffusion 

tensor, a procedure allowing, in the central nervous system, the detection of the faster 

diffusion of water molecules through the neuronal axons and the preparation of maps of 

neuronal tracts through the white matter [62]. To our knowledge, Single Wall Carbon 
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Nanotubes are the first agent communicated to induce differential diffusion of the water 

molecules with a predominant direction oriented through the longitudinal axis of the 

nanotube, allowing in this way to induce exogenous contrast in Diffusion Tensor 

Images [63]. 

Spectroscopic methods 

pH sensors 

The potential to determine pH from MRS measurements was soon realized [64-

66]. Briefly, it is possible to measure pH from the changes in chemical shift of a proton 

(or other magnetically active nucleus) located in or close to an ionisable group in a 

molecule. In a general reaction of the type 

A- + H+ → AH 

where A- and AH represent the anionic and acidic forms, characterized by chemical 

shifts δA- and δAH,  pH may be calculated from the expression, 

pH = pKa + log ((δ-δA)/(δAH-δ))   (4) 

where pKa represents the pKa of the ionisable group in A and δ the observed chemical 

shift of the pH sensitive proton. The most useful probes in vivo, are those with pKa 

values in the vicinity of physiological pH, in the 6.5-7.5 range. The larger the chemical 

shift interval between δA y δAH, the better the pH resolution from the δ measurement. 

The intra- or extracellular location of the pH probe allows for the measurement of either 

intra- or extracellular pH. Inorganic phosphate and phosphonate derivatives, have been 

classically used as intra- or extracellular probes in 31P NMR [67,68], while non 

permeant imidazolic derivatives were implemented more recently to measure 

extracellular pH with the inherently increased sensitivity and spatial resolution provided 

by 1H NMR [69]. The imidazolic H2 proton, reflecting the ionization state of the N3 

nitrogen, is normally used for these purposes since; (i) it is conveniently located in the 
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aromatic region and thus, not interfering with the endogenous metabolite resonances 

and (ii) depicts a relatively large chemical shift variation of ca. 1ppm in the 

physiological pH range [70]. 

pO2 sensors 

< Figure 5, near here> 

Nitroimidazoles have been classically used as probes to detect hypoxia in a 

variety of imaging modalities including MRI (19F and 1H), PET (Figure 8b),[71,72] 

SPECT [73] and optical methods (Figure 8c)[74,75].  

Briefly, the nitro group depicts a redox potential similar to NAD(P)H and is 

reduced in vivo under hypoxic conditions to very unstable hydroxylamine or amine 

derivatives that react easily with intracellular electrophiles to form adducts [76]. The 

chemical reduction of hydroxylamine derivatives and the subsequent chemical 

transformations have also been investigated [77,78], however the precise mechanism of 

nitroimidazole reduction in vivo remains still incompletely understood. 

Several attempts have been made to design rationally an optimized oxygen 

sensor based on nitroimidazole derivatives. The structure of most nitroimidazole based 

sensors (Figure 5a) may be divided in two parts: the nitro moiety and the lateral chain. 

The former is linked to an aromatic ring (usually imidazole) and is responsible of 

bioreduction of the molecule. The lateral chain is responsible of biodistribution, tissue 

penetration, elimination rate, etc.[79], carrying in most cases the “chromophore atoms” 

(19F, 18F, 125/123I, 99mTc). The general properties of these molecules may be, thus, fine 

tuned for specific purposes by modifying appropriately either the imidazol ring or the 

lateral chain, respectively. The improvements achieved may include: enough solubility 

in aqueous medium balanced with and adequate lipophilicity, stability and more feasible 

syntheses.  
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Hyperpolarized sensors 

Spectacular increases in 13C NMR sensitivity of up to 10.000 times have been 

obtained by hyperpolarizing 13C enriched substrates opening an avenue to 13C imaging 

of endogenous metabolites in health and disease [80-82]. Several hyperpolarization 

strategies have been described including the Brut Force method, the Optical Pumping 

method, the Parahydrogen method and the Dynamic Nuclear Polarization (DNP) 

method [83,84]. Of these the most relevant for environmental purposes is the DNP 

method. The technique is based in the transfer of electronic magnetization from a 

Gd(III) to the 13C nucleous, in the solid state and at very low temperature (4K), with the 

help of a suitable catalyst. The hyperpolarized 13C molecule can then be transferred into 

solution [85], injected in animals or administered to cells, and its metabolism followed 

kinetically by 13C NMR and resolved in space by 13C MRSI [86], for a period as long as 

the hyperopolarized state lasts, normally less than 200 s. Endogenous HCO3
- is 

normally observed after the administration of (1-13C) pyruvate or (1-13C) lactate, after 

decarboxilation by pyruvate dehydrogenase in the tricarboxylic acid cycle [87,88]. The 

carbonic anhydrase equilibrium (Eq. 5) is sensitive to pH, making it possible to 

determine pH from the relative intensities of the resonances of 13CO2 and 13CO3H- 

resonances [89,90];. 

CO2 + H2O    ↔     CO3H- + H+   (5) 

 
 
4. PARAMEGNETIC AGENTS 
 
pH sensors 

Relaxivity probes 

<Figure 6, near here> 
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Complexes showing pH dependent relaxivity are of particular interest since they 

may afford to distinguish rather easily, cancerous or ischemic tissues (pHe = 6.6-6.9) 

from the surrounding healthy tissue (pHe = 7.2). In these cases, the protonation of a 

donor atom (O or N) in the complex may change the conformation of the pending arms 

and allow for competitive binding of an additional water molecule, increasing in this 

way the q value and the relaxivity of the complex. The first generation of paramagnetic 

complexes revealing pH changes consisted of Gd(III)DOTA derivatives containing 

amide or phosphonate pending arms [91,92]. Gd(DOTAM-MP)3+ (Figure 6A) [92] 

shows several pH jumps in its relaxivity between pH 3 and 8. NMR studies indicate that 

Ln(III) ion is bound by the four amide O-atoms and the four N-atoms of the cyclen 

backbone and that the first coordination sphere is completed by a water molecule. The 

phosphonate groups are not coordinated to the Ln(III) ion and are responsible of the pH 

dependence. This is so because the pKa of phosphonates is in the physiological range, 

making these agents to show pH dependent relaxivity, through the opening or closing of 

the phosphonate structure. This circumstance facilitated or hampered water contact with 

the Gd(III) core and thus sensitized to pH the relaxivity value. Calibration of the 

dependence of relaxivity with pH allowed the determination of pH from relaxivity 

measurements. An important limitation of the method was, however, that relaxivity of 

the CA was dependent also on the CA concentration, making it difficult to discriminate 

in vivo if the observed change in relaxivity was derived from a change in pH or a 

change in the concentration of the probe. In spite of this, valuable measurements of 

extracellular pH were performed after dual administration of pH responsive and non 

responsive agents [93-95] or through the application of T1/T2 ratiometric methods [96]. 

In a different approach (Figure 6B), the binding of water molecules to the 

paramagnetic center under ambient conditions is prevented by the interaction of 
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hydrogen carbonate with the metal ion in a macrocyclic tetraazatriamide complex, 

Gd(DO3A-Ala) [91,97]. In an acidic medium (pH < 6), the hydrogen carbonate ion will 

be protonated and displaced by two water molecules resulting in an increase of the 

complex relaxivity. Finally, metabolites other than protons and water may be imaged 

using the important effects on the relaxivity of Gd(III) DO3A induced by lactate or 

inorganic phosphate, provided the effects of agent concentration can be corrected [98]. 

PARACEST probes 

The use of the pH dependence of the rate constant for Chemical Exchange 

between water and an ionizable group of the agent has been used recently to measure 

pH and other environmental factors by Magnetization Transfer methods [16,99-101]. 

This approach overcomes one of the most important limitations of the relaxivity 

method, making the measurement independent of the concentration of the agent utilized. 

Upon saturation of the exchangeable resonance, a decrease is observed in the intensity 

of the free water resonance that is proportional to the rate constant of exchange between 

both sites, and thus to pH. The initial pH sensitive diamagnetic agents (DIACEST), as 

barbituric acid, required large concentrations (ca 60 mM) for an appreciable effect on 

the MR image [58,59] although protocols to decrease the large concentrations required 

have been proposed more recently [102]. An interesting variant of this method used 

endogenous polypeptides, whose large number of pH sensitive, water exchanging, 

amide bonds (Amide Proton Transfer, APT) decreased drastically the polypeptide 

concentration necessary to observe the magnetization transfer (MT) effect [53,55,57]. 

As mentioned above, an important limitation of the pH measurement by DIACEST 

methods is the restricted dynamic range of rate constants obtainable, derived from the 

“slow exchange” limitation between resonances separated only by  ca. 3 ppm. 
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DIACEST molecules were soon followed by the PARACEST probes, 

comprising basically complexes with different lanthanides and ionizable groups, 

depicting enormous “paramagnetic shifs” Δω (ca. -50 ppm), exchanging magnetization 

with the surrounding water in a pH dependent manner (Figure 6C) [16,103]. Weakly 

paramagnetic complexes from amide cyclen derivatives have shown to act as suitable 

MT contrast agents (Figure 6C). The Eu(III) complex from ligand 1 has a bound-water 

resonance near δ = 50 ppm, with an exchange lifetime of approximately 350 μs, acting 

as a powerful PARACEST agent [100]. The corresponding complexes of 3 with lighter 

Ln(III) ions (Pr, Nd, and Eu) are also pH responsive “single-molecule CEST agents” 

[100]. The Yb(III) complex from 1 with eight exchangeable, hyperfine-shifted amide 

protons, is reported as a prototype of high-sensitivity MT agent [92] .  

Eu(III) complexes of cyclen-based ligands have been proposed additionally as 

glucose and lactate sensors by CEST imaging detection [100,104,105]. Both, the free 

ligands and their Eu(III) complexes bind selectively simple sugars, with different 

binding affinities depending on the sugar structure. Recently, nitric oxide has been 

added to the molecules potentially detectable by CEST agents [106]. Finally, a variety 

of PARACEST probes have been proposed to detect in vivo temperature [107,108]. 

The CEST and APT methods, although brilliantly performing in vitro, present 

also some difficulties of interpretation in vivo. In particular, the intra- or extracellular 

origin of the MR effect (or pH measurement) is difficult to establish, since the 

magnetized water molecule that exchanges with the probes may move in and out of the 

cell during the imaging time, resulting in an averaged contribution of these two different 

environments to the pH value determined. In addition, the possibility that additional 

magnetization exchanges occur between water molecule and other endogenous 

ionizable groups from the tissue, cannot be completely excluded, probably masking in 
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part an accurate pH measurement. Finally, since pH dependent exchange is a diffusion 

limited process, local changes in the apparent diffusion coefficient of water could 

contribute as well to the pH measurement, introducing additional sources of uncertainty 

on the accuracy of the pH value measured in vivo using this method. 

Other probes  

In addition to pH, the cyclen structure may be sensitized to a variety of 

additional circumstances including Ca2+, enzyme activity, gene expression, temperature, 

lactate or glucose, providing the most versatile platform currently available for 

environmental studies. Interestingly, Meade and co-workers reported a calcium 

sensitive contrast agent, Gd2(DOPTA) [45]. The ligand consists of two DO3A units that 

are linked via an EGTA [29] type spacer carrying two aromatic iminodiacetate groups. 

In the absence of Ca2+, the iminoacetate functions are coordinated to the Gd(III) ions 

which under these conditions are inaccessible to water. However, in the presence of 

Ca2+, the carboxylate groups rearrange to bind this ion and two vacant coordination sites 

on each of the Gd(III) ions are now able to bind water molecules. This results in an 

increase in the relaxivity from 3.26 to 5.76 s-1 mM-1. 

MR images from healthy and diseased tissues would greatly benefit from the 

detection of gene expression in vivo [109,110]. The first contrast agent reporting 

enzyme activity described in the literature was Gd(DO3A-gal), a DOTA type ligand in 

which one of the carboxylate groups is replaced by a galactose moiety [46,[111]. The 

galactose moiety protects the metal ion from water binding. As soon as the enzyme β-

galactosidase cleaves off the sugar, [Gd(DOTA)]- is formed with the inner sphere 

accessible for the coordination of a water molecule, with the consequent increase in 

relaxivity. Since many exogenously administered genes carry the flanking β-

galactosidase gene, expression of these transgenes may be monitored by monitoring in 
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this way the expression of the β-galactosidase enzyme in vivo. Additional approaches 

have been proposed for the expression of iron binding proteins or transporters able to be 

activated by endogenous iron accumulation [112,113] as well as novel gene expression 

amplification strategies to improve MRI visualization of the overexpressed genes [114]. 

 

4. DIAMAGNETIC AGENTS 

Imidazole derivatives 

Spectroscopic pH responsive probes 

< Figure 7, near here> 

To overcome some of the limitations of paramagnetic probes, we proposed some 

years ago the development of a novel series of diamagnetic agents to determine 

extracellular pH using the alternative Magnetic Resonance Spectroscopy approach 

[20,21]. 3-(Ethoxycarbonyl)-2-imidazol-1-ylpropionic acid, abbreviated as IEPA 

(Figure 7), was the first probe synthesized in our laboratories already in 1992, that made 

possible the non-invasive in vivo measurement of pHe in tumours using of the 1H-NMR 

Spectroscopic Imaging (1H MRSI) method [22]. We selected the imidazole ring in the 

design of IEPA basically for two reasons: i) the imidazole pKa (ca. 7.0) is very close to 

physiological pH allowing accurate pH measurements, and ii) its H-2, H-4 and H-5 

proton resonances are easily resolved and observed in the aromatic region of 1H NMR 

spectra, sufficiently far away from the water and the crowded aliphatic regions of the 

spectrum.  

< Figure 8, near here> 

Figure 8 illustrates the method with one the earliest pH images obtained. After 

infusing IEPA in rat bearing a C6 glioma, it was possible to observe the resonances 

from the H2 proton of the pH probe, only in the tumoral region [115,116]. This is 
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because IEPA is a non permeant probe and the tumor vasculature is devoid of blood 

brain barrier, allowing IEPA to diffuse directly into the extracellular space. Calibration 

of the pH dependence of the H2 chemical shift, allowed then to determine extracellular 

pH. H2 Multiple, localized, pHe measurements using this probe were conveniently 

obtained by determining the chemical shifts of its imidazolic H-2 proton in the 

collection of contiguous voxels provided by the 1H MRSI experiment. It was possible 

then to demonstrate for the first time that extracellular pH is heterogenous through the 

tumor (Figure 8f).  

 The same 1H MRSI approach, with a longer echo time (120 ms), could be used 

to obtain maps of other endogenous metabolites of the C6 glioma, allowing for the first 

time to establish correlations between extracellular pH and the local concentrations of 

the different metabolites imaged. The correlation found between the lactate resonance 

and the extracellular pH in vivo entailed particular physiological relevance. The 

classical work of Warburg had revealed that tumors produced larger amounts of lactate 

than normal tissues, indicating that extracellular lactate could be the main cause of 

extracellular tumor acidity. Our results in vivo, revealed no significant correlation 

between extracellular pH and the lactate resonance, indicating that either protons diffuse 

faster than lactate from the lactate production sites or, that tumors present additional 

sources of protons to lactate. We confirmed recently this observation using ISUCA, an 

improved pH indicator based on the IEPA structure but providing increased blood 

retention time and augmented pH resolution [116]. In summary, the use of diamagnetic 

pH probes and in vivo MRSI provides a good illustration of the important differences 

between metabolism as investigated in isolated cells or tissues or in vivo, illustrating the 

enormous potential of accurate pH measurements by 1H MRSI as a new diagnostic and 

prognostic tool in oncology. 



 22

Spectroscopic pO2 responsive probes 

Varghese et al. reported firstly, to our knowledge, that -14C labeled- 

misonidazole was selectively trapped in oxygen deficient cells [117]. Various attempts 

have been reported using nitroimidazole based drugs as 19F-NMR oximetry probes. 

Early work carried out by Raleigh et al. using CCI-103F showed the ex vivo 

detectability of bounded derivatives in tumour and liver by 19F-NMR [118]. Later on, 

the ex vivo the concentration of bound marker in different types of subcutaneous tumour 

(R3327 H or R3327 AT prostatic adenocarcinomas and walker 256 carcinoma) and in 

liver was quantified using 19F-NMR [119]. 

More recently, two fluorinated nitroimidazole derivatives, SR-4554 and TF-

MISO (Figure 5A) have been used to measure hypoxia in vivo. The former has been 

extensively studied both in vitro [120] and in vivo with different tumour types [121] 

showing low toxicity, high metabolic stability, favourable pharmacokinetics and high 

sensitivity for detection by magnetic resonance spectroscopy[122]. A close relationship 

between retention of SR-4554 and polarographic pO2 electrode measurements in rat 

bearing P22 carcinosarcoma has been reported [123]. SR-4554 has recently entered in 

Phase I clinical trials showing promising pharmacokinetic and toxicity profiles, 

although no oxygenation measurements have been reported to date, to our knowledge, 

in patients [124]. 

TF-MISO has been proposed as a plausible 19F-NMR nitroimidazole based 

reporter [125]. A positive correlation is found in vivo between the corresponding 

retention index and the tumour volume (qualitatively related with tumour hypoxia). It is 

important to notice that multivoxel spectroscopy has been achieved in tumours in vivo, 

showing that TF-MISO is visible under these conditions. Based on spectroscopy 

measurements, tumor hypoxic fraction was calculated, finding similar results with 
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literature values for MCa tumors. Although this methodology remains still far from 

being clinically applicable, it represents an important advance since it proves for the 

first time that a nitroimidazole based drug may be spatially resolved by multivoxel 

spectroscopy in vivo. 

Hyperpolarized probes 

<Figure 9, near here> 

The use of hyperpolarized 13C methods and 13CO3H- to measure metabolic 

fluxes and pH in vivo is well illustrated recently in the studies from the Cambridge, 

Oxford and Dallas groups [89,126-129]. The method allows to measure pH from the 

ratio of 13CO2/CO3H
- resonances, maintained in, or near equilibrium, by carbonic 

anhidrase. Figure 9 illustrates the pH results obtained in vivo in an implanted lymphoma 

after the administration of hyperpolarized (1-13C) pyruvate using 13C MRSI. The 

resolution is comparable to that obtained by 1H MRSI, but its applicability remains at 

present limited to few research sites because the large and specialized infrastructure 

required. An important concern in this case may arise from the characterization of intra- 

or extracellular environments originating the observed 13CO2 or HCO3
- resonances, 

because the ubiquitous location of these two metabolites in vivo. However, it appears 

reasonable to believe that value of pH measured by hyperpolarized techniques refers 

primarily to the intracellular compartment, since it correlates well in the heart with 31P 

NMR measurements of pHi using the inorganic phosphate measurement. 

 

5. CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

The present review addressed briefly the use of MRI or MRS probes to obtain 

measurements of microenvironmental variables as pH and pO2 in vivo. MRI active 

contrast agents provide values of these variables with high spatial resolution. However, 
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the possibility that MRI measurements include contributions from environmental factors 

additional to those being investigated, such as transcellular water exchange or limited 

diffusion between intra- and extracellular spaces, should not be ignored. In contrast, 

diamagnetic probes for spectroscopic imaging provide measurements of extracellular 

pH with lower resolution, but entailed with a more robust, unambiguous interpretation. 

The recent improvements of the available agents using magnetically equivalent dimer 

molecules [26], together with the rapidly increasing magnetic fields available for 

spectroscopy promise to improve in the near future the resolution of the MRSI 

experiments approaching the MR imaging limits.  

In virtually all previous cases, paramagnetic or diamagnetic agents have been 

used in separate. Necessary cross-validations of the measurements need them to be 

applied in combination in the same experimental model. Moreover, the combination of 

the optimized pHe diamagnetic probes with recently synthesized pO2 probes [27], and 

PARACEST probes sensitive to glucose or lactate concentrations may afford, in the 

near future, for the integral evaluation of the various environmental factors in normal 

and diseased tissues by MRI/MRS methods. The spectacular improvements in the use of 

13C hyperpolarized probes promise to unravel the relationships between pH and pO2 

measurements and the activity of crucial enzymes of energy metabolism as pyruvate 

dehydrogenase or lactate dehyrogenase. It is also possible to think that some the 

diamagnetic probes currently available may become 13C enriched and hyperopolarized 

in the future, further enlarging the arsenal of hyperpolarized environmental probes. 

Finally, the Blood Brain Barrier remains as one of the most important challenges to 

allow these probes to reach and investigate the extracellular environment of the healthy 

brain in vivo. Structural improvements are expected to increase significantly the pass of 
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environmentally sensitive probes through the barrier into the extracellular compartment 

of the healthy or diseased brain. 

In summary, the present review has shown that imaging the tissue 

microenvironment in vivo is feasible and has demonstrated great potential in animal 

models of disease, its transfer to the clinic remaining at present the most important 

challenge for future developments in this field. 
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ABBREVIATIONS 

T1 :   Longitudinal Relaxation time 

T2 :   Transversal relaxation time 

T2* :   Transversal relaxation time including magnetic field inhomogeneity 

r1 :  Longitudinal relaxation rate 

r2 :  Transversal relaxation rate 

r2* :  Transversal relaxation rate including magnetic field homogeneity effects 

ADC :  Apparent Diffusion Coefiicient 

MT :  Magnetization Transfer 

MRSI:  Magnetic Resonance Spectroscopic Imaging 

CEST:  Chemical Exchange Saturation Transfer 

DIACEST:  Diamagnetically Induced Chemical Exchange Saturation Transfer 

PARACEST: Paramagnetically Induced Chemical Exchange Saturation Transfer 
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APT:   Amide Proton Transfer 

DTPA: Diethylen diamino pentaacetic acid 

DNP:   Dynamic Nuclear Polarization 
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FIGURE LEGENDS 

Fig. (1). The extracellular microenvironment of tissues (light blue) is located between 

the vascular (red) and intracellular (grey) spaces. A: Under normal conditions (A) it is 

characterized by relatively low concentrations of lactate and H+ due to the efficient 

removal of these metabolic products by the microvasculature. B: Reduced performance 

of the microvasculature (purple) under most pathological situations results in lactate and 

H+ accumulation among other waste products in the diseased extravascular space 

(brown). This review describes the different approaches developed to progress from 

conventional anatomical T2 weighted MR images (inset A) to molecular images 

revealing particular properties of the extracellular environment as pH in the brain of rat 

bearing a C6 tumor (inset B). 
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Fig. (2). Fundamentals of paramagnetic water relaxation induced by Gd(III) chelates. 

The ccordination envelope of cyclen ligands occupy eight (1-8) of the nine coordination 

sites from Gd(III), allowing a single water molecule to enter the vacant site of the metal. 

Under these conditions, the T1 of the coordinated water molecule is reduced to T1m, this 

molecule being able to exchange with the solvent with an exchange rate kex and 

experience then Brownian diffusion (ADC). The ability of the complex to induce faster 

water relaxation rates r1,2,2* (known as relaxivities) may be improved by increasing the 

number of coordinated water molecules (q>1), slowing down the rotational correlation 

timer of the complex (τR) through binding to macromolecular carriers, or increasing the 

exchange rate kex between the solvent and the first coordination sphere. Faster ADC 

improves the amplification of the inner sphere relaxivity effects. 

 

Fig. (3). Magnetization Transfer Contrast. Tissue water may be present primarily in two 

different environments, “bound” (dark blue) as solvation water to different biomolecues 

(BM) or “free” (light blue) as solvent. Water molecules exchange (kex) between these 

two environments (A). Saturating the “bound water” resonance with an selective Rf 

pulse (Rf) results in a decrease of the original water resonance from (Mo) to (Msat), 

because the saturated spins are transferred to the solvent (B). This exchange is 

influenced by additional environmental factors including temperature, pH and the 

Apparent Diffusion Coefficient (ADC). Lower panels: Representative saturation 

transfer images from rat bearing a C6 grioma; (C) T2 weighted image before the 

saturation pulse, (D) after the saturation pulse and (E) Magnetization Transfer Msat/Mo 

map.  
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Fig. (4). In vivo measurements of the Apparent Diffusion Coefficient (ADC) by in vivo 

MRI allow to probe tissue microstructure. A: The classical Stejstahl-Tanner sequence. 

δ: duration of the diffusion encoding gradient. Δ: Diffusion measurement time. Pixel by 

pixel measurements of the signal intensities obtained for increasing diffusion gradient 

values allow the determination of the pixel by pixel ADC map of  a representative rat 

brai bearing a C6 glioma (D). During the same Δdiff tissue water will diffuse longer 

paths in less cellularly crowded (B) than in more cellularly crowded environments (C). 

 

Fig. (5). Imidazolic pO2 probes. A: Some imidazole derivatives currently used as 

oxygen probes by PET (18F-Fluoromisonidazol), optical methods (Pimonidazol) and 

19FMRI/MRS (EF5 and TF-MISO). B: Comparison of PET images from the uptake of 

FDG glucose (left) or 18F-Fluoromisonidazol (right). Note that only one of the nodules 

positive to FDG is hypoxic as revealed by F-MISO. C:  Fluorescence micrograph from a 

head and neck squamous carcinoma showing pimonidazol accumulation in the hypoxic 

areas (green) surrounding the necrotic core. D: Retention maps of TF-MISO as detected 

by 19F MRSI showing hypoxic areas (right inset) and 19F spectra showing the 

accumulation of TF-MISO only in the hypoxic zones (left inset). Illustrations are taken 

from refs [130], [131] and [132] and reproduced with permission of the publisher. 

 

Fig. (6). Structures of ligands derived from the cyclen structure useful as pH sensors 

using relaxivity enhancement (A and B) or PARACEST methods (C). 

 

Fig. (7). Structures of imidazolic derivatives currently used as extracellular pH probes. 
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Fig. (8). Extracellular pH maps obtained with IEPA from implanted C6 gliomas. A and 

B: 1H NMR PRESS spectra from the contralateral and ipsilateral hemispheres. Note that 

IEPA only accumulated in the tumor. C: Gd(III) DOTA enhanced image of the same C6 

tumor showing peripheral enhancement of the vascularised regions. D: 1H MRSI image 

of IEPA accumulation in the tumor. E. Titration of the pH dependence of the imidazolic 

H2 proton from IEPA. F: Extracellular pH map obtained from the chemical shift of 

IEPA H2 resonance observed in the tumor. Reproduced from ref. [115] with permission 

of the publisher. 

 

Fig. (9). Imaging the tumor pH in vivo by 13C MRSI using hyperpolarized 13CO3H-/CO2. 

A: T2 weighted image showing the EL4 tumor localization B: pH map calculated from 

the intensity maps of HCO3
- (C) and CO2 (D). Reproduced from ref [126] with 

permission of the publisher. 
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